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The T matrix half off the energy shell can be expressed in terms of the on-shell T matrix
and the difference between the full scattering wave function and the phase-shifted free wave
function. This representation allows one to investigate variations in the half-shell T matrix
by means of a parametrization of the scattering wave function in the interaction region. Most
of our knowledge of the physical constraints on that wave function may then be included. In
particular we have studied the arbitrariness remaining in the half-shell T matrix given the
following constraints: (1) The on-shell T matrix is given; (2} a specific local potential acts
beyond a certain radius; and {3) the wave function is suppressed at short distances. We con-
struct models of the So two-nucleon half-shell T matrix. In a simple one-parameter model
satisfying these constraints, the range of variation of the near off-shell behavior is displayed.

I. INTRODUCTION

Calculations of the properties of multi-nucleon
systems generally require as input a description
of the two-nucleon interaction off the energy shell.
This interaction is usually represented in the con-
text of the nonrelativistic Schrodinger equation by
some phenomenological potential whose param-
eters have been adjusted to give a fit to phase
shifts extracted from nucleon-nucleon elastic scat-
tering experiments. It is known that the constraint
provided by the phase shifts can be satisfied by an
infinity of potentials; many such potentials have
been constructed. ' Since a potential is related
only indirectly to observable quantities, any evi-
dence for choosing one in preference to others
must be adduced indirectly and at the expense of
considerable computation. '

In this paper, we study an alternative descrip-
tion of the two-nucleon interaction advocated by
Baranger, Giraud, Mukhopadhyay, and Sauer'
(BGMS). These authors suggest that, instead of
making models of an unobservable potential, one
should directly parametrize the two-nucleon par-
tial-wave T matrix half off the energy shell (here-
after called the half-shell T). The quantity is itself

measurable, in principle, ' and it carries as much
information as the potential. ' For most purposes,
the half-shell T is actually a more convenient rep-
resentation of the interaction than the potential. '

BGMS have discussed the restrictions imposed
on the half-shell T by the requirement that the
two-nucleon scattering states form a complete
orthonormal set. There are, as they note, other
physical constraints, such as the range of the in-
teraction. It is the effect of these physical re-
quirements, together with generally accepted qual-
itative features of the two-nucleon wave function in
coordinate space, that we investigate here.

We present a simple scheme for devising mod-
els of the half-shell T subject to the following
constraints: (1) The on-shell T is prescribed by
the scattering data; (2) beyond a certain radius
the interaction is described by a specific local
potential; and (3) the two-nucleon wave function
is suppressed at short distances. For convenience,
we discuss only the 'S, partial wave. However,
all formulas are written in a form that permits
immediate transcription to corresponding results
for higher uncoupled partial waves in which there
are no bound states. These results are given ex-
plicitly in Appendix A. Partial waves that are
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coupled or that contain bound states are not treat-
ed in this paper.

In Sec. II, we derive an equation which expresses
the half-shell T in terms of the on-shell T and the
spherical Bessel transform of a scattering dif-
ference function. This function is the difference
between the full scattering wave function and the
phase-shifted free wave function. Since the on-
shell T is to be taken from experiment, we are
left with the problem of finding reasonable models
of the difference function. Procedures for doing
this are developed in Secs. III and IV.

We illustrate our method by using it to generate
a simple one-parameter model of the difference
function and the corresponding half-shell T's in
Sec. V. Invoking some plausible assumptions, we
study the range of variation of the half-shell T in
this model. Section VI summarizes the paper.

II. HALF-SHELL 1AND THE SCATTERING
DIFFERENCE FUNCTION

We begin with the customary optimistic assump-
tion that a potential may be found which, when in-
serted in the nonrelativistic Schrodinger equation,
gives an accurate wave function for two interact-
ing nucleons when their relative momentum (in
units such that 6= 1}is much less than A„', where
A.„is the nucleon Compton wave length. The s-
wave Schrodinger equation at center-of-mass ener-
gy 0' is'

+k Po (k, r)
1 d d 2 (,)
r' dr dr

U(r, r')(o' (k, r')rndr'.
0

(1)

U(r, r') is the s-wave projection of the potential in
question, which in general will depend on the re-
lative orbital angular momentum and probably
must contain additional nonlocality, ' and P,' is the
outgoing- wave solution normalized to

jo(pr) = sinpr/pr is the zeroth spherical Bessel
function. The on-shell limit of Eq. (2)

to(k) -=to(k, k; k')

t (k) = ——e'Ot" sin5 (k) .1
u 0 (2 II)

Our first objective is to rewrite Eq. (2) in such a
fashion that: (a) The underlying potential U(r, r')
does not explicitly appear; and (b) the constraints
on to( p, k; k') imposed by fixing to(k) from experi-
ment are made as explicit as possible.

