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The bound state of three o particles is considered. For the a-cluster model, we consider
the Coulomb Green’s function in the nucleus 2C. The calculated binding energy of the 1C nu-

cleus is consistent with previous calculations.

I. INTRODUCTION

The a-cluster model consists of taking the nu-
cleus to be composed of a clusters as elementary
constituents, in view of the strong binding of an o
cluster. Therefore, we consider the 2C nucleus,
on the basis of the a-cluster model, as three
bound a particles. The aim of this work is to
study the three-body system when all of these par-
ticles are charged. We consider two approxima-
tions for the Coulomb Green’s functions. The
first, suggested by Schulman,® yields an approxi-
mate form of the Coulomb Green’s function in
momentum space. The other is the improved ver-
sion of the Schulman approximation based on the
Yamaguchi? potential. This will be discussed in
Sec. II.

In Sec. III we introduced the Faddeev® equations
which are modified to include the Coulomb poten-
tial between the three o particles. Neglecting the
internal construction of the a cluster, we take the
two-a-cluster short-range interaction to be of the
separable form

(q'|V]g) =rv(g")v(q),

with v(¢)=(8 +¢?)"!. Thus, the aim of this paper
is to calculate the binding energy of *?C in the
three-ca-cluster model in the framework of the
Faddeev formalism.

The results for the different approximations in-
troduced are compared with previous results in
Sec. IV.

II. COULOMB GREEN’S FUNCTION

Taking the momenta of the three a particles in
the c.m. system to be p,, P,, and P,, the relative
momenta of the pairs (2, 3), (3,1), and (1, 2) will
be given by

515523=%(§3-52), ete. (1)
The total Hamiltonian H is given by
H=H,+U+V, (2)

where U is the sum of the two-body Coulomb po-
tential; V is the sum of the short-range nuclear
interactions; and the kinetic energy, in the c.m.
system, is given by

Hy=p2/2M +q}/2m, (3)
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where
M=2m.,/3, m=my/2,

m, is the o -particle mass, and i=1, 2, or 3. We denote the three « particles by the symbols i, j, and &,
where 7, j, and k take the numbers 1, 2, or 3 and i #j k.

Then we can write for the two-body Coulomb Green’s function

2
(BG65 (2) 5,30 = 0 - BN IG5 (517 ) 40 @)
where
G5 () =(z - Hy-Uy)™t. (5)

The total Coulomb Green’s function for three « particles will be given by the equation

Gocl G?j thi(U - Ui.i) 0 0 Gocl
GS |=| G5, |+ 0 GS(U-U,,) 0 GS |. (6)
G G 0 0 G(U-U,) GSs

Since the Coulomb scattering is peaked in the forward direction, the Coulomb functions in the integrand
of Eq. (4) will be peaked where §, coincides in direction and magnitude with the integral variable, where it
will have the form

o1 1
Ju®r g a5 [n®a

1

i [¥5®)], -0, (7

where

(o] o | ®)

n=me?/k is the Coulomb parameter.
Schulman has approximated the Coulomb wave function (8), so that the Green’s function (4) will be given
by

=, - , . YEE) ], =0
(Pid; chck(z)lp¢‘h> ~6(p; - ;)6(q; - Qi)z _‘L[iz;z(];]_ ;ilz/zm . 9)

At the same time, evaluating the integral in Eq. (7) exactly, we have for the Green’s function

B'q’ b1 X R -1 \I’c r= 2ptan~! >
(piQi'G?k(z)lpiq{>:6(pi-pi)ﬁ(al_qi) L k(i)]_;;;g]{/[’lz;/z(fnt/ﬁ)” . (10)

Equations (9) and (10) represent the two approximations suggested by Schulman for the Coulomb Green’s
function.

III. MODIFIED FADDEEV EQUATIONS

The Faddeev equations for three uncharged particles are well established. These equations have also
been studied for three nucleons with two charged particles.*"® Our aim now is to proceed to the three-
body problem with all the particles charged.

