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Company, Cleveland, Ohio, 1970). For polyatomic mole-
cules, binding energies were calculated on the assump-
tion of the now fairly well established value of 170 kcal/
mole for the heat of sublimation of carbon from data on
heats of combustion and vapor pressures given in the
latter reference.

The author's mass-synchrometer values of excesses
and differences involving the chlorine isotopes have been

excluded as being so much in error (presumably because
of kinetic energy effects) as not to fall within the ranges
of the plots of Figs. 4 and 5. Also excluded is the value
H2 —D = 1 553 100 + 10 300 nu of Ref. 0, M '63. Errors of
combinations of mass table values are calculated without
regard to their correlations and hence are somewhat
larger than if correlations were taken into account.
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We extend the calculation of the relativistic phase-shift problem, as given before, to sec-
ond order in k by means of Miller and Good's modified WKB method. The scheme of Bertoc-
chi, Fubini, and Furlan is used to avoid the divergences introduced in the second-order terms.
The example indicates that the phase shifts are greatly improved at lower angular quantum
numbers.

1. INTRODUCTION

This note is written to report some improve-
ments over a previous paper' that result from tak-
ing into account the second-order contributions in
k. We use Miller and Good's' modified WKB meth-
od, choosing a solved problem to approximate the
unsolved problem. The second-order terms were
given in a previous paper. ' However, they are di-
vergent at the lower limit. This divergent proper-
ty at the lower limit for the high-order terms in
h is not new. It was discussed in the paper of
Bertocchi, Fubini, and Furlan' for the high-order
terms in the ordinary WKB problem. They suc-
ceeded in avoiding the difficulty by means of con-
tour integrals. In Sec ~ II, we discuss this in de-
tail.

As an example, in Sec. IO, we choose a point nu-
cleus together with the pure Coulomb potential as
the solved problem. We then solved for the phase
shifts in a supposedly unsolved problem with an-
other potential —for example, the shell distribu-
tion for the same amount of nuclear charge. These
potentials are chosen for illustrative purposes. A
comparison can readily be made with the numeri-
cal values for the phase shifts given by Ravenhall
and Yennie. ' In Ref. 1, the uniform distribution of
the nuclear charge was used as the solved part,
and the shell distribution as the unsolved part. Be-
cause these two distributions are remarkably sim-
ilar, our lowest-order-in-8 approach did yield
some meaningful results. These results agree to
the third decimal place for the phase shifts with

the numerical ones, which are accurate to the
fifth decimal place. In the problem considered
here, however, the agreement for the lowest or-
der in h is less good, especially for the first few
phase shifts where the angular momentum quan-
tum number is small. By carrying the calculation
to the second order in h, we see that substantially
better agreement can be achieved. This fact ac-
tually is independent of the particular example
chosen.

2. GENERAL THEORY OF THE RELATIVISTIC
SCATTERING PROBLEM

d l+ 1 W —V(r)—V+ v+ u=O.dr' r Sc (&b)

In the notation of Rosen and Yennie, these equa-
tions become

d f(r)
d&M &

N

1V M, (2b)

with

M=u+v, N=u —v,

From the Dirac radial equations at the high-en-
ergy limit, by taking the rest mass to be zero,
we get

d l+ 1 W —V(r)
u — u— v=O,dr r Ac
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and

(I+1)h W- V(r) (l+ 1)h' W- V(r)
C

We will solve the above set of equations for the

scattering phase shifts using the known solutions
of the following set of equations, which are solved

by means of either a numerical method or other
kinds of approximations:

—"N =-'"'M
dS

(3b)

with f,(S) = (l+ 1)h/S —[ W- V,(S) J /c and g, (S)
= -(l+1)h/S —[ W- Vo(S)j/c. In comparison with

what we have done in Ref. 1, here we only require
that V,(S) should be reasonably close to V(y). The
calculation is then carried to the second order,
where use is made of the formula'.

dS

With the following definitions:

(3a)
I

""o Sp
(4)

and

Lf / gI 8(fg)l/o g(fg)1/2 (f )1/o dy (fg (f )1/o dyo (fg

2G' —G 1
3

1 d // )'" —2
d (f )'"

(fo/ go} 8(f~ )1/2 g(f~ )1/2 (f~ )1/2 dS 'Lfogo (f+ )1/2 dS2 ogo

1 dfF=——
f dr'