The potential may be eliminated from Eq. (2) by
means of Eq. (1), which gives

1 d d
t, ( p, k; k') = dr r'j, ( pr) +

—r' —+ k'
0

x p", (k, r) . (3)

Next, we introduce the phase-shifted free wave
function"

vo(kr) =e' 0 [costa(kj)o(kr)+ sin5, (k)n (kr)]. (4)

Since vo(kr) is annihilated by the operator in
square brackets in the integrand of Eq. (3), we
may write

to( p, k; k') = dr r'j o( pr) ——r' —+ k
1 d d'

0

x [(to'~ (k, r) —vo(kr)] . (5)

In so doing, we have replaced /to'~(k, r), which
oscillates undamped for large r, by a function
which vanishes for large r. This allows us to get
rid of the differential operator in the integrand by
integrating by parts twice. It is convenient to in-
troduce the real "difference function"

dr r jo(kr) dr'r "U(r, r')g~'(k, r')
0 0

(2')

is empirically determined; it may be expressed
in terms of the phase shift,

P ~0'~(k, r) „„—e'+ sin[kr+ 6o(k)],
Ao(k, r) = kr e '~ [ttpo+ (k, r) —vo(kr}] (6}

with 60(k) the s-wave phase shift.
Having assumed the existence of U(r, r'), we

wish to avoid the difficult (if not impossible) task
of completely determining it. It has been pointed
out that equivalent information is carried by the
half-shell T in which the initial momentum is on
shell and the final momentum is off shell. ' This
half-shell T is the object of our study; for the s
wave it is given by the expression'

t, ( p, k; k~) = dr r j o( pr) dr' r"U(r, r ')po' (k, r') .
0 0

(2)

and to write uo( pr) = prj o( pr) = sinpr, in terms of
which Eq. (5) becomes

ec q(a)
t (p, k;k')= druo(pr) ++k no(k, r).

P 0

Integrating by parts twice, we find

e i@(a)
to(P, k; k') = to(k) + (k' —P') dr uo(Pr)no(k, r) .

P 0
(8)
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This representation is the desired result, for it
does not require us to exhibit a potential, and it
brings to the foreground the role of the on-shell
T in determining the half-shell T. Although Eq.
(8) has been found previously, " it apparently has
not been used to obtain direct parametrizations of
half-shell T's corresponding to a prescribed on-
shell T. The problem of constructing such pa-
rametrizations is now seen to reduce to the task
of making suitable models of the difference func-
tion.

Two noteworthy properties of Ao(k, r) may be
read directly from its definition. They limit the
class of functions which might be used as model
difference functions. The first is that Ao(k, r) is
vanishingly small for r greater than the range of
interaction. This follows from Eq. (6) and the ob-
servation that, outside the interaction region,
$0' (k, r) is practically identical to v, (kr) Sec.ond-
ly, since" kryo'(k, r) ~ 0, it is seen that

A, (k, r) ~ -sin6o(k)coskr ~ -sin5, (k).r ~0 ~0 (9)

The foregoing remarks indicate the importance
of the short range of the interaction in specifying
off-shell behavior. In the limit that the range be-
comes very small, they lead to the self-evident
conclusion that b,,(k, r) and t, (P, k; k') are complete-
ly determined by the phase shift. More generally,
we may expect that if b.,(k, r) is a reasonably
smooth function of ~, the two boundary conditions
just cited should impose a significant correlation
between the on-shell T and the half-shell T for
any short-range force, local or nonlocal.

In the evaluation of model difference functions,
it is convenient to divide the interaction region
into an exterior region, x&R, in which the inter-
action is accurately described by a local potential,
and an interior region, 0 ~ r ~g. For reasons
given in the next section, we take A=A. „=1.43 F,
where A. , is the pion Compton wavelength.

III. EFFECT OF A LOCAL EXTERIOR POTENTIAL

In the 'S, wave, there seems to be a reasonably unique phenomenological local potential description of
the interaction in the exterior region, "and it is to be expected on fairly general theoretical grounds that
U(r, r') should be local when r & X, ." Although we have eliminated the potential from the expression for
to(p, k; k') because it is generally not well determined, there is no reason to ignore the information carried
by the fixed local exterior potential. This is easily incorporated in our models of n,,(k, r) by means of an
integral equation.

