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The features of the kernel function in the nonlocal z+« interaction, derived with the reso-
nating-group method, which uses a totally antisymmetric wave function and a nucleon-nucleon
potential, is studied. This kernel function is made up of three terms, corresponding to knock-
out, heavy-particle-pickup, and nucleon-rearrangement processes. Inthe medium- and high-
energy regions, the knockout process contributes mainly in the forward directions, while the
heavy-particle-pickup and nucleon-rearrangement processes contribute mainly in the backward
directions. In particular, it is found that these latter two processes are almost entirely re-
sponsible for the occurrence of large backward-angle cross sections in the n+a problem. An
equivalent local potential between the neutron and the ¢« particle is also constructed, which,
in the Born approximation, yields the same results as does the resonating-group calculation.
This equivalent local potential has an explicit energy dependence and a significant amount of
Majorana space-exchange component. Finally, approximation methods are proposed which
contain the essential features of the antisymmetrization procedure and yet could be used to
consider such more complicated problems as the scattering of nucleons by medium- and

heavy-weight nuclei.

I. INTRODUCTION

In recent years, a number of calculations®™?
have been performed to examine the properties
of light nuclear systems with A <8 using the meth-
od of the resonating-group structure.** The re-
sults of these calculations have been very encour-
aging, since for all these systems, the agreement
between the calculated and experimental results
was found to be quite satisfactory over a wide
range of energies.

A logical step is to extend these calculations to
heavier systems, such as the scattering of protons
by medium- and heavy-weight nuclei where exten-
sive phenomenological analyses have been per-
formed using the optical model with local poten-
tials.> Here, however, one encounters practical
difficulties, since in a resonating-group calcula-
tion one employs a completely antisymmetric wave
function which, from a computational point of view,
is feasible only for systems with a relatively
small number of nucleons. On the other hand, the
results of the resonating-group calculations clear-
1y indicated that the effects introduced by the anti-
symmetrization procedure are important and can-

not be omitted if satisfactory agreement with the
experimental data is to be obtained. Thus, in a
heavier system where there is no a priori reason
to expect that the antisymmetrization effects are
unimportant, one must seek an approximation
method which can simplify the computation to a
significant extent and yet preserve the main fea-
tures of antisymmetrization. In this investigation,
we make an initial attempt in this direction by per-
forming a detailed study of the antisymmetriza-
tion effects in the case of the scattering of neu-
trons by « particles. This particular case is
chosen, since here these effects are manifested
in a particularly transparent manner and hence
are amenable to clear and simple interpretation.

In the one-channel resonating-group formalism,
this complicated five-nucleon problem is reduced
to a two-body problem in which the wave function
F(R) describing the relative motion of the neutron
and the « particle is given by

[Z-“ ViE- v,,(ﬁ)] F(R) = f K@®, R F® )R,

(1
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where u denotes the reduced mass and E denotes
the relative energy of the two clusters in the c.m.
system.® The meaning of this equation is that the
neutron and the a particle can be considered as
structureless, provided that the interaction be-
tween them is represented by the direct potential
VD(ﬁ) together with a nonlocal potential character-
ized by the kernel K(R, R’). In Sec. II, we shall
outline the derivation of these potential terms,
with particular emphasis being paid to the struc-

ture of the kernel function. As will be shown there,

this kernel function can in fact be separated into
three parts, corresponding to knockout, heavy-
particle-pickup, and nucleon-rearrangement pro-
cesses.

For a semiquantitative understanding of the gen-
eral features of this scattering problem, we have
derived in Sec. III the scattering amplitudes for
the direct and exchange processes in the energy
range from 50 to 100 MeV with the first Born ap-
proximation.” From this study, we find that at
these relatively high energies, the knockout pro-
cess contributes mostly in the forward directions,
while the heavy-particle-pickup process contrib-
utes mostly in the backward directions. Using
the Born amplitudes, we have further constructed
an equivalent local interaction between the neutron
and the a particle. This equivalent interaction
has an expected energy dependence and contains a
significant amount of Majorana space-exchange
component,

The contribution to the differential cross section
from the various exchange processes is further
studied by a calculation in which Eq. (1) is solved
numerically, but with the terms in the kernel
function corresponding to these exchange pro-
cesses successively set as zero. This is dis-
cussed in Sec. IV. From this calculation, we con-
clude that in the energy region of concern to us,
the Born-approximation results are fairly reliable
and, therefore, our findings about the character-
istics of the various scattering amplitudes and
the equivalent interaction between the clusters
can be used as a guide to devise approximation
methods for calculations in heavier systems.