Defining the following resolvent for the Green’s functions as

Gol2)=(z-H))™, Gla)=(z-H)", (11)
then
G(2)=Gy(2) +Go(2)VG(2) . (12)

If the particle 7 is going straight, while the other two particles scatter, then the amplitude of this pro-
cess is given by*
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(B4 )B,3,) =06~ B0 @@)B(=- 55 ), (19)
where
2 q2 -17]=-1 (14)
B(z)= [x -G )3fd qv @)(Z_%> } ,
Now, in our case of *C composed of three a particles, we define
GC(2)=(z- H)™, (15)
GS(z)=(z - H,-U)*, (16)

where U is the sum of the two-body Coulomb interactions. GS(z) is given in terms of ij(z), ..., etc., by
the relation (6).
From Eqs. (15) and (16) we can write

G°(2)=Gg(2) + G5 (2)T(2)GE (2) (1
where
T(z)= )E) T9(z), (18)
i=1
T (2)=A$(2) +A§(2)GS (2)T(2) , (19)

where AS(z) is given by

(B 1A 5,30 =0 - Bo@pu@)ss (2 - 55 ). (20)
B?(z)z[rl'(—;Wjdaq‘vz(a‘)<z_£2:;>- {[q;fi(f)]“o}z]'l. (21)

Now, following the same procedure suggested by Adya‘ in the case of the *He nucleus, we can write for
Eq. (19)

(Bi&; 1TV () 3,8, =(3/8;1AS(2) B, )
+f(5;'?1; |AS @) [Byar X D7 a7IGE () By XDy &y T(2) |, 4;)db;dqydpy dd; .

(22)

Neglecting the three-body Coulomb potentials (i.e., considering only two-body Coulomb potentials), with
the aid of Eq. (9) for the factor

(Braricsz)prar,
and using Eq. (20), we get for Eq. (22) the following expression:

) , 357 4307 (5 <p{'c’1”lT(Z)lp G 1Y, @), =0t
(Bl @158 =05t (2~ 557 ) [ @i Bou@)+ [t atarotan BEE Ll )

(23)

Since g; can be expressed in terms of pairs (p;, q,) with j#¢, we can integrate over d3q!, and only the in-
tegration over d%p} remains in Eq. (23).
Writing the solution of Eq. (23) in the form

<-ﬁi,a”7“‘)(z)'-ﬁiai>=U(ﬁ;)v(—ai)xi(§x{)ﬁnz)a (24)

we get the following integral equations for the bound state:
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BS(z - p?/2M) PIX o, 2){[‘1’36" 5l -0}
Xibir2) - (2n)? (8 +®; +2DiV ]z - - (1/2m)@; + 2 B{ 18 + ®; + 2D/ )]
Bf(z - P,’Z/ZM) aGP"Xk(I’):,Z){ |§(pk+2p )l r)]r 0} 0 (25)
B (2m)* (8% + @y +2D0)°]z - - (1/2m)(By + 2 B8+ @i+ 2 Di)°]
With the successive permutations between ¢, j, and k we get three separate equations for Eq. (25).
The corresponding three one-dimensional integral equations for the /=0 partial waves of X; are
XYpi,2)+ [ dp7 ¥ (i, pPIXSN p,”,z)+f dpg Y(pi, POXY p{,2) =0, (26)
0
with
- y C _!Lz f ! ., etc. 27
Yo P2 =gy 3, B ("' ?M) L, (e + D+ 00+ O(x - D[e?/&0 1) 7T T @0

. 62+%p2+p-2
P(Pj
_Fepledpy
p{ pj ’
5= PE+pi—z2m,
bib;
: pE+4p?
4p;p;
and y =2mk/(p,p,)*/?, or in matrix form, we get
for Eq. (26) the representation

(28)

1 Yij Yy X? 0
Y 1 Y, X? =l 0 ’ (29)
Yoo Yu 1 Xg 0

where for example
Yij = Y(P;, plll) ‘
IV. RESULTS AND CONCLUSIONS

The integrals in Eq. (29) are solved using the
Kopal” method. These integrals are replaced by
a 25-point mesh. The parameter § was chosen to
be 1.35 fm~!. Then calculating the binding energy
of !2C in the three-a-particle model it is found to
be 6.08 MeV.

Repeating all the above calculations, but replac-
ing [¥$(F)],-, in Eq. (25) by [¥¢(F)],-,exp[2n
xtan-(g/B)], we obtain the binding energy of 2C
to be 7.5 MeV, according to the improved version

of the first-mentioned Schulman approximation.