Our starting point is the integral equation for go'(k, r) equivalent to Eqs. (1) and (1'),

(,' (k, r) =j 0(kr) —k dr' r~j0(kr& )hto'~(kr& ) U(r', r")g~~'~(k, r")r'~dr",
0 0

where

e i,ltr

h~'(kr) =no(kr)+ijo(kr) =

(10)

and (r&, r&) denote the lesser and greater of (r, r'), respectively. Note that Eq. (4) may also be written as

vo(kr) =jo(kr) —kto(k)ho'~ (kr)

and that t, (k) is given by (2'), so that

v, (kr) =j,(kr) —khto'~(kr) dr'r"jo(kr') U(r', r")g,'(k, r")r" dr".
0 0

Subtracting Eq. (12) from Eq. (10), we obtain

(0'~(k, r) —vo(kr) =k hto'~(kr) dr'r"j (kr0') U(r', r")$0' (k, r")r" dr"
r 0

oo

jo(kr) dr'-r hto'~(kr') U(r', r")$0' (k, r")r"'dr"
0

If we define

y, (kr) = km~(kr),

w~(k, r) = e ' 0 ' kryo' (k, r)

(13)

(14)
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and refer to Eq. (6), we find that
OO oo oo OO

A, (k, r) =— yo(kr) dr'uo(kr')r' U(r', r")r "ufo(k, r")dr" —uo(kr) dr'yo(kr')r' U(r', r")r "wo(k, r "}dr"
r 0 0 0

(15}
Equation (15) is cast as an integral equation for A, (k, r) upon inserting

gvo(k, r) = no(k, r) + cos5O(k)uo(kr) + sin5O(k)yo(kr),

which gives

1
50(k, r) =200 (k, r)+ — dr'go(k; r, r'}r' U(r', r")r"no(k, r")dr",

r 0

where

1 oo Do

d~~~(k, r) = — dr'g0(k;r, r')r' U(r', r")r"[cos50(k)uo(kr")+ sin50(k)yo(kr")]dr"
r 0

(16)

(17)

(17')

ga(k; r, r') = yo(kr)u~(kr') —uo(kr)yo(kr') =-sink(r —r') . (17")

As it stands, Eq. (17) requires a complete knowledge of U(r, r'). However, as remarked previously, it
is believed that the nonlocality in the potential (in a given partial wave) is confined to distances shorter
than A. . This means that we can write

U(r, r ') = N(r, r ') + 5(r —r ')L(r)/rr '

such that

(18)

(18 ')

when r &R. For r &R Eq. (17) then simplifies to

h, (k, r) = d,'~(k, r)+ — dr'g, (k; r, r')L(r')n, ,(k, r'), r &R
1

r
with

n,'i(k, r) = — dr'go(k; r, r')L(r')[cos6, (k)u, (kr')+ sin5, (k)yo(kr')], r &R .

(19)

Equation (19) allows us to isolate the influence of
a local potential on n, (k, r) for r&R. In fact, it
gives us an exact expression for h, (k, r), r &R,
given just the phase shift 5,(k} and the local poten-
tial L(r) in this exterior region. Note that Eq. (19}
is a Volterra equation. It may therefore be solved
by iteration with the assurance that the series
thus obtained converges uniformly in r, as long
as js dr r~L(r) )& ~." In the calculations described
in Sec. V, we found A," (k, r) to be an excellent
approximation to h, (k, r). The rapid convergence
of the iteration series is demonstrated explicitly
for a soluble but realistic exterior potential in
Appendix B.

IV. POLYNOMIAL PARAMETRIZATION OF Dp (k f)
IN THE INTERIOR REGION

As a working hypothesis, we suppose that
do(k, r) varies smoothly enough over the interior
region [O, R] that we may represent it there by a

polynomial in r, P(k, r), of reasonably low degree.
This is in fact the case for the difference function
generated by the 'S, Reid soft-core potential"
(RSC), as will be seen in Sec. V.