In Sec. V we discuss two approximation methods
which could be used to study the problems of the
scattering of nucleons by medium- and heavy-
weight nuclei and yet contain the essential fea-
tures of the antisymmetrization procedure. One
of these methods is tested on the n + a scattering
problem itself in the energy region of 20 to 100
MeV, and the results do agree very well with
those obtained using the more complicated reso-
nating-group approach.

Finally, in Sec. VI, we summarize and discuss
the results of this investigation.

II. FORMULATION

The formulation of the n + @ scattering problem
in the one-channel approximation has been briefly
described in our previous publication.® Here we
shall fill in a few essential steps in order that the
effects of antisymmetrization can become more
transparent.

The wave function for the n + @ system is writ-
ten as

¥ =a{p(1234) F(R, - T &(s, 1)}, 2

where @ is an antisymmetrization operator and
¢ is an appropriate charge-spin function which
has the form

&(s, 8)=[ 6(sy, 3)6(ty, —=3)6(s2, 3)6(tz, 3)
X 6(33’ “%)5“3) —L 6(34; ‘%)b(to %)]
X 8(s 5, 3)8(tsy —3) , (3)

with &(s,m,) and 8(¢,m,) denoting the spin and iso-
spin functions, respectively. The function ¢(1234)
describes the spatial behavior of the a cluster
and is chosen as

4
¢(1234) = N~ exp[-}a 2 @ -R,)?, (4)
=1

where R, is the position vector of the center of
mass of the ¢ cluster, and N is a normalization
constant given by

=(m3/403)%/ 4, (5)

The width parameter « is chosen to yield the ex-
perimentally determined value of the rms radius
of the nucleon distribution in the a particle; it is
equal to 0.514 F~2, which corresponds to a rms
radius of 1.48 F.

The scattering function F(R, -F,) in Eq. (2) is
determined from the variational equation

(o¥|H -E'|¥) =0, (6)

where E’ is the total energy composed of the in-
ternal energy E, of the a cluster and the relative

energy E in the c.m. system, and H is the Hamil-
tonian given by

> Vi (7

i>§=1

H=-F 3y
—ZMZ=>

The nucleon-nucleon potential used here is chosen
as

Viy = =Voe " 71} (w —mPg, 1 tOPY; —hP))

2
e
+Z’r—i;(1+7iz)(1+712) ’ ®)

with V,=172.98 MeV, x=0.46 F~2, and the constants
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w, m, b, and k satisfying the equations
w+m+b+h=1,

w+m -b -h=0.63. (9)

Pjg; and P}, are the usual spin and isospin exchange
operators, respectively. This potential was used
in a number of our older calculations with the res-
onating-group method. In our more recent calcu-
lations,>® we have instead employed a somewhat
more complicated two-nucleon potential which fits
the nucleon-nucleon scattering data better and
which does yield improved results for the various
scattering systems considered. In this investiga-
tion, however, since our main concern is to
achieve an understanding of the features of the
antisymmetrization effects rather than to obtain
precise agreement with experiment, we shall sim-
plify the problem as much as possible. Therefore,
we choose to use the simpler potential of Eq. (8).
Also, the exchange mixture will be fixed to be of
the Serber type; small adjustment of this mixture
to obtain the best agreement with experiment as
was done in our previous calculations will not be
carried out here.

For the spatial integration required in Eq. (6),
it is convenient to use the three independent «-
particle internal coordinates j;, the relative co-

ordinate R and the c.m. coordinate ﬁc.m_ , defined
as
p;=F,-R,, (i=1,2,3),
R=R, -7, (10)
R, . =$(4R, +Ty).

Because of the particular structure of the wave
function ¥, the degree of freedom associated
with the c.m. motion can be handled easily and,
hence, will not be discussed.

After we sum over the spin and isospin coordi-
nates and carry out the variational procedure,
Eq. (6) is reduced to

f¢>(1234)(:«:0 — E')W(1234; 5)df,dpdp,

= f¢>(1234)(3€1 - E"W(5234; 1)dp,dp,dp, ,
(11)
where we have introduced the notation

w(1234;5) = $(1234)F(R) , (12)
and

¥(5234; 1) = P4 (1234; 5)

= [ 6(1234) expl 2 a(? - RO FE)

x6(R'+ LR+ 25,)dR" (13)

with P* being the space-exchange operator and &
being the Dirac § function. Also, in Eq. (11), the
quantities 3¢, and 3¢, are defined as

- r® . e?
JCO—Ta—EVR+r—‘—VO(6w+6m)Um
24
—Voldw —m +2b - 21)v,5, (14)
and
W, e?
:!(leTm—Z).VR+V——+Vo(--w+4m—2b+2h)v15
24

+ Vo(=8w = 3m) (0,5 + v55) + Vo(=3w —3m) vy,
(15)
with T, being the o -particle kinetic energy opera-

tor and v, being the form factor of the nucleon-
nucleon potential, given by

v =e kT, (16)
ij

It should be noted that in Eq. (11), the left side
gives rise to the usual direct terms, while the
right side contains the nonlocal exchange terms.