From these calculations, one sees that the cal-
culated binding energy for !2C using three-body
calculations is in agreement with the measured
values. Also, our calculated value agrees with the
Wang® result based on using an a-a potential fit-
ted to a-a scattering.

Thus, it is safe to say that the 2C nucleus can
be well described in a three-a-particle model in
spite of the large error in the value of the calcu-
lated binding energy due to the Schulman approxi-
mation which is of the order of 16%. It is clear
that the error in the calculations of the second
approximation, which is the improved version of
Schulman, does not exceed 2.7% from the mea-
sured values. Thus we can say that our calcula-
tion for the 2C binding energy is in good agree-
ment with the measured value.

Now, it is worthwhile to refer to a recent work
of Leung and Park,® who considered this problem
using a wave-function method. They used for the
Yamaguchi potential parameters the same values
suggested by Harrington,® who bases his formula-
tion on the T-matrix method of Faddeev and Love-
lace.!! In their study, they were concerned with
the nuclear binding energies; i.e., they neglected
the Coulomb energy which is 5.44 MeV for 2C,
according to Ref. 10. In the same way, Leung and
Park have obtained for the 2C binding energy a
value of 7.36 MeV which is similar to Harrington’s
result, and not far from ours.

*Present address: Central Research Institute for Phy-
sics, Budapest, Hungary.
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The features of the kernel function in the nonlocal z+« interaction, derived with the reso-
nating-group method, which uses a totally antisymmetric wave function and a nucleon-nucleon
potential, is studied. This kernel function is made up of three terms, corresponding to knock-
out, heavy-particle-pickup, and nucleon-rearrangement processes. Inthe medium- and high-
energy regions, the knockout process contributes mainly in the forward directions, while the
heavy-particle-pickup and nucleon-rearrangement processes contribute mainly in the backward
directions. In particular, it is found that these latter two processes are almost entirely re-
sponsible for the occurrence of large backward-angle cross sections in the n+a problem. An
equivalent local potential between the neutron and the ¢« particle is also constructed, which,
in the Born approximation, yields the same results as does the resonating-group calculation.
This equivalent local potential has an explicit energy dependence and a significant amount of
Majorana space-exchange component. Finally, approximation methods are proposed which
contain the essential features of the antisymmetrization procedure and yet could be used to
consider such more complicated problems as the scattering of nucleons by medium- and

heavy-weight nuclei.

I. INTRODUCTION

In recent years, a number of calculations®™?
have been performed to examine the properties
of light nuclear systems with A <8 using the meth-
od of the resonating-group structure.** The re-
sults of these calculations have been very encour-
aging, since for all these systems, the agreement
between the calculated and experimental results
was found to be quite satisfactory over a wide
range of energies.

A logical step is to extend these calculations to
heavier systems, such as the scattering of protons
by medium- and heavy-weight nuclei where exten-
sive phenomenological analyses have been per-
formed using the optical model with local poten-
tials.> Here, however, one encounters practical
difficulties, since in a resonating-group calcula-
tion one employs a completely antisymmetric wave
function which, from a computational point of view,
is feasible only for systems with a relatively
small number of nucleons. On the other hand, the
results of the resonating-group calculations clear-
1y indicated that the effects introduced by the anti-
symmetrization procedure are important and can-

not be omitted if satisfactory agreement with the
experimental data is to be obtained. Thus, in a
heavier system where there is no a priori reason
to expect that the antisymmetrization effects are
unimportant, one must seek an approximation
method which can simplify the computation to a
significant extent and yet preserve the main fea-
tures of antisymmetrization. In this investigation,
we make an initial attempt in this direction by per-
forming a detailed study of the antisymmetriza-
tion effects in the case of the scattering of neu-
trons by « particles. This particular case is
chosen, since here these effects are manifested
in a particularly transparent manner and hence
are amenable to clear and simple interpretation.

In the one-channel resonating-group formalism,
this complicated five-nucleon problem is reduced
to a two-body problem in which the wave function
F(R) describing the relative motion of the neutron
and the « particle is given by

[Z-“ ViE- v,,(ﬁ)] F(R) = f K@®, R F® )R,

(1



