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The R-matrix theory of nuclear scattering is used to consider the meaning of spectroscopic
factors for unbound states. Potential scattering is explicitly calculated by constructing an R
function which is equivalent to the potential. The compound effects are then parametrized in

the usual R-matrix fashion with the spectroscopic factors being explicitly included as param-
eters. The spectroscopic factors are found by fitting data. The spectroscopic factors are
very sensitive to the choice of the various resonance parameters, and the validity of spectro-
scopic factors as a meaningful quantity for unbound states is discussed in the light of several
calculations. Several types of resonances found in the reactions C(n, n) C and O(n, n) 60

are considered. These include the cases of very narrow and very broad resonances and a
double-resonance situation.

I. INTRODUCTION

The study of (d, p) and other particle-transfer
reactions in the continuum has been of much inter-
est to both experimentalists and theorists. ' " In

a normal bound-state (d, P) stripping calculation,
the spectroscopic factor of the observed states is
found as a normalization factor when theory is
compared with experiment. The radial integral
encountered in bound-state (d, P) stripping theo-
ries is finite because the neutron wave function
goes to zero as the neutron radial coordinate goes
to infinity. In (d, p) stripping to the continuum the
neutron wave function is that for a free state, and

the bound-state theory must be modified. Exactly
how this can best be done has been the subject of
several papers. ' "

The states seen in (d, P) stripping to the contin-
uum can also be seen in neutron elastic scattering
as resonances. If spectroscopic factors are com-
puted for these neutron elastic scattering reso-
nances, they should compare with those found in

(d, P) stripping to the continuum. All this, of
course, assumes that in the continuum the spec-
troscopic factor is a meaningful physical quantity.

One of the best-known theories of resonance re-
actions is the R-matrix theory. This theory uses
as its parameters the wave function squared and
its logarithmic derivative at a radius outside the
region of nuclear interaction. In its usual simpli-
fied form, the R-matrix theory contains no inter-
action. The reason for this is that the interaction
is so complicated that it cannot be found. The cor-
responding resonances are frequently very narrow
and bear little resemblance to scattering by a po-
tential well. When only the neutron elastic scatter-
ing channel is allowed, the R matrix reduces to an
R function, and if an isolated resonance labeled X

is considered, the R function is taken to be

=Ro+y, /(E, —E),
(2)

(s)

where the label 1 refers to the single-particle res-
onance in the region of interest, and the back-
ground Ro can be easily calculated.

Once the potential resonance scattering is pa-
rametrized in terms of R-matrix parameters, the
experimental data can be fitted using different val-
ues for the reduced widths and energies of the res-
onances. By comparing the potential scattering
parameters to the experimental fitting parameters,
the spectroscopic factor for a resonance can be
defined. However, it turns out that in some cases

R =Ro+y), /(E&, —F) .
In this formula, yq' is called the reduced width,

and E& is connected with the energy at which the
resonance is seen experimentally. The parameter
Ro is assumed to be independent of the energy. It
describes the background effects, and it is fre-
quently taken to be zero. The conventional R-ma-
trix theory works well for narrow, isolated reso-
nances which represent very complicated com-
pound states. However, when the resonances can
be described by a potential, and spectroscopic fac-
tors are desired, the R-matrix theory needs to be
carefully applied.

In this paper we show how potential scattering
can be described by the R-matrix formalism. At

any given energy, the R-matrix formalism is
equivalent to an exact calculation of the scattering
from a potential. The single-channel R-matrix
parameters at the given energy are the background
Ro, the potential resonance reduced width 'Pp and
energy E~, the R-matrix radius a„and the bound-
ary condition b, . For a range of energies of sever-
al MeV, the R function for the one-channel case of
potential scattering can be written in the form
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the spectroscopic factor so defined is very sensi-
tive to the various parameters chosen. Thus, it
may not make very much sense to consider spec-
troscopic factors when referring to certain reso-
nances.

In Sec. II we show how the conventional R-ma-
trix theory must be applied in order to include po-
tential scattering explicitly. In this section we

also derive the simple formulas used by experi-
mentalists in fitting data and discuss how a spec-
troscopic factor can be found. In Sec. III we apply
the formalism to the d„, double resonance seen in

the "C(n, n) "C reaction. In Sec. IV we do the
same for the very narrow d„, resonance seen in

~C(n, n) "C. Section V examines the narrow d»,
resonance in ' 0(n, n)"0 which can be described
by potential scattering. In Sec. VI we examine an

s„, resonance dip in "0(n, n) "0. A discussion of
our results is given in Sec. VII.

II. THEORY

In this section we want to derive the simple for-
mulas normally used by experimentalists in ana-
lyzing neutron elastic scattering. We confine our-
selves to reactions in which only the elastic scat-
tering channel is open. Two such examples are
' C(n, n)' C and ' 0(n, n)' 0.

The "C(n, n)"C and "0(n, n) "0 data are especial-
ly interesting because the basic shapes of the ex-
citation functions (cross section vs energy) can be
fitted using a real Woods-Saxon potential including
spin-orbit effects. When this is done, not only is
the background fitted, but also a d», resonance
at low energy is fitted by the potential. Thus, we

say that these d», resonances in ~C(n, n)"C and
' 0(n, n)' 0 are potential resonances. These are
also frequently called single-particle resonances.
The background cross sections in these two reac-
tions are due mostly to an s-wave state which is
slightly bound.

If we treat the reactions as a simple problem of
a neutron being scattered by a potential, we can
easily find the solution. The Schrodinger radial
equation is

(4)

a computer. We use the phase convention that if
V~ s is real, u(r, } is real. By varying the param-
eters, the data can be reproduced reasonably well.
Figures 1 and 2 show fits to the "C(n, n)' C and

"0(n, n)"0 data from about 0.5 to 4 MeV. From
these figures we can see that the over-all shapes
of the excitation functions can be fitted with a very
simple local potential with no energy dependence.
This is very satisfactory, since we know that, in

general, the potential is nonlocal or local and en-
ergy dependent. Our task is to improve this fit by
including compound resonances, using the frame-
work of R-matrix theory. But first, we must con-
sider how the potential calculation can be repro-
duced using parameters from R-matrix theory.