Equation (11) can be further simplified by carry-
ing out the integration on the left side and using
the equation

E'=E, +E, (17)
with
E,= f¢(1234) [T,, ~ V(6w +6m) vy, +:—’}
24

X ¢(1234)dp,dp,dp, . (18)
The result is
[%V;HE-VD(ﬁ)]F(§)=5cl+scz+sc3, (19)
with
Vy= =Vold4w —m +2b - 2h)
x f $(1234)0,56(1234)dp, dB,dps , (20)

2,1~ [ 9(123)[~V,(-w +4m ~ 2 + 2oy
¥ (5234; 1)dp,d,df » (21)
X,= f¢(1234)[—V°(—3w -3m)(v13+1)25)]

X ¥ (5234; 1)dp,dp,dps , (22)
and

n3 e?
x.= 2 _ - ’
, f¢(1234)[2uvR To-fo+E
—Vo(=3w - 3m)v23]\1/(5234; 1)dp,dp,dps -
(23)
The quantity V, is the familiar direct potential
between the o particle and the incident neutron;
as is evident from Eq. (20), it is obtained by fold-
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ing the direct part of the nucleon-nucleon poten-
tial into the a-particle matter-density distribu-
tion. The quantities X,, X,, and X are nonlocal
terms, arising from the use of a totally antisym-
metric wave function in our calculations.

It is important to note that since Eq. (19) is ob-
tained with antisymmetrization taken fully into
account, we are allowed to consider the individual
nucleons as distinguishable in our interpretation
of the physical meaning of the quantities v,, X,
X,, and X;. That is, in the original configuration
before scattering, particle 1 is a neutron with
spin up in the « particle and particle 5 is the in-
cident neutron also with spin up. Thus, V,is a
potential responsible for the direct process in
which the incident neutron 5 interacts with the tar-
get nucleons and becomes scattered. The quanti-
ty X,, on the other hand, is responsible for the
process in which the incident neutron 5 interacts

4o +3k

3/2
VD=—V°(4w—m+2b—2h)< da > exp(— dax

and

. 3 3/2
K,(R, &)= —Vo(f;—) (“;) (=0 +4m - 2b +2h)exp[—

e 4\3/4 3/2 3 3/2
K,(R,R') = —Vo<§> <3—(:’-> (=3w -3m) (3a+a2K>

4a+3K

340%+108ak _,,

with the target neutron 1, with the consequence
that 5 replaces 1 in the o particle and neutron 1
is the scattered particle. This type of process is
commonly called a knockout process. Similarly,
the quantity &, describes a process involving an
exchange of neutrons 1 and 5. But in this case,
these neutrons interact not with each other as is
the case for &,, but with other nucleons (nucleons
2,3,4) in the « particle. This process involving
X, is therefore a heavy-particle-pickup process.
The term X, is somewhat harder to interpret
physically. It arises from the fact that the corre-
lation structure of the four-nucleon system (5234)
is different from that of an « particle. In this
paper, we shall refer to X, as the nucleon-re-
arrangement term.

To complete the formulation, we explicitly carry
out the integration over the internal coordinates
in Eqs. (20)-(23). This yields

R2> , (24)

(25)

2
y [exp<—34a +28aKR2 _

T5a +50«k T5a+50k

v ox (_ 3407+ 108ak ., 34a®+28ak ., 320°+64ak a,>]
P T5a + 50K ’

T5a + 50k

and

. 4 3 4 3/2 hz
Ka(R, Ri)z(?) <3_‘:r> )“‘[’E:La -8 4*(R*+ R -

M

xexp[ -3 a(R*+R'?) -ZaR-R'] .

In the following discussion, we shall refer to K,
K,, and K, as the knockout, heavy-particle-pickup,
and nucleon-rearrangement kernels, respectively.
Using Egs. (24)-(28), we can then solve Eq. (19)
by the usual method of partial waves to obtain the
phase shifts and subsequently elastic scattering
differential cross sections.

To have confidence about the conclusion to be
reached in this investigation concerning the fea-

340+48K , , . 320 -96K = »,]

—5  (R*+R"*) -—F—R-R'|, (26)
320°%+64ak = *,>

T T5a+50k R-R
T M5a+50k R-R 1)

3/2 1/2
235 | 75, _ _ _ o ’ 2 2_(1_) %
o*R-R'] -V (-3w 3m)<a+2x) +E —e<1r

(28)

f

tures of the antisymmetrization effects, we should
make certain, of course, that our calculation does
yield results in reasonable agreement with experi-
ment. For this purpose we have calculated the

p+ a differential cross section at E=76 MeV and
made a comparison with the experimental data

of Selove and Teem.? This is shown in Fig. 1,
where one sees that even at this rather high en-
ergy there is fair agreement, indicating that the
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FIG. 1. Comparison of the calculated differential cross
section for p+a scattering with experimental data at 76
MeV. The experimental data are those of Ref. 9.

main features of this five-nucleon scattering prob-
lem are indeed included in our simplified formula-
tion.