One can certainly imagine functions on [O, R] for
which no polynomial of tractable degree would give
an adequate representation. However, n, (k, r) is
supposed to be generated from a reasonable poten-
tial" by means of the nonrelativistic Schrodinger
equation. This equation is not exact; it is most
plausibly interpreted as the low-energy limit of
a relativistic two-nucleon equation (for example,
the Bethe-Salpeter equation) in which the nucleons
propagate according to the Dirac equation. When a
nonrelativistic reduction is carried out, it is found
that the observable position of a Dirac nucleon
corresponds to a nonlocal "mean-position opera-
tor" which smears functions of r over an interval
of size A,~. Accordingly, it makes no sense to
speak of a nucleon as being more localized in r
than this; functions of r are interpreted consistent-
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ly only when averaged over an interval of order
Since R ='?X» this heuristic argument sug-

gests that the observable features of a two-nucleon
wave function in [0,R] could be summarized by its
values at eight representative points. Thus, for
example, a seventh-degree polynomial could be
employed.

%e arrived at the following method for specifying
the polynomial representation of A, (k, r),

Ao(k, 0) —d.o(k, R) + Rb,o '(k, R) (23c)

no'(k, 0) —60'(k, R) + 2Rp~(k) (23d)

~,"(k,R) —2P, (k) —2RP, (k) (23e)

[d.,"(k, 0)- 2P, (k)+ 4RP, (k) - 2R'P, (k)]

d, o(k, r) =P(k, r), 0 » r ~R, k«X„', (20)

using the available information and a minimal num-

ber of free parameters. Once Eq. (19) has been
solved, n(k, r) is known for r &R. Under reason-
able assumptions of smoothness, this solution also
gives us 60(k, r) in a neighborhood of r=R, so we

take d,,(k, R), h, '(k, R), and A, '(k, R) (the primes
denoting derivatives with respect to r) as known

quantities to be obtained from Eq. (19); In addi-
tion, Eq. (9) gives n, (k, 0)=-sin5, (k). For the
time being, we regard ~'(k, 0) and h, "(k, 0) as
free parameters. Once we have chosen them, we
have specified the value, slope, and curvature of
n, (k, r) at the two endpoints of [O, R]. Since this is
a small interval on the scale of variation we are
considering, we expect these endpoint conditions
to be significant constraints on h, (k, r). In the
polynomial representation this means we set

P(k ~ R) = &0(» R) obtained from

P,(k R) ~,(k R) the solution
of Eq. (19),

P"(k,R) = no "(k,R)

(21a)

P(k, 0}= L,(k, 0) = -sin5, (k)

P'(k, 0) = ~, '(k, 0)
free parameters .

P"(k, 0}=a, "(k,0}

(2lb)

+ P, (k)r'(r —R)'.
Equations (21a) and (2lb) then give

(22)

Clearly, there are an infinite number of poly-
nomials which satsify the six conditions (21a) and

(2lb), but the one of lowest degree —the smoothest
one —is a unique fifth-degree polynomial, P,(k, r).
The determination of P, may be regarded as a
six-point interpolation problem in the limit that
three of the points coincide at r=0 and three at
r =R. This suggests that we write

P,(k, r) =po(k)+ p, (k)(r —R) + p, (k)(r —R)2

+P~(k)r(r —R) + P4(k)r (r —R)'

(23f)

Although we expect d„(k, r} to be reasonably
smooth, it may well include variations which can-
not be represented by P„since this is the smooth-

est polynomial that can satisfy Eqs. (21a}and (21b}
simultaneously. In particular, as shown in Sec.
V, the RSC difference function displays such be-
havior. %e therefore introduce an extra degree
of freedom by adding to P, a term qr'(r-R)', with

g a free parameter. Since this term and its first
two derivatives vanish at r = 0 and r =R, the re-
sulting polynomial,

P(k, r) =P,(k, r)+qr'(r-R}', (24)

satisfies Eqs. (21a) and (21b) if P, does. The poly-
nomial defined by Eq. (24) and Eqs. (22) and (23)
is our parametrization of a,(k, r) over the interior
region. It is evaluated in a simple model in the
next section. As an aside, we note that if the in-
teraction is assumed to be purely local, one has

6, '(k, 0) =so, '(k, 0) —k cos5,(k)

= k/~ f0(k) (
—k cos50(k),

where

f,(a)=erg(- —I dq ' . )

(25)

(25 ')

is the s-wave Jost function. " If it is further as-
sumed that this local potential is finite at the ori-
gin, or if the wave function goes to zero at the
origin more rapidly than the potential diverges
there, it is apparent from the Schrodinger equa-
tion that ar (k0, 0) = 0, so that

h, "(k, 0) = k' sin 5,(k) . (26)