(T + V~, )u, (r, ) =E~u~(r, ), (5)

where the radial wave function u~(r, ) obeys the
boundary condition

A. Potential Scattering Using the R Function

The R-matrix theory of nuclear reactions" can
easily be used to fit potential scattering. Each
partial wave is afforded a separate treatment in
R-matrix theory. When the partial waves are
summed in the appropriate manner, a cross sec-
tion results. When fitting neutron-resonance data,
we will want to modify only the partial waves
which cause resonances in the energy region we
are fitting. For instance, if we are trying to fit
the low-energy ~C(n, n)"C data, only the d», and

d„, partial waves need to be modified, since they
are the partial waves which give rise to resonanc-
es. For all the other partial waves, we will use
the scattering matrix elements generated by the
potential.

Now let us consider the "C(n, n)"C data in the
region of 3.5 MeV. We see a single-particle res-
onance caused by the d» partial wave. We want

to parametrize this in terms of an R function. Be-
fore doing this, let us recall some of the R-matrix
theory for a single channel.

We can write the radial Schrodinger equation in
the interior region x, (a, as

where T is the kinetic-energy operator, E is the
energy of the neutron in the center-of-mass sys-
tem, u(r, ) is the wave function of the neutron in
the potential, the coordinate r, is the distance of
the neutron from the center of the potential, and

V~ s is a real Woods-Saxon potential with a sur-
face spin-orbit term. The potential has a central
depth V„a spin-orbit depth V„, a diffuseness a,
and a radius R.

Equation (4) can be solved easily with the aid of

('
)

[u~'(r, )], =b, ,
u~ a,

(6)

where a prime denotes differentiation with respect
to r, .

In Eq. (4) an energy-dependent quantity similar
to 5, can be defined. We call this quantity f„
where
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We see then that whenever E =E~

b, =f,(z, )

and

u~(r, ) =u(r, ), z =z~.

(8)

In the single-channel R-matrix theory, the R
function for potential scattering from V~, in the

d„, channel is found to be
2

R Pot ~P

p

where the Z~ satisfy Eqs. (5) and (6) and

(10)

~, (n.).ma,

In general, we are only interested in a particu-
lar single-particle state; for instance, the d„,
single-particle state at 3.5 MeV. Near the energy
of interest, one term in the series of Eq. (10) will
be dominant. The rest can be assumed to be weak-
ly energy dependent. We then write

Let us briefly review what we have done. If we

consider only the region r, (a„where a, is out-
side the range of the potential V~, , we can par-
ametrize the scattering from the potential in terms
of an energy-dependent R function. This energy-
dependent R function is given by Eq. (10) or (15).
However, the beauty of the R function is that it can
be approximated by a form in which the energy de-
pendence is explicitly seen. This is Eq. (17). In

Eq. (17), R, and y,' are assumed energy indepen-
dent. The energy dependence is explicitly given
by the denominator of the last term.

It is good to remember that in finding the cross
section for a single partial wave, Eq. (17) does not
stand alone. The quantity 5, also enters into the
calculation of the scattering matrix once the R
function is found. That is, for every RP" found
from Eq. (17), there corresponds a potential-scat-
tering boundary condition b, found from Eq. (14}.
This is obvious when we write down the relation-
ship between the elastic scattering S matrix ele-
ment S„and the R function:

2
R&"=R (z)+E, —E (12) S„=e 'c 1+ QjP P

1+R(b, —S, —iP, )
(18}

where E 1 is chosen to be in the region of interest
and

R,(z}=g
P&1

Our boundary condition is also determined by our
choice of Z, . It is from Eq. (8):

b, =f,(z,). (14)

Note that since u(r, ) is chosen to be real, b, will
also be real.

Now, we need to compute the quantity R,(Z) in
Eq. (12) to find R~'. This can be done using a
method due to Buttle. " We recall that Rp" can be
written

R Pot j.

f,(z) —b,
(15}

Here f, is an energy-dependent quantity, while b,
is determined once the potential V~ s and the en-
ergy E, and the R-matrix radius a, are chosen.
Using Eqs. (12) and (15) we now can find R,(Z):

R,(z}=
fc(z) —b z1-z (16)

Equation (16) is of use only if Ro(Z) is weakly en-
ergy dependent. We find Ro(Z) by solving Eq. (16)
at several energies near E1 If Rp is weakly ener-
gy dependent, we can approximate Eq. (12) by

Rp" = Ro+ '
~ (17}

In this expression S„P„and P, are the well-
known shift function, penetrability, and hard-
sphere phase shift (all in the elastic channel c)
which are dependent on the energy and on the
choice of the radius parameter a,."

In summary, the scattering of a particle from a
potential can be solved in one of two ways. (There
are other ways, such as integral equations, not
considered here. ) The problem can be done exact-
ly by matching wave functions at each energy and
finding the phase shifts as a function of energy.
The second approach is to use an R-matrix pro-
cedure for the partial wave of interest. The ad-
vantages of this second approach are twofold.
First, it crystallizes the energy dependence of
the partial wave through Eqs. (17) and (18}. The
other advantage is that it is the first step in an R-
matrix approach to fitting the data.

2

R =Ro+E -E (19)

B. Spectroscopic Factors in R-Matrix Theory

Potential-scattering calculations at best give
only the gross features of experimental data. Ex-
amples are shown in Figs. 1 and 2." " Here
there are several resonances which cannot be fit
using a simple energy-independent potential well.
In order to fit such data we would like to use a
simple R function of the form
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5.0-

4.0-

3.0—

A-matrix theory and relate them to potential-scat-
tering R functions such as Eq. (17}. Once their
relation to potential scattering is shown, the con-
cept of spectroscopic factors will be discussed.

We represent the unknown full Hamiltonian by H,
and the single-particle potential by H, . Then

2.0-

l.o—

H =Ho+H'.

The Schr5dinger equations for H and H, are

and

Ho/0 =Ego.