1 df,
fp dS

The upper limit r will eventually be pushed to
infinity for the scattering case discussed here.
And because of this the upper limit S will also go
to infinity. This can easily be seen by perform-
ing the integration to the lowest order in h for two
closely similar potentials. However, for the
present, we consider it to be finite but large.
Here rp and S, are the turning points of the prob-
lem under consideration, or f(yo) =0, fo(So) =0.
So the higher-order terms diverge at these lower
limits individually. However, since they are high-
er-order terms, their algebraic sum should be a
finite value. This condition holds for the conven-
tional WKB approximation in accordance with
Bertocchi et al. (Sec. 3.4 of Ref. 4). We general-
ize the concept here and ask that although these
high-order terms diverge themselves, they should
yield a finite difference in general. The result,
then, is equivalent to taking the contour integral
as shown in Fig. 1 together with the formula given
below. In so doing we have the advantage that the
integrals are already finite before the subtraction
and their difference has the value that we want.
This replacement may have some deeper signifi-
cance so that one might say that the contour in-
tegral might be more basic than the definite inte-
gral given in Eg. (4). Now it may be better to re-
gard this as a postulate. We wish to know whether
this postulate is reasonable. In fact, it seems to
be; for we can obtain numerical improvements
for the phase shifts for some specific chosen po-
tentials, as shown in the next section. We have,

then,

with

1'p

(fg)" dr+1 = (f~ ) ' dS+I
«Sp

(f, gtdr
2 «Q

, , Im

Cg

xo

FIG. 1. The integration path C& or C& .

(5)
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I, =— (f, g}dr +5' (f„g,jdS
2 „

&t, r14 2&&-, z&& )2 Q «R
(6)

++' ifo gokd6

where f, g contain V„where V, =-Ze'/R, a con-
stant differing from zero. What we have done
above is to insure that the integrand of the con-
tour integral Jc Lf, g/dr is analytic. Notice that
we extend the integration to infinity (path C,) and
then the additional parts are to be subtracted. To
obtain a convergent integral, we repeatedly apply
the following formula:

Here the contour integrals C„C,' are around the
turning points, respectively, and going from in-
finity to infinity (Fig. 1). The assumption made
here is that the potentials used are analytic in-
side the contour C, or C,'. The validity of Eq. (5)
was demonstrated in its application to a specific
problem. ' In the example chosen in the next sec-
tion, we used the shell distribution of the nuclear
charge as the unsolved part. The resulting poten-
tial will be piece wise continuous. Let the dis-
continuity of the potential be at distance R from
the origin, and let Jc, indicate the integration
along the path C, which is given in Fig. 2. It is a
path like C, but does not extend to infinity; it ends
at R around the turning point and with the upper
and lower parts of the real axis, i.e., C, is the
portion of C, lying to the left of R. The second-
order term, which has a discontinuity at R, can
be written as:

Qdv =
4oo jP

vs+ Qv

By denoting the phase-shift difference by b, 5= 5„
-5~, we have

W' Ze65= 1' —(S —y)+ (ln2S —ln2r))Sc Ic (6)

3. COMPARISON OF THE PHASE SHIFTS FOR THE
SHELL DISTRIBUTION OF NUCLEAR CHARGE

YfITH THE PHASE SHIFTS FOR POINT
DISTRIBUTION OF NUCLEAR CHARGE

Here we choose the phase shifts of the shell dis-
tribution of the nuclear charge as the unsolved
part. We are going to solve for these phase shifts
using those of the point distribution as the solved
part. Ravenhall and Yennie give numerical values
of the phase shifts for both of these distributions
for a set of parameters. This choice is made for
two reasons. The first one is that in both sides
the differences between the phase shifts can be
integrated out and expressed in terms of simple
functions. They are easier to handle and they ex-
hibit the properties that we want without neces-
sary complications in mathematics. The second
reason is that from the charge distribution we see
that the phase shifts will be greatly improved if
we include the contributions of second order in k.
Or in other words, the second-order terms are
important, especially in those places where the
angular quantum numbers are small. We only cal-
culate, therefore, the cases corresponding to the
small angular momentum numbers, or l=0, 1, 2

cases are reported in Table I. We see that there
is also an upper limit for the l value. Since the
assumed shell distribution of charge has a radius
of shell R, the incident particle can only feel the
Coulomb part if the impact parameter is greater
than R. However, before this limit is reached,
we may have to include some higher-order terms

TABLE I. Phase shifts for scattering from gold.

c~ Rg

a
1

b

g C

d
3

-0.774 71
-0.822 10
-0.820 06
+0.407 36

-0.820 86
—0.831 37
—0.832 53
—0.237 97

-0.848 44
—0.850 86
—0.855 21
-0.533 03

xo

FIG. 2. The integration path C2.