To some extent, then, by varying the first of these
parameters one may study the influence of the high-
energy phase shifts on ao(k, r) (if a local potential
is assumed), according to Eq. (25). The second is
a measure of the effect of short-range nonlocality,
since for a'nonlocal interaction, Eq. (26) is re-
placed by

p, (k) =n, (k, R),

p, (k) = h '(k, R),

(23a)

(23b)

n, "(k, O) =k'sin5, (k)+limr dr'U(r, r')r'co, (k, r').r~p p

(27)
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V. ONE-PARAMETER MODEL OF THE
So HALF SHELL T

A one-parameter family of model difference
functions may be obtained by invoking the common
and plausible assumption that the two-nucleon
wave function is very small at short distances.
This suppression is naturally expressed in the
parametrization of the preceding section by set-
ting not only w, (k, 0}, but also w, '(k, 0} and zv,"(k, 0}
to zero, independent of k. We then have

e]1" e 4~" e 7

L(r)=G, +G, +G~4 pr '
JL(r

where

(29a)

it turns out that n, (k, r) and t, (p, k; k') are not sen-
sitive to the exterior potential once 5,(k) has been
fixed. As will be seen in part B of this section,
the exterior potential may be omitted entirely
without changing to(p, k; k') very much.

The RSC potential in units of F ' is

A, '(k, 0) = -k cos5, (k) (28a) p, =0.7 F ' (29b)

b, o "(k, 0) = k' sin50(k}, (28b)

A. Models of 60(k, r) and wo(k, r)
in the Interaction Region

Because the results of the calculations of Ler-
ner and Haftel were readily available, we chose to
represent the exterior potential by the RSC for
r & K, so that we could study the accuracy of our
approximations. It should be noted, however, that
this reversion to a specific model of the exterior
potential does not lead to any significant restric-
tion on the validity of our final results and conclu-
sions. For one thing, when r &'L, all of the phe-
nomenological potentials which approach the one-
pion-exchange potential smoothly at large dis-
tances become virtually identical. " In addition,

leaving g as a free parameter.
We have calculated difference functions and half-

shell T's in this one-parameter model. For illus-
trative purposes, they were evaluated at three
values of the (on-shell) relative momentum: k
=0.75, 1.05, and 1.50 F ', corresponding to labo-
ratory energies of about 47, 92, and 187 MeV,
respectively.

Since there are no experimental data with which
to confront our results, we compare them with
the predictions of the RSC potential, which fits
the 'S, phase shifts very well and generates half-
shell T's which are typical of most potential mod-
els." Wave functions and half-shell T's for the
RSC potential were kindly made available to us by
Lerner and Haftel. "

Although Eqs. (8), (19), and (24) enable us to
use a set of empirical phase shifts directly, we
use the RSC phase shifts as input instead. This
is done so that differences between our half-shell
T's and those of the RSC may be attributed to
purely off-shell effects, the on-shell T's being
identical by construction. Because the RSC phase
shifts represent the empirical ones quite faithful-
ly, we do not expect the substitution of one set for
the other to affect our results significantly.

G, = —10.463/41. 47 F ',
G4=-1650.6/41. 47 F z,

Gi = 6484.2/41. 47 F 2.
(29c)

Inserting Eqs. (29a}-(29c) in Eq. (19), we find that

Aoo'(k, r) = [coskr g Gs Iz(k, r}
8 =44. 7

—sinkr g GsI8 (k, r))/k,
8 = l~ 4e 7

where

(30a)

18(k, r) =(cos5,(k}[E,(Ppr) —ReE,((Pp —2ik)r)]

+ sin6O(k)ImE, ((Pp —2ik)r}j/2p,

(30b)

co g,f

E,(z}= dt
I

(31)

is the exponential integral. " We computed the
above expressions on the University of Mar/land
CEIR Multi-Access Computer Service, using for-
mulas (5.1.53} and (5.1.56) in Ref. 23 together
with formulas (6) and (7) of Ref. 22 to generate
E,(z). The results were checked against hand cal-
culations using the tabulation of E,(z) given in Ref.
22.