(21)

(22)

(23)
0
0 I.O 2.0 3.0

LAB ENERGY (MeV)

4.0 In the interior region r, ~ a„ the wave functions

g and |I), may be expanded in terms of complete
sets of states yz and P~,. We then have

or

E, -E E~-E (2o)

We would use Eq. (19) if there were one bump or
dip of a given spin and parity. We would use Eq.
(20) if there were two resonances with the same
spin and parity in the energy region of interest.
Equations (19) and (20) are frequently used by ex-
perimentalists. We would like to derive these
equations using the procedures of many-channel

FIG. 1. Tptal crpss sectipn. fpr i2C(n, n~i2C frpm 0.5 tp
4.5 MeV. The dots are experimental data taken from
Refs. 15 and 16. The solid curve is a calculation using a
Woods-Saxon plus spin-orbit potential. The potential pa-
rameters used were Vp

——62.3 MeV, V,p 6 81 MeVF, a
=o 408 F, and xp=1.25 F.

HX), =ExXx ~

Ho~pc pc4pc & c c ~

(24)

(25)

where yz and P~, satisfy identical boundary condi-
tions at r, =a,.

Now, let us consider the complete set of single-
particle states

q„=P,up(p, ), (26)

where p, is the channel wave function and up(r, ) is
the radial wave function of a single nucleon moving
in a single-particle potential well. The up(p, ) sat-
isfy the boundary conditions

[up'(r, )], =fp, . (27)
~p c

The Xq can be expanded in terms of this complete
set of single-particle states as follows:

Xx =En';p 4p ~

pc
(28)

8.5-

6.8-

Ch

5.t-

3.4-

Now, the yz are antisymmetric in all nucleon coor-
dinates, whereas Pp, is not. Thus, Eq. (28) is a
fractional-parentage expansion, and the inverse
does not exist.

However, consider the fully antisymmetrized
We could then write an equation similar to Eq.

(28):

l.7-
Ij
1a0 I I I I I I I I I I I i

0 0.5 I.O l.5 2.0 2.5 3.0 3.5 4.0

LAB ENERGY (MeV)

A
Xx =Z&x:ppkpc ~

pc

The inverse to Eq. (29) exists:
A

4pc
=Z ™x: pcX), ~

(29)

(30)

FIG. 2. Total cross section for 60(n, n) 0 from 0.5 to
3.5 MeV. The dots are experimental data taken from Ref.
17. The solid curve is a calculation using a Woods-Saxon
plus spin-orbit potential. The potential parameters used
frere Vp= 54.0 MeV, V« =7.1 MeV F, a =0.61 F, and rp
=1.25 F.

If we assume that the only important states in
g~", are given by g~, then we have that

A
4Pc SPc & (31}

(32)Clk: Pc Q&'Pc

This approximation is reasonable, since the most
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Zn~: ~en';o c ''6oc, p'c' ~ (33)

aX; pcaV pc
—~X),' ~

pc
(34)

The single-particle reduced widths are given by

important target states in Pp", are bound states,
while the most important single-particle states
are scattering states. From Eqs. (28) to (32) we
can derive the conditions Qr ),.' =Qrp. '

p

(41)

If we make the assumptions that, in a given ener-
gy region, only one single-particle state p con-
tributes to the widths, and that this state p con-
tributes only to these widths (labeled ).=1 to N„),
then we get for these widths

Using Eq. (33), we can derive a general relation-
ship between the sums of the actual reduced widths

and the single-particle reduced widths:

y =
2 P, ,dS (35)

(36)
and

'Y) c ax; pc&pc (42}

gQ 1/2»= 2m.c cm a

c It p c c p c
62 1/2

Q, Q az. ~,.P, u~(a, ,)d S
2m, a, PC'2

I'
2 ga) . ,~,(a,).ma, p

Thus,

(37)

(38)

(39)

The reduced widths of the actual states are given
by

2
ax;pc 1

X= j.
(43)

2

E -E
PC

(44)

2

R„=
X

(45)

The elastic scattering R matrix elements can be
easily derived using standard procedures" for
both the complete Hamiltonian 0 and the single-
particle Hamiltonian 0,. The results are:

~&c Z X'Pc+Pc
p

(a) H,

(4o)
2

Zsxp-. ~p-.
Rcc E (46)

I.O-
CL

rC
O

0
-Ve

p* I p*2 ps 3 ps4 p=5
Now we want to make the same assumptions as
stated above Eq. (42). We refer to Fig. 3. The
states X = 1 to Nz arise from the splitting of one
single-particle state p. The rest of the states can
be treated as an energy-independent background.
We then get

(b) H

N
3

X M a &".p'8'p'c~ a~'pc ~pc + p'
cc ~ E~ E E

gpss

~ E
X=1. ) II

(47)

I.O-a
0

0
"Vo

XsNg

I I s,
I

and

ax p, =5),.p. (48)

In this equation, the second term is the back-
ground term. This term can be approximated by
assuming that

FIG. 3. A schematic diagram showing distribution of
states of a given spin and parity for the single-particle
Hamiltonian Ho and the actual Hamiltonian H. The single-
particle states which satisfy a specified boundary condi-
tion are shown in (a). The states corresponding to the
actual Hamiltonian are shown in (b). The states p =1 and
p=2 are bound states. The states p =3, 4, and 5 are in
the continuum. Each single-particle state p is split into
several states A, . The state p =3 is split into states la-
beled from 1 to Nz.

Eg =Ep. .
The background term then reduces to

(49)

E -EP'C
(50}

This is exactly the same as the potential scatter-
ing Ro computed from Eqs. (12), (15), and (16).
Our Eq. (47) now becomes
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TABLE I. Parameters affecting the spectroscopic factor S&.

Independent parameters Determined parameters

(1) Potential-well parameter s:
radius, diffuseness, central
well depth, spin-orbit well
depth, etc.

{2) Single-particle energies E~
(3) R -matrix radius ac

{1) Single-particle reduced width y~~
(2) Background term R 0

(3) Boundary condition b,
(4) Penetrabilities and shift

functions

R =R +~cc 0 (51)
where Ep, can be varied, thus determining various
values for R, and yp, '. The R matrix element used
in fitting the data is

This is the same as Eq. (19) or (20) if we use the
connection between y~,

' and y~,
' in Eq. (42):

S,y„' S,y„'
E —E E —E'

1 2
(55)

2= 2- 2
yacc ~~; pc ypc (52)

Using all of the above approximations the spec-
troscopic factor for the state A. can be defined as

2 2/- 2
~X. ; pc yXC &ypc (52)

where p refers to the single-particle state in the
neighborhood of A. and c is the elastic scattering
channel. In order for this definition of Sz to be
meaningful, it should be relatively independent of
the other parameters in the theory. The relevant
parameters are given in Table I. The independent
parameters are the potential-well parameters, the
radius a„and the single-particle energies E„.
The other parameters listed, such as yp,

' and the
boundary condition 5, are determined once the in-
dependent parameters are chosen.