'Phase shifts by the lowest-order calculation for shell
distribution of the nuclear charges with WR/Sc = 5.6,
where R is the boundary of the shell.

Corresponding phase shifts including the h order
terms.

Numerical data as given by Havenhall and Yennie.
Input data corresponding to the point-nucleus cases

as given by Havinhall and Yennie.
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than 5' to get a closer check. This includes of
course the small angular momentum quantum num-

bers too. But we can see that there is a large con-
tribution to the phase shift at small values of l due

to the 5' terms without carrying out the calcula-
tions in detail. Therefore, we can conclude from
this example that the inclusion of the k' terms is
important especially when the potentials are less
similar.

Below is a brief account of the results that lead
to such a conclusion. To the lowest order, we see
that

pR

(fg)"'~r + (f~,)'"&r = (f~,)"'dS .
4 Tp 4 R ~$0

We then have the following formulas:

«$0

that of the point nucleus, and let R be the radius
of the shell, the above equation will read

fO 7

(fg)"'d~ = (f~.)"'ds . (9)
~ rp ~d$p

If we let r stand for the radial distance of the shell
distribution of charge in a nucleus and S stand for

=k —S+ ln +A,W Ze' 2WS
hc Sc hc

where

Ze Ze' ' "' w, Ze'/Kc
1 —ln(l+1) — (1+1)' — 2+tan '[(l

+rp
(fg) dr =S "'(—+ —

)
—( ) dv

WR Ze' ', , [(WR/hc+Ze'/Kc)' —(l+ 1)']"'
hc hc l+1

—=SA2; (12)

Ar

(f g)"'dy=h
+R

W Ze'1 ' l+1

Ze' 2Wr—r+ ln +A,Sc Sc Sc

where

A, =- — (i i)' —( )
Ze'/Kc WR ' 2WZe' Ze'

[(l+ 1)' —(Ze'/hc)']"' hc (hc) hc

Ze
hc

WR Ze ' " WR Ze
+ —(l+ 1)' + +

Sc Sc hc bc

Ze' ' '", (WR/hc)(Ze'/hc) —(i+ I)'+(Ze'/hc)'
hc [(l+ I) —(Ze'/hcP]"'[(WR/hc+Ze'/hc) —(l+1) ]"'

To the order of 8', we evaluate the integrations involved in the following way: There is no problem in
evaluating the point-charge side, since

h (W/hc)(l + 1) O' ', 8' 2Ze' Ze'
16J ~ [(WS/Kc+ Ze'/hc) —(l + I)']'" 4

h
S ——(l + I) + S —2 (1+I)'—,(14)

1

where the integral C,' is evaluated above and below the real axis around the turning point X = (l+ 10—Ze'/hc)/(W/hc) and the connection of the other end will be made at infinity (Fig. 1). In so doing, we have
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8 2Ze' 1 3 3
" dY

12=2 (l+1) 8-4(l+1)' ( [y2 (l+1)2]5(2

1,Ze'1 3 dY
2 ric 8 4 y'[Y2 (l+1)']"' '

with

dY 4 1

[y (1y 1) ) & 3 (1y 1)4

around the turning point. It is easy to see that, since there is no problem of divergence, on the other
side we have

(16)

limh ]f, g)dr = lim
~

dr, , &2„—4 —r' ——(l+1)r —2(l+ 1)'
~z

-3(l+1)'
i

"

(WR/hc)+ (Ze'/hc) (l+ 1P 1

2(l+ l)[[(WR/hc)+ (Ze2/hc)] —(l+ 1P j "2 24 f[(WR/hc) + (Ze2/hc)]' —(l+ 1P]2"'

(1"l)

where W'= W+Ze'/R, and the lower limit of the integration is

Ze Ze

Thus,
(l+1)' Ze' 3(l+1)'

(WR /hc) + (Ze'/h c) (l+ 1)[(6Ze'/hc) —(l + 1)]
2(l+ 1)[(WA/hc+Ze /hcP —(I+ 1P]"' 24[(WR/hc+Ze /hcP —(l+ 1)']

The contour integral simply leads to

3(i+1)'-
~

[y (l+1) ] /

(18)

= -1/( l + 1),
where we have used Eq. (16). Notice here C, and C,' are actually the same curve. The phase shifts for
specifically chosen parameters, calculated here together with those given by Ravenhall and Yennie are
shown in Table I ~ We see that we have

=-A, +A, +A2+I, /h -I2/h .

And indeed we have substantial improvement here.

(20)
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