Upon adding sin[kr+ 5,(k)] to Eqs. (30a)-(30c)
and comparing the resulting approximation to
ce,(k, r} with the numerical wave functions-of Ler-
ner, we found agreement to three significant fig-
ures. [A comparison of our gvo(k, r) and Lerner's
is presented below in Fig. 2.) The higher order-
iterates of Eg. (19) cannot be given in closed form,
and the upper bounds that can be established for

I &(k, r) = ( sin5O(k)[E, (P p r) + ReE,((P p. —2ik}r)]

+ cos50(k)lmE, ((Pp —2ik)r)]/2 p, .
(30c)

Here Re and Im denote the real and imaginary
parts, respectively, of the functions they prefix,
and
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I.O— (o)

0.8—

0.6—
04—
0.2—

=0.75 F

p~") =06

I.O—

0.8—
—0.6—

() 0.4—

(b)

1.05 F

Sp(k) 0.460

0.2—

them are much too crude to demonstrate that they
are as negligible as our results indicate. However,
the exponential exterior potential of the Kallio-
Kolltveit force'4 approximates the right-hand side
of Eq. (29a) quite closely when r &K,. When L(r}
is an exponential, the iteration series is known
in closed form. For the Kallio-Kolltveit exterior
potential, we show in Appendix B that the terms
beyond 60 are indeed negligible. It seems safe
to assume that equally rapid convergence of the
iteration series obtains if the RSC form of Eqs.
(29a}-(29c}is used. Together with the previously
cited a posteriori observation that changes in the
exterior potential affect A, (k, r) and t, ( p, k; k')
only slightly, the above comments lead us to con-
clude that the approximation of retaining only the
first term in the iteration series for no(k, r) is

quite adequate for our purpose.
In order to compute P(k, r), we need expressions

for b,, '(k, r) and a, "(k, r) in the exterior region.
Differentiating Eq. (30a}, one finds

A, '(k, r) = Q G8[sinkrIS(k, r)+ coskrIB(k, r)]
8=g4. V

(32}

no "(k, r) =L(r) sin[kr+ 50(k)] —k ho(k, r) . (33)

Using the values of n, ,(k, R), b, '(k, R), and

6, "(k,R) [given by Eqs. (30a)-(30c), (32), and (33)]
together with the values of A, (k, 0), n, '(k, 0), and

A, "(k, 0) [given in Eqs. (21b), (28a), and (28b)), the

P;(k) of Eq. (22) are calculated by means of Eqs.
(23a)-(23f}. This gives us the fifth degr-ee poly-
nomial P,(k, r) of Eq. (22), to which we add
q~'(r-R)' to get the sixth-degree polynomials
P(k, r) of Eq. (24). These are our parametric mod-
els of h, (k, r}. The w~(k, r) corresponding to these
models are obtained by adding sin[kr+ 50(k)] to
P(k, r)

Results for g = -1, 0, 1 at the three chosen val-
ues of k are plotted in Fig. 1. We show w, (k, r)
rather than h, (k, r) because, by force of habit, we
find it easier to visualize the qualitative features
one expects to find in wave functions than those of
difference functions.

Without exhaustive searching on the parameter
g, we found that our model resembles the RSC
wave function very closely when q = -0.55 (indepen-
dent of k), as shown in Fig. 2. This indicates that
our parametrization is at least flexible enough to
encompass the behavior of potential models.

Finally, since the difference functions are the
quantities of ultimate interest for the calculation
of the half-shell T, it is helpful to have an idea of
their behavior. In Fig. 3 we show A, (k, r) for
g = -0.55.

B. Models of to(p, k; k )

I.O— (c)

0.8—

0.6—

0.4—

0.2—

= l.50 F

p(k) = O.I56

0
0.2 0.4 0.6 0.8 1.0

All that remains to be done in the calculation of
the half-shell T is the evaluation of the integral
in Eq. (8) which we denote by I(p, k). We write it

I(P, k) = dr sinPrh, (k, r)
0

Ch sinprP(k, r) + dr sinpxAo '(k, r),
0 8

(34)

since in our models we have
FIG. 1. (a)-(c) The model interior wave function

wp(k, r) for q=-1 (---), @=0 (—), and g= 1(-—), p
=0.7 F ' k, r O=

P(k, ~) 0 & r & R
6, '(k, ~) r &R . (34')
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The superscript ext is simply a reminder that

4, '(k, r) is the function obtained from the exterior
potential by means of Eqs. (30a)-(30c).