Let us consider now the energy dependence of
the spectroscopic factor. In order to do this we
need to know how R„and RCP," compare. For in-
stance, consider the "C(n, n)"C data and fit shown
in Fig. 1. Our potential-well R matrix element is

$ — 2
pc (56)

2 1
R0+ypc Sv Xx'

H E Xx' (57)

where A.
' indicates the sum from 1 to Nq. For the

data in Fig. 1, Nq = 2. Let us now consider only
the summation in the second term in Eq. (57):

(56)

Now we can expand the operator I/(Ii —E) as fol-
lows:

1 1 1 1
+ H'

H E H0 E H0 E H0 E

where S„S„E„andE, are parameters used to
fit the data. The boundary condition 5, is taken
to be that determined by Ep, and a, .

We now seek to compare Eqs. (54) and (55). We
do this by expanding R„:

2

R pot R + ypc
CC 0

pc
(54) + H' H'1 1 1

H0-E H0-E H -E (59)

If we insert this into Eq. (56) and use Eq. (25) we

get

(e,.lH EIC,.&=E E E E,&q„lff'ly„&+E E Q(y„lH'Iq;P&E E&y;;IH'IO, , &&y;P IH
1 1, 1

pc Cc pc p'c'

p I

(60)
This Eq. (60) cannot be solved, since H' is unknown. However, to get it into a more transparent form we
assume that

(61)

This is plausible, since our single-particle potential is chosen to fit the gross features of the data. In
addition we make the assumption" that

&4c. Iff I kc y& (62)
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have random signs so that Eq. (60) reduces to

"R-Z " Z -Z'Z -Z~ Z, , -Z "R-Z
PC jC O'C'

PICt

(63)

(64)

Thus, our R matrix elastic scattering element can be approximated by

2
~pc' z,. z+-D(V,.I,
ff'I e;;)I'/(z, .-z)

P'C'

(65)

When we compare this with Eq. (55), it is not at all obvious that the spectroscopic factors Sz are indepen-
dent of the single-particle energy E~,. If the Sz are strongly dependent on the E~, we have

s) =sr(z.,).
If Eq. (66) holds, one questions the value of a quantity called the spectroscopic factor.

(66)

III. ANALYSIS OF A DOUBLE RESONANCE

IN C(n, n) C

An interesting double resonance arises in "C-
(n, n) "C data. Two broad d„, resonances are
found at about 3.95 and 3.50 MeV (see Fig. 1). Be-
cause they are so close together and so broad
these resonances interfere with one another. Our
problem is to fit this double resonance using Eq.
(55), and from this fit to arrive at spectroscopic
factors for these two levels. We do this by using
the procedure outlined in Sec. II. That is, we find
an R-matrix parametrization of the potential scat-
tering and use these parameters to find the spec-
troscopic factors.

Figure 1 shows a fit to the data in which a real
Woods-Saxon well with spin-orbit coupling is as-
sumed. The well chosen is of the form

(r -R)/a

~w. s.( ) 0 ~ ~r-Rlla ~so3 r ~ &r-R)/a]2 r1+e areal + e

most of the scattering in this region occurs via s
and d waves, the potential gives a good over-all fit
to the data.

To convert the potential-scattering calculation
for the d„, partial wave into an R-matrix form,
we need to choose an energy E~ and an R-matrix
radius a, . Then using the wave function generated
by the potential at E~ and a„we can compute y~'
and 5,. Also, using the wave functions found for
various other energies near E~, we can compute
R,(Z) using Eq. (16). We can plot these various
quantities versus E~ and a, to see if there is a
best set of values for E~ and a, . Of course, the
R function given by Eq. (10) is exact, but we would

8.0-

6.0-

4.0-

where

(67)
2.0—

~«~
~ ~O~

0 (66) 0
I.O 2.0

and A. is the mass number of the target. This po-
tential has four parameters: a central well depth
V„a spin-orbit well depth V„, a diffuseness a,
and a radius parameter ro. The parameters used
to generate Fig. 1 were V, =62.3 MeV, V„=6.81
MeV F', a=0.408 F, and x, = 1.25 F. These were
used by Reynolds et al. "to fit the s1/2 and d3/2 par-
tial waves. The phase shifts for the sy/2 and d3/2
waves generated by this potential agree well with
those of Wills et al." However, the p-wave phase
shifts are different. Several other parameter sets
were tried, but this was the best set found. Since

-2.0-

-4.0—

-6.0-

-8.0-
LAB ENERGY ( Mev)

1
I

I

1

FIG. 4. Plot of fc(E) vs E for the ds/2 partial wave in
~ C(n, n)' C for various values of the R-matrix radius a, .
The solid line is for a, = 5.5 F, the dashed line is for ac
=7,0 F, and the dot-dashed line is for a, = 8.0 F.
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like to use Eq. (17). Thus, we want to choose the
values of Ep and a, which will give the least ener-
gy dependence of R, and y~' in Eq. (17}and of b,
in Eq. (18).

Figure 4 shows f,(E) vs E for various values of
a, . The boundary condition b, is related to f,(E)
through Eq. (14). Figure 5 is a plot of y~' vs E
using various values of a, . Figure 6 is a similar
plot for Rp. In all of these figures, the value of
a, =5.5 F is as low as we can go (in steps of 0.5 F)
because we must remain outside the range of the
Woods-Saxon potential. If we were to make a,
= 5.0 F, Eq. (18) would no longer hold. The fact
that a, must be outside the range of the potential
is one of the basic tenets of R-matrix theory.
Some authors have ignored this basic premise in
order to consider the relationship between Woods-
Saxon and square- well potentials. " However, we
have found that in order to reproduce almost ex-
actly (within 0.08%%uo} our potential-well calculation
with an R function and a boundary condition, the
R-matrix radius must be outside the point where
the potential makes a contribution greater than
about 0. 1%%uo.