III. BORN-APPROXIMATION RESULTS

As a first step in our attempt to understand the
roles played by the direct potential V,, and the ker-
nels K,, K,, and K,, we study the behavior of the
scattering amplitudes in the Born approximation

J

corresponding to these terms. This will be car-
ried out in the energy region above 50 MeV, since
as will be demonstrated below, the Born approxi-
mation is reasonably valid for the n + @ problem at
these relatively high energies.

The Born scattering amplitude for the direct
potential V,, is given by

fp= _2;‘;‘_2 fe-tkf.RVD(R)eik,.Rdﬁ’ (29)

with k; and k, being the initial and final progapation
vectors. By using the explicit form of V, given in
Eq. (24) and performing the integration, one ob-
tains

M 7\3/2
fD=WVO(4w —m+26—2h)<;>
4a+3k ., . 2f0
xexp[——-4aK k? sin <2>], (30)

where k= |k, |= IE,] , and 6 is the scattering angle
in the c.m. system. Similarly, the scattering
amplitudes for the kernel terms can be calculated
with the equation

_ o
f‘__Zn}i"’

f e~ RK (B, eV aRaRr . (31)

Using the expressions for K; (i=1, 2, 3) given in
Egs. (26-(28), one can carry out the integration
and obtain the following results:

W 167 )3/2 25 ) 4Bk-a) ., . .(6

f1—217h‘2 Vol=w +4m —2b+?h)(3a+ 16« €xp —4(3a+16K)k exp —a(3a+16K)k sl g ) (32)
_ M 167 )s/z [ 9(a+2k) 2] [ 4a+26) , (6 ]

f.‘,—-Z—ZW2 V0(3w+3m)<——3a+10K exp ~1aBa+ 100 k?| exp ——a(3a+10/¢)k cos®(3 )| (33)

167\3/2 3/2 24\1/2 g2 0
fs“z,ﬁ%z(w) JE«‘Vo“?’“":‘m’(afzK) '62(7(1 -9 30'*%’22*%’?2““2(5)](

X exp (— %kz) exp[ —E%kz cos? (g)] .

The differential scattering cross section is, of
course, simply given by

%= pr*fx"’fz*fsla- (35)

The validity of the Born approximation in the
energy region of interest can be tested by making
a comparison between the differential cross sec-
tion calculated by a numerical solution of the inte-
grodifferential equation (19) using the method of

(34)

the partial waves (hereafter referred to as the
resonating-group or r-g calculation) and the dif-
ferential cross section calculated in the Born
approximation. Such a comparison at E =50 MeV
is shown in Fig. 2, where the resonating-group-
calculation and the Born-approximation results
are represented by solid and dashed lines, respec-
tively. From this figure it can be seen that even
though there is some discrepancy, the Born result
does reproduce the necessary features, i.e., the
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occurrence of the diffraction minimum at around
110° and large cross sections at backward angles.
Thus, we feel that a study of the behavior of the
Born scattering amplitudes should give us a quali-
tative understanding of the roles played by the di-
rect and exchange terms.

The Born amplitudes f, f,, f;, and f; are plotted
as a function of 6 at c.m. energies of 50 and 100
MeV in Fig. 3. Here it is seen that the direct
amplitude f, has a large magnitude at §=0°, but
decreases rapidly with angle. The amplitude f;
(knockout amplitude) is also peaked in the forward
direction; it has a rather small magnitude, but
decreases slowly as the angle increases. On the
other hand, the amplitudes f, (heavy-particle pick-
up amplitude) and £, (nucleon-rearrangement ampli-
tude) are important mainly at backward angles.
They are, of course, chiefly responsible for the
occurrence of large scattering cross sections at
these angles. It should be emphasized again that
the amplitudes f, and f, arise as a consequence of
the antisymmetrization procedure. This indicates,
therefore, that the differential cross section in
the backward angular region is closely related to
the exchange effects. If these effects are not prop-
erly accounted for, then it is our opinion that a
satisfactory description of the experimental phe-
nomena at large scattering angles will be a very
difficult task.®

From Fig. 3 it can be further seen that at least
in the n + @ case, the knockout amplitude f, seems
to play a relatively minor role. In fact, it makes
a significant contribution only in the angular re-

1000 ¢ T ' T L E— T

100

)

(3

L
dQ

0.1

I

!
’1
I
I

0.0l I I I | |
o 20 40 60 80 100 120 140 160 180

8 (deg)

FIG. 2. Comparison of the differential cross section
calculated by a numerical solution of the integrodifferen-
tial equation (19) (solid line) with the differential cross
section calculated in the Born approximation (dashed line).

gion around 90°, where it interferes effectively
with the other three amplitudes.