Straightforward evaluation of

c,(k) =P, (k) —RP, (k) +R'P, (k),

c,(k) = p, (k) —2Rp2(k) +R p~(k),

R

I;„,(p, k) =- dr sinprP(k, r)
0

gives

I,(P, k) = Z c.(k)I.(P),
n=0

(35)

(36a)

c,(k) = p~(k) —2Rp, (k) +R2p4(k) —R'p, (k),

c~(k) = ps(k) —2Rp~(k) + 3R p~(k) —rtR~ ~

c4(k) = p4(k) —3Rp, (k)+ 3',
c,(k) =p, (k) —3',
c,(k) =0.

where
n

I„(p)=-p-"-'g j! [(pr)" 'cos(pr+-,' jw)]~"„:,,

(36b)
I

The integration of

I,(p, k) = dr sinprh, '(k, r)
R

simplifies if one notices that

(37)

(k' —p )I~,(p, k) = dr sinpr + k n.~~'(k, r) — dr —sinpr —n.o '(k, r) —no '(k, r) —sinpr
R R

and, according to Eq. (33),

d2
+k2 ho' k, r =L r sin kr+50 k

(38a)

(38b)

One then obtains

(39)(k' —p')I, (p, k) = dr sinprL(r) sin[kr+ 6,(k)]+ sinpRr, '(k, R) —p cospRn. ,(k, R),
R

where a,(k, R) and 6, '(k, R) are given by Eqs. (30a)-(30c) and (32). With L(r) given by Eqs. (29a)-(29c),
the integral on the right-hand side of Eq. (39) reduces to

dr sinprL(r) sin[kr+ 5,(k)] = g G&IS(p, k; R),
R 8~L4ov

where

Ia(p, k; R) = (2p) '(cos5, (k)Re[E,([pp —t(p —k)]R) —E,([pg —t(p+ k)]R})

+ sin50(k)lm(E, ([pp, —t(p —k}]R)+E,([p p —t(p + k}]R)j) .

(40a)

(40b)

Combining the above results and inserting them
in Eq. (8), we obtain the half-shell T. It is conve-
nient, in comparing the variations in p for differ-
ent values of k, to plot instead of t,(p, k; k'} the
Noyes-Kowalski off-shell factor f,(P, k) = t,(P, k; k')/
t,(k).' Figures 4(a)-4(c) show our models of
f,(P, k) for 0 = -1, 0, 1. In Fig. 5, we plot the con-
tributions of the parametric term qr'(r- R)' and
of the exterior difference function n,~o'(k, r) [as
determined from Eqs. (39), (40a), and (40b)] to
fo(P, k}. For ease in drawing the curves, we
plotted only the parametric contribution f,"(p, k)
for q = -1. Since f,"(p, k) depends linearly on q,
our curves may be easily scaled to give f,"(p, k)
for other values of this parameter. The term
f, '(p, k) coming from the exterior difference func-

tion is seen to be quite small everywhere except
when k=1.50 F ', when it contributes appreciably
at low p.

In Figs. 6(a}-6(c}we compare our models for
g=0 and q=-0.55 with the RSC half-shell T calcu-
lated by Haftel. Note that the curve for g =0 actual-
ly lies closer to the RSC curve than does the one
for g =-0.55, even though q=-0.55 gives a better
fit to the RSC wave function. Referring to Eq. (34),
one sees that this is simply a graphic illustration
of the obvious remark that a good pointwise approx-
imation to a function does not imply an equally
good approximation to its Fourier sine transform.
Since this is the case, one might ask why we did
not expand the interior difference function in trig-
onometric polynomials instead of using an inter-
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08—

0.4—

0.75 F
(k) = 0.693

i I I i I

0.8—
I05F '

(k) = 0.460

polating polynomial parametrization. The answer
is that, in general, it is not possible to construct
a trigonometric polynomial which simultaneously
satisfies the conditions (21a) and (21b), which we

felt to be important constraints. One would have
to give up the requirement that the interior dif-
ference function join smoothly onto the known ex-
terior difference function at ~=R.

Since the contribution of f, '(p, k) is generally
quite small, one expects that an idealized model
in which the interaction is simply cut off at r ='ft.„
should give rise to a half-shell T which contains
the essential features of the more realistic mod-
els which include an exterior potential. Setting
n, (k, r) = 0 when r &X„and taking g = 0 for simplic-
ity, we find the predictions of such a "Manx" mod-
el shown in Figs. 7(a)-7(c) along with those of a
previous calculation including an exterior poten-

tial. The two curves lie fairly close to one another,
showing that once the phase shift is fixed, the ex-
terior region is unimportant in determining the
behavior of the half-shell T.