Since f,(E) can go to infinity, whereas y~' and

Rp are always finite in our region of interest, we
should consider Fig. 4 first. From Fig. 4 we see
that the lower the value of a„ the slower is the
variation of f,(E}in our energy region of interest
—from 0.5 to 4.5 Me V. Since a, = 5.5 F is the low-
est we can go and still remain outside the poten-
tial, we claim this is the best value and use it in
all of our subsequent calculations. For higher
values of a, we see from Fig. 4 that f,(E) either
goes to infinity or at least gets very large some-
where in our energy range. Since f,(E) behaves
similar to a cotangent function, we see that to get
the slowest energy variation, we must avoid val-
ues of a, which give us f,(E) =~ in or near our en-
ergy region of interest. Of course, at much larg-

er values of a, we can also get away from f,(E)
However, at these much larger values, the

various E, (pv1) get much closer together so that

R, of Eq. (13) becomes rapidly energy dependent.
To keep R, as slowly energy dependent as possi-
ble, we must choose the lowest value of a, which
has a slowly varying f,(E) throughout the energy
region of interest. It is possible that for some
problems there would be no value of a, which
would give a slow enough energy dependence of

f,(E), y~', and Ro to reproduce the potential scat-
tering using Eqs. (17) and (18). However, in the
examples studied in this paper, such an a, does
exist.

Once we have chosen a value of a, which gives
a slowly varying f,(E), we must choose an energy
E~ in order to determine h, from Eq. (8). This is
the boundary condition which is used in Eq. (18) to
calculate the elastic scattering matrix element.
Some uncertainty has arisen in the literature"'
regarding the term "natural boundary condition. "
At each energy in the continuum there is a differ-
ent actual nuclear wave function which is unknown.
These actual nuclear wave functions have boundary
conditions which oscillate with radius similar to
cotangent functions. Thus, the boundary condition
of the unknown true nuclear wave function varies
with both energy and radius. In R-matrix theory
we deal with interior and exterior wave functions.
We would like our interior wave function to join
smoothly with the exterior wave function at the R-
matrix radius a,. In order for this to happen at
E~ we must choose Eq. (8) as our boundary condi-
tion. This makes our R-matrix wave function at
Ep equal to the wave function at Ep computed from
the potential well. Thus, the natural boundary
condition is given by Eq. (8). Our interpretation
of a natural boundary condition is seen to be de-
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FIG. 5. Plot of $p vs E for the d&~2 partial wave in
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FIG. 6. Plot of Rp vs E for the d3~2 partial wave in C-
(n, n) C for various values of the R-matrix radius ac.
The solid line is fora, = 5.5 F, the dashed line is for a~
=7.0 F, and the dot-dashed line is for a, =8.0 F.
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pendent on the parameters of the potential well
and on E~ and a,. For the well parameters we

have chosen, and E~=3.50 MeV and a, =5.5 F, our
natural boundary condition found from Eq. (8) was

b, = -0.926. Note that this is not equal to either
-l or zero or the shift function at E~.

When we look at Figs. 5 and 6, we see that a,
=5.5 F also gives the slowest energy dependence
of y~' and R,. This, of course, is related to the
fact that f,(E) is most slowly varying at this value.
It also is evident from Fig. 6 and Eq. (16) that
neither the value of R, nor the dependence of R,(E)
vs E is simple. Unless an actual calculation for
a particular well with a particular R-matrix. ra-
dius and boundary condition is carried out, it is
hard to predict either R, or its energy dependence.
Of course, for our case, since there are no bound

d„, levels, we can see from Eq. (13) that R, will
be a positive quantity, since each term in the sum
is positive. For the curves shown in Fig. 6 it is
necessary to choose a value of E~ to compute R0(E)
from Eq. (16). Note that E, =E, of Eq. (16). The
value chosen was the peak of the resonance, or
E~ =3.50 MeV.

Once the best values of E~ and a, were chosen,
b, and y,

' were determined from Eqs. (14) and (11).
Then a mean value of R,(E) was chosen as R,(E,)
=0.21. The value of R~' was then computed from
Eq. (17), and this was used in Eq. (18) to compute
the d„, portion of the total cross section from 0.5
to 4.5 MeV. In carrying out the calculation of the
scattering matrix element from Eq. (18}, the shift
functions S,(E) and penetrabilities P,(E) were com-
puted separately at each energy. The partial
waves other than d, /, were computed exactly from
the potential well. The calculation using the R
function of Eq. (17) is exact at E~ =3.50 MeV, since
the energy-dependent quantities y~', b„and R,
were computed at this energy. We found that we
could reproduce the potential-scattering calcula-
tion throughout the energy range 0.5 to 4.5 MeV
using Eqs. (17) and (18). A fit comparing the R-
function potential-scattering calculation to the ex-
act potential-scattering calculation is not shown,
since the error is smaller than the width of the
line in Fig. 1 showing the exact calculation.

In order to fit the data over the whole energy
range, it was found to be important to have the
correct value of R,. When Eq. (17) was tried with
R, equal to zero, the R-matrix curve did not re-
produce the potential calculation. The results are
shown in Fig. V. This indicates that in doing sim-
ple one-level fits to data, it is important to have
the correct value of R,. We can see how Rp alters
the usual one-level formula if we insert Eq. (17)
into Eq. (18). We can then put Eq. (18) into the
form:

i I'
S„=e ' 1+ —E —''I'

R

where

6, = P, + tan '(R Q, /D),

I'q = 2P,y, '/D,

Ez =Ei+&

(69}

(70)

(71)

(72)

4 =y,'[(b, —S,) +R,(b, —S,}'+R+,'] /D, (73)

D = [1+R,(b, —S,)]'+ (R,P,)'.
We see that inserting the Rp term into the usual
one-level formula drastically alters the usual fit-
ting parameters. The hard-sphere phase shift be-
comes a potential-scattering phase shift, depen-
dent on the parameters of the potential well. The
values of the resonance width I ~ and shift 6 are
also changed. Note that the width 1 ~ is not al-
ways decreased as some authors have claimed, "
since D can be less than unity. Also, the best
boundary condition is not necessarily b, =S„
since from Eq. (73) we see that the energy shift
A will have a nonzero value in this case. Equa-
tions (69)-(74) demonstrate the importance of hav-
ing a procedure to calculate Rp.