Based on the discussion given in Sec. II on the
direct potential V,, the knockout term X,, and the
heavy-particle-pickup term X,, and using the
features of the Born scattering amplitudes f,, f;,
and f, learned here, we show in Fig. 4 a schematic
representation of the n + o problem as a sum of
direct and exchange processes. Essentially, the
purpose here is to demonstrate in a graphical way
the mathematical contents of Eqs. (20)-(22) con-
cerning V,, %,, and X,; and Egs. (30), (32), and
(33) concerning the scattering amplitudes. It must
be emphasized that such schematic representation
should not be taken too literally, but rather should
be considered only as a visual aid in appreciating
the salient features of these processes. The nu-
cleon-rearrangement process is not shown in this
figure, since we know of no schematic way to
demonstrate this particular process.

Next, we will construct equivalent local poten-

5 I | T T T T T T
41 n+a B
r E=50 Mev —
2 fo i
f -]
3
[} S f_| o 1/ ]
TS Semeee :/
~ Of—=———e— ST
= -5“\
- N
o} .
& -2 f 1
= KA
< \\

N <
© . -~
2 ~
@« ]
w
- 4 ]
-
<
Q
’ —

2 E =100 Mev a
‘ B —4
L h N s
(o} = ——— I P
-1+ f2 ‘:
| | | | | | | |

(o] 20 40 60 80 100 120 140 160 180
e(deg)

FIG. 3. Born scattering amplitudes for the direct pro-
cess fp, the knockout process f;, the heavy-particle-
pickup process f,, and the nucleon-rearrangement pro-
cess fj at 50 and 100 MeV,
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tials between the neutron and the « particle which
will yield the same scattering amplitudes in the
Born approximation (f,, f,, f;) as the kernel terms
K,, K,, and K;. Recognizing the fact that for
smoothly varying potentials at relatively high
energies, the Born scattering amplitude for a

Wigner-type potential is large mainly in the for-
ward directions, while the Born scattering ampli-
tude for a Majorana-type potential is large mainly
in the backward directions, we can easily find
these equivalent potentials; these will be labeled
as U,, U,, and U,, and are given by

o 40 \3/2 25 ) a(3a +16k) 2]
U=V, = =Vo(-w + 4m —2b+2h)(3K_a> exp[————4(3a+16,<)k] exp[-—————4(3k_a) R, (36)
4o \¥/? 9(a +2k) ] [ a(3a+10k) ]
- R _ _ 2 _ 2
U= VoP 2V°(3w+3m)(a+2x> exp[ 4a(3a+ 10K)k exp 4(a+ 2K) R*| P¥, (37)
R a \*¥? 2 vz p? 2 22
Us= V3P =8[Ea—Vo(-3w—3m)<a+2K> —e —Z—M—("g‘a+-}k -2a%R?)
3, ( 3a 2) R (38)
xexp(—4ak> exp\- R* | P%,
—
whe'rfe PRisa ‘Maj orana operator exchanging the ‘ I,= J‘ A dB , (40)
position coordinates of the neutron and the «a parti-
cle. The total equivalent local interaction is, for the direct potential and
therefore,
Vp= (Vp+ Vy) + (V,+ Vo) PR, (39) I =fvi dR (41)

where V,, V,, and V, are defined in Egs. (36)-(38).

There are two important features in the equiva-
lent local potentials which should be pointed out.
First, the potentials V,, V,, and V, are all ex-
plicitly energy dependent, while the direct poten-
tial V, is not. Second, the total potential V, con-
tains a significant amount of Majorana component,
which means that it takes on different values de-
pending upon whether the relative orbital angular
momentum between the neutron and the « particle
is even or odd.!! It should be mentioned that this
odd-even feature was found to be necessary in a
phenomenological local-potential analysis of the
p+ a scattering data by Gammel and Thaler.!?
More recently, the presence of such a feature in
the equivalent local potential was further sub-
stantiated by a detailed study of the resonating-
group wave functions.!® Thus, it is indeed quite
interesting that we can demonstrate the existence
of this feature so clearly with our present rather
simple considerations.

In Fig. 5, we show the behavior of the potential
Vp in both even- and odd-L states at an energy of
100 MeV. From this figure, one can easily see
that the potentials in both L states are rather dif-
ferent from the direct potential V, for small values
of R (R=<1.5 F) and the odd-even feature is quite
evident even at this high energy.

To have some idea about the relative importance
of the potentials V,, U,, U,, and U,;, we calculate
the volume integrals defined as

for the exchange potentials. The values of these
integrals are listed in Table I at energies from
50 to 150 MeV. From this table, we note that
I,/I, is about 0.2 at 50 MeV and decreases to about
0.01 at 150 MeV. This indicates that for the Wig-
ner part of the potential V, given by Eq. (39), the
direct potential V), is the dominant term. As for
the Majorana part of V,, we see from Table I that
even though /; has a smaller magnitude than I, at
all energies, it is certainly not negligible. This
means that the potential U, plays a relatively
minor role, but should still be included if an ac-
curate description of the n + o scattering problem
is desired.

In Table I, we have also listed the values of
R, defined as

RMW:([2+18)/(ID+11)' (42)

Here one sees that the value of R,,,, at 50 MeV is
equal to -0.309, which compares favorably with
the value of —0.2+0.05 obtained by Giamati et al.
from a phenomenological study of the p+ a scat-
tering data at 32 MeV.'* The difference in magni-
tude is probably not a serious discrepancy, con-
sidering that our values are obtained from a Born-
approximation calculation. Further, we note from
this table that the magnitude of R,,, decreases
rapidly with energy, being equal to only 0.011 at
150 MeV. We should emphasize, however, that
this does not at all mean that we can omit the
Majorana component in the total potential v, at
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these energies, since as has been mentioned be-
fore, the Wigner and Majorana components have
their major contribution in different angular re-
gions.

IV. FURTHER STUDY OF KERNEL FUNCTIONS

In this section, we further study the effects of
the knockout, heavy-particle-pickup, and nucleon-

n+ @ SCATTERING

DIRECT PROCESS
(¥s), Y52, Y53, ¥54)

KNOCKOUT PROCESS
(vs)

HEAVY - PARTICLE PICKUP PROCESS
vs2, Y53, V54 )
Viz, i3, V4
FIG. 4. Schematic representation of the n+¢ scatter-

ing problem as a sum of direct and exchange processes.
The nucleon-rearrangement process is not shown.

rearrangement kernels by solving the integrodif-
ferential equation (19) numerically with various
combinations of these kernels set as zero. The
purpose is to ascertain the validity of the con-
clusions reached in Sec, III with the Born approxi-
mation. What we shall do is to compare the dif-
ferential cross section calculated with all the ker-
nel functions included (to be referred to as the
full resonating-group calculation) and the differ-
ential cross sections calculated with one or more
of the kernel functions left out. It is necessary to
perform this study in this indirect manner, since
it is only in the Born approximation that one can
separate the total scattering amplitude into a sum
of direct, knockout, heavy-particle-pickup, and
nucleon-rearrangement amplitudes.

In Fig. 6, the solid lines show the differential
cross sections at 50 and 100 MeV obtained with
the full resonating-group calculation. The cross-
es represent the result obtained using the direct
potential V, only; the kernel functions K,, K,,
and K, of Eqs. (26)-(28) are set equal to zero,
thus disregarding antisymmetrization effects com-
pletely. From this figure it can be seen that the
most prominent feature of this comparison is ob-
viously the lack of a rise in the differential cross
section at backward angles for the case where
only V, is included. This therefore supports our
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FIG. 5. Equivalent zn+a local potential at 100 MeV in
even- and odd-orbital-angular-momentum states.
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TABLE I. Volume integrals and Majorana-to-Wigner
ratio of the equivalent local potentials in then +a sys-

tem,

E Ip I, I, I,

(MeV) (MeVF?) (MeVF’) (MeVF®) (MeVF® Ry
50 -1592.6 —309.1  1163.6 —574.3 —0.309
75 -1592.6 -—157.0 4342 -1814 —0.144

100  -1592.6  —79.8 161.9 -544 -0.065
120  -1592.6  —46.3 73.6 -20.2 -0.032
150  -1592.6  —20.5 22.5 -4.6 -0.011

finding in the Born approximation that, at the en-
ergies under consideration, the exchange effects
are very important in the backward angular re-
gion, where the direct potential V, makes, in
fact, only an insignificant contribution.

Figure 7 compares the full resonating-group
calculation with a calculation in which the knock-
out kernel K, of Eq. (26) is set to be equal to zero.
Here one sees that the absence of the K, term is
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FIG. 6. Comparison of the differential cross sections
obtained with the full resonating-group calculation and
the differential cross sections obtained using the direct
potential Vj only,

noticeable mainly in the intermediate angular re-
gion. This is again consistent with our finding
that the Born amplitude £, is rather small and
should manifest itself only in this angular region
through interference with the other Born ampli-
tudes. Also, as is found in Sec. III, the omission
of K, has a slightly larger effect at 50 MeV than
at 100 MeV.