To fit the actual data, Eq. (20) was used. This
is the usual R-matrix double-resonance formula.
However, there was one important difference in
our procedure. The background term Rp was not
a parameter. Instead, it was taken to be the same
as in the potential-well calculation. This gave us
one less parameter, and it also made data fitting
much easier, since it is important to get the cor-
rect value of R, to fit the shape of the double res-
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FIG. 7. An R-matrix calculation with Rp=0 compared
with the potential-well calculation. The Woods-Saxon po-
tential-well calculation is the solid curve. It is the same
curve as in Fig. 1. The dashed curve uses the R-matrix
formulation for the d3~& partial wave. All the parameters
are correct except Rp=0 instead of the calculated value
of 0.21.
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FIG. 8. A fit to the d&i2 double resonance in C(n, n)-
~2C using the R-matrix formulation with E2 ——3.5 MeV.
The dots are the experimental data from Ref. 16 and the
solid line is a fit using the parameters in the first line
of Table II.

FIG. 9. A fit to the d&i2 double resonance in C(n, n)-
C using the R-matrix formulation with E2 ——3.3 MeV.

The dots are the experimental data from Ref. 16 and the
solid line is a fit using the parameters in the last line of
Table II.

onance. Next, the value of E, was taken equal to
the previous value of E~ for the single resonance
calculated in Fig. 1. That is E, =3.50 MeV. Then

y,', y, ', and E, were varied to get the best fit. A

very good fit was obtained. It is shown in Fig. 8.
The parameters used in this fit are shown in the
first line of Table II. From this table we see that
the spectroscopic factors for the two levels, as
defined by Eq. (53), add up to 1.12 rather than uni-
ty. Thus, Eq. (43) is violated, but only by 1PP&.

Of course, the reason for this is that the single-
particle reduced width varies by about 50% over
the energy range from E, to E,. Thus, it is not
surprising that Eq. (43) is violated.

It is hard to know where to pick the single-par-
ticle energy in our case of a double resonance.
Another possibility besides the original single-
particle energy of 3.50 MeV is to pick it closer to
the first resonance. When E~ =E, =3.30 MeV was
chosen, the parameters in the second line of Ta-
ble II gave a good fit. This fit is shown in Fig. 9.
Using this set of parameters, Eq. (43) is violated
by 13%. Thus, either set gives a value of about
1.12 for the sum of the two spectroscopic factors.

What is startling about the two sets of param-
eters given in Table II is the tremendous differ-
ence in the value of S„ the spectroscopic factor
of the narrow d3/2 level. By slightly changing the
energies and other parameters, we obtained two

almost equally good fits to the data, but the spec-
troscopic factor of the narrow level increased by
more than a factor of 2. This shows that the spec-
troscopic factor is extremely sensitive to the en-
ergy chosen as postulated by Eq. (66). In fact, it
indicates that a spectroscopic factor may be a
meaningless quantity to calculate for this broad
double resonance.

Before we discuss spectroscopic factors in the
continuum, let us consider them in the bound-state
situation. We refer to Fig. 10. In the bound-state
case, energy levels have very little, if any, width
associated with them. When plotted against ener-
gy, the spectroscopic factors behave like a series
of 5 functions, being zero at most energies, and
having a nonzero value only at certain discrete en-
ergies. A theoretical calculation of energy levels
and spectroscopic factors usually yields energies
slightly different from the experimental values.
The spectroscopic factors found in the calculation
are again a series of 5 functions, but with nonzero
values at the calculated energies. In Fig. 10, we
have indicated the experimental bound-state spec-
troscopic factors with solid lines, and those for
the theoretical calculation with dashed lines. At
the experimental energies, the theoretical calcula-
tions give spectroscopic factors of zero. What is
usually done is to match the calculated and experi-
mental spectroscopic factors, even though they

TABLE II. C(n, n) C parameters for the d3(2 double resonance.

b R p (MeV) (MeV)
Yf

(keV)
72'

(kev)

JV

yp
(keV) Si

5.5
5.5

-0.926
-0.561

0.21
0.21

2.95
2.90

3.50
3.30

68
180

460
440

470
550

0.14
0.33

0.98
0.80
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coincide with different energies. " The point to be
made is that in the bound-state case, the spectro-
scopic factors are energy dependent. If another
calculation is done with different parameters, a
different energy dependence of spectroscopic fac-
tors mill be found, since different values of ener-
gy will have nonzero spectroscopic factors. Thus,
we should not be surprised that in the continuum
region the spectroscopic factors are also energy
dependent. This energy dependence is indicated
in Fig. 10 by cross hatching the resonances in the
continuum.

In the continuum we have the parameters y~ and
F.z for each resonance. We can interpret y&' as a
measure of the spectroscopic factor at Ez. If we

change the values of Ez as exemplified in Table II,
we also expect to change yq'. Thus, a different
set of theoretical parameters yields a new set of
spectroscopic factors. This is analogous to the
bound-state case. The main difference seems to
be that the continuum states have an energy width
associated with them that is not present in the
bound states. We expect the energy dependence of
the spectroscopic factors to be no longer a 5 func-
tion, but to spread out over their resonance midth.
Thus, there does not seem to be a single spectro-
scopic factor associated with a given continuum
state.

Fortune and Vincent8 found that for (d, p} reac-
tions to the continuum, the width of the resonance,
rather than the spectroscopic factor, is found to
be measured by the absolute magnitude of the
cross section. Our Table II indicates that for the
d„, double resonance in the reaction ~C(n, n}"C,
both the reduced width y,' and the spectroscopic
factor Sy can differ by more than a factor of 2
when the energies of the resonances are changed.
However, this extreme energy dependence may be
due to the fact that the d„, resonance at about 2.9
MeV is a broad resonance in a double-resonance
situation.

IV. ANALYSIS OF A NARROW COMPOUND
RESONANCE IN C(n, n) C

The double resonance in "C(n, n)"C analyzed in
the last section is an example of resonances very
similar in width to a single-particle resonance of
the same spin and parity. In this section we ana-
lyze a resonance with a very narrow width. This
is the narrow d„, resonance at about 2.08 MeV in
the reaction ~C(n, n)' C. This resonance has been
analyzed by several methods. ' It can be
thought of as a bound state in the ~C*(2')+n(ld„, )
system where the neutron is in the 1d„, bound
state. " The 2' core and —,

' single-particle state
couple to form a —,

' spin and parity. If this were
a pure configuration, it would not be seen in "C-
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FIG. 10. Spectroscopic factors vs energy. En this sche-
matic diagram, the solid lines indicate experimental val-
ues for bound states. The dashed lines indicate a theoret-
ical calculation. The crossed lines in the continuum in-
dicate resonances. These have spectroscopic factors
which may or may not be well defined.