Finally, in Fig. 8, we show the result of a cal-
culation in which the heavy-particle-pickup ker-
nel K, and the nucleon-rearrangement kernel K,
are set as equal to zero. From this figure we
can easily conclude that the large backward-angle
cross sections are produced by the K, and K,
terms, again in agreement with the Born-approxi-
mation result. As for the forward angular region,
one sees here that the influence of these two terms
is almost not noticeable, indicating that they have
very little contribution in this particular region.

In summary, this study shows that, at the en-
ergies considered here, the conclusions reached
by the simple Born-approximation consideration,

1000 T T T T 1 T

n+a

100
100 E
3
]
10 —
— )
2[; 1.0 3
~ p
b
8g A
0.1 /
0.01f / =
]
0.001} E
]
oooolb— L 1 1 1 1 | | |
o 20 40 60 80 100 120 140 160 180
6(deg)

FIG. 7. Comparison of the differential cross section
obtained with the full resonating-group calculation and
the differential cross sections obtained with K, set to
zero.
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as described in Sec. IM, are quite valid. There-
fore, the features of the scattering amplitudes and
equivalent potentials learned there can be used as
a guide to devise approximation methods in handl-
ing those systems where a full resonating-group
calculation is impractical. This will be discussed
in the next section.

V. APPROXIMATION METHODS
FOR HEAVIER SYSTEMS

Having established that the Born-approximation
results are fairly reliable, we now proceed to use
these results to find ways of approximating a full
resonating-group calculation. From Fig. 3, we
note that the Born amplitudes f, and f; are nearly
proportional to each other in the angular region
where they have significant magnitudes. This sug-
gests that if we replace X, in Eq. (19) by yX,,
with y being an energy-dependent constant, and
solve instead the integrodifferential equation

1000

100
100}
10k
—
gls o
~—
33
0.1F
0.01}
0.001
| | ] 1 ] | |
0.000I x
000l —5"40 &0 80 100 120 140 160 180
G (degq)

FIG. 8. Comparison of the differential cross sections
obtained with the full resonating-group calculation and
the differential cross sections obtained with K, and K,
set to zero.

2
[zﬁ—uv; +E - V,,(ﬁ)] FR)=%,+CX, (43)
with C=1+v, we may obtain results similar to
those of the full resonating-group calculation. To
see if this is indeed so, we have solved Eq. (43)
numerically at 20, 50, and 100 MeV, and adjusted
C to yield the best agreement with the full calcu-
lation at these energies. The result is shown in
Fig. 9, where the solid curves show the differen-
tial cross sections obtained with the full resonat-
ing-group calculation, while the crosses repre-
sent the differential cross sections obtained using
Eq. (43) with appropriate values of C. From this
figure it is evident that there exists a value of C
at each energy which enables us to use Eq. (43) to
approximate the full resonating-group calculation
quite closely. In fact, it can be seen that our ap-
proximation is good even at 20 MeV; this is inter-
esting, since Eq. (43) is based on the results of
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FIG. 9. Comparison of the differential cross sections
obtained with the full resonating-group calculation and
the differential cross sections obtaining using Eq. (43)
with appropriate values of C.
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the Born-approximation study, which is not ex-
pected to be too reliable at such a low energy.

The values of C are equal to 0.3, 0.4, and 0.55
at energies of 20, 50, and 100 MeV, respectively.
The fact that it increases with energy is just a
reflection of the Born-approximation finding that
the ratio of the magnitudes of I; to I, (see Table I)
becomes smaller as the energy increases.

In the n + o system itself, it is of course not
necessary to employ this approximate procedure,
since here the derivation of the kernels K,, K,,
and K, is quite simple. On the other hand, if one
wishes to consider such problems as the scatter-
ing of nucleons by medium- and heavy-weight
nuclei, then one will soon find that while the deri-
vation of the terms V,, K,, and K, is relatively
straightforward; the derivation of the kernel K,
may be quite difficult. Thus, in these cases, it
will be advantageous to use Eq. (43) and adjust C
at each energy to get the best agreement with ex-
periment. It is realized, of course, that the ad-
justment of C is entirely a phenomenoligical pro-
cedure, but we feel that this is a minor disadvan-
tage, considering the fact that the essential fea-
tures of antisymmetrization are still contained in
this approximation method.

At present, we are making a very preliminary
test on this approximation method by considering
the p + Ca*® scattering problem at about 30 MeV.
What we do it to omit K,,'® replace V, in Eq. (43)
by the usual local optical potential complete with
imaginary and spin-orbit parts, and characterize
K, by a simple form similar in nature to the ker-
nel K, of Eq. (27). The result shows that the ex-
perimental data, in particular the polarization
data, can indeed be much better represented if
C is chosen to be not equal to zero.!® Similar con-
sideration of the p+ Ni*® scattering problem has
yielded a similar conclusion.

The Born-approximation study further shows
that an equivalent local potential between clusters
should contain a Majorana component. This sug-
gests that a better description of the p+nucleus
scattering data may be obtained if the real central
part of the optical potential is modified to contain
this particular feature. At this moment, we are
also making a calculation on p + Ca?® scattering to
determine whether this is the case, and prelimi-
nary results are indeed very encouraging.

'S

VI. CONCLUSION

The n + a scattering problem is studied with the
method of the resonating-group structure, the
purpose being to understand the effects of the re-
quirement that the wave function for this system
be antisymmetric with respect to the exchange of
the incident neutron with the neutrons in the «
particle. With a one-channel approximation the
resultant integrodifferential equation describing
the relative motion between these two particles is
found to contain a direct-potential term, obtained
by folding the direct part of the nucleon-nucleon
potential into the matter-density distribution of the
a particle, and a kernel function, arising explic-
itly from the antisymmetrization procedure. The
kernel function is shown to be separable into three
terms, corresponding to knockout, heavy-particle-
pickup, and nucleon-rearrangement processes.

At the energies under consideration (50 to 100
MeV), the direct potential and the knockout kernel
are shown to contribute mainly in the forward
directions, while the heavy-particle-pickup kernel
and the nucleon-rearrangement kernel are shown
to contribute mainly in the backward directions.
In particular, it is found that these two latter ker-
nels are almost entirely responsible for the occur-
rence of large backward-angle cross sections in
the n + @ problem, thus fully demonstrating the
importance of the antisymmetrization procedure,
at least in the lighter nuclear systems.

In the Born approximation, it is further shown
that an equivalent local potential can be construct-
ed between the neutron and the a particle, which
yields the same results as does the resonating-
group calculation. This equivalent local potential
has the notable features of being explicitly energy
dependent and having a significant amount of Major-
ana space-exchange component,

With the knowledge learned here, we have also
proposed approximation methods which contain
the essential features of antisymmetrization and
yet could be used to consider such more compli-
cated problems as the scattering of nucleons by
medium- and heavy-weight nuclei. At present,
we are using these methods to study p + Ca?® scat-
tering, and preliminary calculations do yield re-
sults which are very encouraging.
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Linear-polarization and angular-distribution measurements have been made on the three
transitions from the 1.459-MeV level in !°F using inelastic proton scattering. The mixing
ratios were determined to be —0.1<6 y/p1 < 0.0 for the 1.459—0.197-MeV transitien, 0.30
<0 py/u1 < 0.38 for the 1.459— 0.110-MeV transition, and [6,/g| < 0.06 for the 1.459—~ 0-MeV
transition. The results indicate that the level in question cannot be explained as a by/p pro-
ton hole coupled to the pure ground-state rotational band as has been accepted in the past.

1. INTRODUCTION

The nucleus F has been the subject of several
recent theoretical’~* and experimental®~® investi-
gations, and the detailed properties of the low-
lying states of this nucleus are now fairly well
understood. In particular, Benson and Flowers!
successfully explained the low-lying positive-
parity levels in '°F by shell-model calculations
as three nucleons coupled to an !°0 core, and the
authors attempted further to explain the negative-
parity levels as a p,,, proton hole coupled to the
ground-state rotational band in *°Ne.

The crucial test for this “one-band” model for
the 3~ and § states in °F comes from the ob-
servation that the E2 strength for the transitions
1.459~0.110 and 1.346 -~ 0.110 MeV in '*F should
be the same as the 1.630-~ 0-MeV transition in
*0Ne if the odd-parity states in !°F indeed arise

from the coupling of a proton hole to the ground-
state rotational band of ?®Ne. The E2 strength of
the transitions can be obtained by measurement
of the mixing ratio and the lifetime of the states.
The mixing ratio in question can be determined
by a linear polarization measurement of the y
ray. Such a measurement is difficult, however,
because of the background from three other y rays
of nearly equal energy. As soon as a polarimeter
based on germanium detectors became available,
Lam, Litherland, and Simpson® were able to re-
solve the y rays and measure the mixing ratios,
but their single-crystal polarimeter did not have
a large enough asymmetry ratio to prove or dis-
prove the prediction of Benson and Flowers. Re-
cently in our laboratory, a polarimeter con-
structed with two planar germanium detectors has
been built. This polarimeter has an improved
asymmetry ratio which is suitable for an experi-