(n, n)"C. However, there is some mixing between
this state and the "C(0')+n(ld„,) state. Because
of the mixing, the state has a small component of
the ld„, neutron configuration coupled to the "C(0')
ground state T. hus, it can be seen in "C(n, n)' C

as a -', resonance in the continuum with a very nar-
row width.

If we write the wave functions of the bound -', and
resonance —,

' states as mixtures of the two config-
urations mentioned above, we obtain

—', (-1.10 Me V) = a,[(0 )8 1d51, ] + a, [(2' ) 8 1d, &, ]—,",
(75)

—', (+2.09 MeV) =a,[(2 )31d„,]-', —a, [(0 )ld„, ],
(76)

where 8 means vector coupling. The spectroscop-
ic factors S, and S, are equal to a,' and a,', re-
spectively. They should sum up to unity. We also
expect that S, will be much bigger than S,. By ana-
lyzing the narrow d, &, resonance with our methods,
the value of S, can be determined.

The main problem in finding spectroscopic fac-
tors for such narrow resonances lies in the com-
putation of the single-particle reduced width. We
cannot use the bound state d„, wave function com-
puted at -1.10 MeV, because it falls off exponential-
ly and S, computed from this wave function would

approach infinity at large values of the R-matrix
radius. Instead, we use the method of Schiffer"
and generate a single-particle wave function at
the energy of the resonance. To do this the same
Woods-Saxon well was used which generated Fig.
1 except that the central potential Vp was set equal
to 47 MeV. When this was done, a broad single-
particle resonance was produced in the cross sec-
tion with a peak at approximately 2.08 MeV. The
corresponding d„, wave function and boundary con-



374 G. D. WESTIN AND J. L. ADAMS

dition evaluated at an energy of 2.082 MeV was
then used to compute the single-particle reduced
width. This single-particle reduced width was
then used in Eq. (53) to find the spectroscopic fac-
tor S, for the d„, narrow resonance.

To fit the d,&, resonance we chose a value of 5.5
F for a,. We then used the single-particle bound-

ary condition of -1.16 in our R-matrix fit. This
was necessary, since the single-particle and ac-
tual wave functions must have the same boundary
conditions if we hope to compare the reduced
widths. Once the parameters a, and 5, had been
chosen, we varied R, and yq' to get the best fit
over our energy range. All other partial waves
were taken from the potential used in Fig. 1. We
found that the best parameter values were Ez
=2.082 MeV, Rp 0 05, and y~ =10 keV. Our fit
is shown in Fig. 11. The single-particle reduced
width was y~' = 427 keV, giving a spectroscopic
factor of S, =0.0234.

Next we investigated how S, would depend on the
R-matrix radius. To do this we fit the data at
various values of a,. The various parameters
used to fit the data are shown in Table III. As the
R-matrix radius is increased, the data can be fit-
ted well only over a smaller and smaller energy
range, since the energy dependence of R, increas-
es with increasing a, . Note that the values of the
radius were chosen where the boundary condition

5, was relatively small. This was done to de-
crease the energy dependence of R, and y~'. It
can be seen from Table III that as a, increases,
S, increases and then levels off at about 0.033.
We believe the reason S, is not constant is due to
the fact that at F.z = 2.082 the single-particle wave
function does not match up precisely with the ac-
tual wave function. This is evidenced by the fact

that our potential well gave a cross section of
about 5.0 b at 2.082 MeV, while the R-matrix fits
give values of about 6.0 b at 2.082 MeV.

We conclude from Table III that the value of S,
is 0.033 + 0.010. This compares favorably with
the results of Bunakov, Gridnev, and Krasnov, "
who found a value of 0.05 s 0.03 from (d, p) data.
It should be noted that they used a different single-
particle neutron potential in the stripping calcula-
tions.

V. ANALYSIS OF A SINGLE-PARTICLE
RESONANCE IN O(n, n) 0

The d„, resonance at about I MeV in "O(n, n)-
"0 has been the subject of several studies by
(d, p) stripping methods. "' ' Several of these
come up with the value of unity for the spectro-
scopic factor. Of course, the value for the spec-
troscopic factor will depend on the potential well
chosen for the single-particle potential. We were
able to find a Woods-Saxon potential which had a
d„, resonance at about the right energy and width

to fit the resonance. The potential parameters
were Vp=54. 0 MeU, V„=7.1 MeVF, a=0.61 F,
and rp =1.25 F. The solid line in Fig. 2 shows the
fit to the "O(n, n)"0 data using this potential. It
can be seen that the resonance at 1.0 MeV can be
fit fairly well with this potential. Hence, the spec-
troscopic factor for this resonance is 1.0. This
resonance is a trivial case for our R-matrix par-
ametrization of spectroscopic factors. However,
it is a particularly useful resonance, since the
validity of various (d, p) theoretical models can be
tested. However, this is by no means a "typical"
resonance. It is one of the few resonances that
can be fit with a simple potential-weQ calculation.
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VI. ANALYSIS OF AN S-WAVE DIP
IN O(n n) 0

It can be seen from Fig. 2 that a resonance dip
occurs in the reaction "O(n, n)"0 at about 2.36
MeV. This dip can be thought of as due to the in-
terference of two s-wave resonances. One of
them is the bound state at -3.27 MeV in "O. This
bound state then interferes with the resonance at
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TABLE III. Spectroscopic factors vs R -matrix radius

for the d5&2 resonance at 2.082 MeV in C(n, n) C.
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FIG. 11. The d5~2 resonance at about 2.08 MeV in C-
(n, n)~2C. The dots are the experimental data from Hef,
15. The solid curve is an R-matrix calculation using the
parameters indicated in the text, The spectroscopic fac-
tor for this calculation is 0.023.
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2.36 MeV. The values of the level parameters in-
cluding the background R, are such that a dip oc-
curs.

The resonance dip was analyzed by first convert-
ing the potential parameters used in Fig. 2 into R-
matrix parameters. To approximately reproduce
the potential-well calculation shown in Fig. 2, the
R function parameters used were E~ =-3.268 MeV,
y~'=330 keV, Ra=0.19, a, =6.00 F, and b, =-2.25.
Then the dip at 2.35 MeV was fit using the double-
resonance R function given in Eq. (20). The parame-
ters for the first resonance were the same as
those given for the potential; the parameters for
the second resonance mere E, =2.36 MeV, y, = 20
keV. The fit is shown in Fig. 12. Once again the
fact that 5, and Ro had been computed using our
potential-mell wave functions enabled an easy fit-
ting. No tedious searches for the correct back-
ground parameters were necessary.

It is not at all clear how to extract a spectro-
scopic factor for this dip. The ratio of y, ' to y&'
of the bound-state resonance at 6.0 F is 0.06.
However, y~' will exponentially decrease with larg-
er radius. In order to use the same procedure as
with the d„, resonance in ~C(n, n) C, we need to
find a potential which gives an s-wave resonance
at about 2.36 MeV. However, single-particle s-
wave resonances are very broad at such energies,
and due to the 1jk' factor in the cross-section for-
mula, they cannot be seen as bumps in the data.
As a matter of fact, our potential well used in
Fig. 2 goes through a phase shift of —,'m at about
2.3 MeV. No bump is seen in the data, because
the phase shift is varying much too slowly. The
corresponding wave function for the s wave has a
boundary condition of about +2 at 6.0 F at about
2.3 MeV. Using this boundary condition in a sin-
gle-level fit with a variable R, and yz', we could
not produce a dip in the cross section. Thus, the
procedure used for resonance peaks does not seem
to work for for resonance dips. How to define a
spectroscopic factor for such a dip remains an
open question.

tracted from experimental nucleon resonance data.
A recent paper by Takeuchi and Moldauer"

shows how a shell-model calculation for two neu-
trons outside a core can be performed using R-
matrix theory. It is useful to point out the differ-
ence between their approach and ours. In both ap-
proaches a single-particle potential is used as a
beginning step. To this single-particle potential,
they add an additional potential describing the in-
teraction between the two valence nucleons. The
Hamiltonian is then diagonalized using R-matrix
theory and cross sections are computed. This is
a very useful approach, and it has many nice fea-
tures. It is useful to point out, however, that they
did not have any experimental data with which to
compare their results. Our approach has been to
begin with a single-particle potential, and then to
use R-matrix theory to measure how well the sin-
gle-particle potential fitted experimental data.
The quantitative measure of this is the spectro-
scopic factor. Our procedure applies to most res-
onances seen in neutron elastic scattering in which
there are no other open channels such as ine1astic
scattering. Admittedly, this is a very limiting
feature. However, it is not hard to extend our ap-
proach to inelastic channels or reaction channels
as well. We have concentrated on fitting experi-
mental data, since there is much interest in par-
ticle-transfer reactions in the continuum.

The case of the "O(n, n)"0 d„, resonance at
about 1 MeV is a straightforward and almost triv-
ial example of a resonance with a spectroscopic
factor near 1.0. Unfortunately, such resonances
are the exception rather than the rule. An exam-
ple of a more common type of resonance is afford-
ed by the d„, narrow resonance at about 2.08 MeV
in "C(n, n)"C. This resonance is seen in elastic
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VII. DISCUSSION

Many authors ' have recently been concerned
with using a model Hamiltonian to generate a the-
oretical fit to nucleon scattering data. These the-
oretical calculations are very useful in determin-
ing how valid a particular model may be. How-
ever, they do not always yield resonances with the
correct widths and energies. Since spectroscopic
factors are sensitive to both resonance widths and
energies, a procedure is necessary fo find spec-
troscopic factors from experimental data. The
purpose of this paper has been to give such a pro-
cedure so that spectroscopic factors could be ex-
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FIG. 12. The s-wave dip at about 2.36 MeV in ~60(n, n)
~~O. The dots are the experimental data from Ref. 17.
The solid curve is an R-matrix two-level fit using the pa-
rameters indicated in the text.
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scattering data with a small width because there
is a small amount of mixing with the d„, single-
particle state at -1.10 MeV. Because the mixing
is small we see only a narrow resonance. The
more narrow the resonance, the smaller the ener-
gy region over which we need to fit, and therefore,
the less the energy dependence of the various R-
matrix parameters. Thus, for such narrow res-
onances, the procedure for extracting spectroscop-
ic factors is straightforward. It parallels the pre-
vailing method used in calculating spectroscopic
factors for bound states seen in stripping reac-
tions. That is, a potential is found which gives a
single-particle resonance at the energy a reso-
nance is seen. Then, using the boundary condition
for the single-particle wave function, an R-matrix
fit is made to the data using y~' and Ro as param-
eters. (The resonance energy E„may also be
slightly changed. ) The spectroscopic factor is
then the ratio of the reduced width used to fit the
data and the single-particle reduced width. There
is not a unique spectroscopic factor, since the sin-
gle-particle potential parameters are not absolute-
ly determined. Thus, one must be careful when

quoting a spectroscopic factor to specify what sin-
gle-particle potential-well parameters were used.

The d„, double-resonance situation around 3
MeV in "C(n, n) C is a more difficult case for
analysis. Here a single-particle resonance is

mixed quite strongly with another channel. The
strong mixing yields two resonances with similar
widths. Because of the strong mixing, the per-
turbing Hamiltonian H' is obviously not small com-
pared to the single-particle Hamiltonian H, . When
this case obtains, the spectroscopic factors are
extremely energy dependent and hence very am-
biguous.

The s-wave dip in "O(n, n)"0 proved to be very
easy to fit using an R-matrix procedure of a bound-
state boundary condition. However, the method of
obtaining a spectroscopic factor from such a dip
was not at all clear. Using a bound-state wave
function, a spectroscopic factor of sorts can be
obtained. However, such a spectroscopic factor
will increase with increasing R-matrix radius,
since the bound-state wave function decreases ex-
ponentially with increasing a,. Thus, for the pres-
ent, spectroscopic factors for resonance dips are
not well defined.
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