C. Range of Variation of to(p, k; k )

It is clear from Fig. 5 that wide variations in
the behavior of t,(p, k; k'), even when p is near k,
are possible if g is left completely arbitrary. How-

ever, we find that when q&1, the model wave func-
tion develops two extra nodes in the interaction
region. If the interaction were strictly local, such
nodes would imply the existence of two bound
states at negative energy in the 'S, partial wave,
in contradiction to observation. Since the inter-
action is nonlocal, there is another possibility
which is not ruled out so simply. There may be
two "bound states in the continuum. " As Bolsterli"
has pointed out, the accidental degeneracy which
gives rise to bound states in the continuum is un-
physical. The slightest perturbation, such as the
coupling of the nucleons to the electromagnetic
field, will remove the degeneracy and change the
bound states in the continuum into narrow reso-
nances. In the absence of evidence for the occur-
rence of either bound states in the continuum or
narrow resonances in the two-nucleon 'S, state,
we exclude these possibilities and restrict g to
values less than +1.

04- LO 2.0 p, r

0

O

C).4—

-0.4

-0.8-

(a)

k=075F '

Sp(k) = 0.693

0.8—

04—

I 50F '

(k) = O.I36

. 4
Cl

. 8-

(b)

k= I.05F
Sp(k) = 0,460

-04—

FIG. 2. (a)-(c) Comparison of model wave function for
g=-0.55 (—) with RBC wave function (-—). The arrow
indicates the radius R =1.43 F, which separates the ex-
terior and interior regions.

k =l.50F
Sp(k) =O.I36

FIG. 3. (a)-(c) Model difference functions,
40(k, r), for g=-0.55.
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I.O

.0—

I.O

0

-1.0

(o)
=0.75 F

(k) =0.693

(b)
1.05 F

(k) = 0.460

When g is less than -1 we find that the maximum
amplitude of the wave function inside the interac-
tion region becomes greater than the amplitude of
the phase-shifted free wave function. The only
mechanism known to us which can cause such an
internal enhancement is some sort of resonance
"trapping" of the wave function. " Again, since
we know of no evidence for resonance effects of
this sort, we exclude them by restricting g to val-
ues greater than -1.

On the basis of these heuristic arguments, we
believe that q should be limited to values in the
range I@I & 1. Then the curves of Figs. 4(a)-4(c)
display the range of variation of f, (p, k) that is to
be expected given (1) the empirical phase shifts,
(2) the range of the two-nucleon interaction, (3)
the assumptions about the smoothness of the wave
function made in Sec. IV, (4) the suppression of
the wave function at short distances, and (5) that
no sharp resonances in the 'S, partial wave are
observed.

4.0

-4.0—

(c)
k=1.50 F

8 (k) = 0.136

I a I I I

\ I
/

/
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e Q
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e 0
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0.5—
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-0.5—
O. l—

0—
-0 I—

I 0—
0.5

0
-0.5

O. I

0
—O. I

I.O
0.5

0
—0.5
—

I 0
0.5—

0
-0.5—

k= 0.75 F

(b)

k= l.05F

(c)

k = l.50 F

i
I I I

I.O 2.0 3.0 4.0

FIG. 4. (a)-(c) Half-shell factors, f0(p,k), for g = -1
(—-), @=0 (—), and g=1 (---). The on-shell point,
p =k, is indicated by a vertical arrow. k is on the on-
shell momentum. Note scale change in (c).

p(F ')

FIG. -5. (a)-(c) The contributions of the parametric
term f$ (p, k) (for q =-11, and of the exterior f 0"'(p,k ),
to the half-shell factor. Note differences in scale.
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FIG. 6. (a)-(c) Half-shell factors for g=0 (-—), and
q =-0.55 (—) compared with that of the RSC (—-).
Note differences in scale.

FIG. 7. (a)-{c)Half-shell factors of the Manx model
(-—) compared with those of the q =0 model including ex-
terior contributions (—). Note differences in scale.
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VI. SUMMARY AND OUTLOOK

For the 'S, partial wave, we have given a meth-
od for extending an empirical on-shell T matrix
half off the energy shell which is both more direct
and computationally much simpler than the usual
procedure based on potential models. It enabled
us to make optimal use of the available informa-
tion about the two-nucleon wave function in coordi-
nate space. Supplementing this with a few plausi-
ble physical assumptions, we constructed models
of the half-shell T and from them estimated the
range of variation of the half-shell T. Although
our assumptions seem quite reasonable, they are
by no means necessary, and the effects of lifting
one or more of them may be easily investigated
using our approach.

At the energies considered, we found that once
the phase-shift is fixed, the half-shell T matrix is
rather insensitive to the local exterior interaction.
In fact, the main characteristics of the half-shell
T generated from a typical potential model are re-
produced by an extremely simple "Manx" model.
This model idealizes the two-nucleon interaction
by assuming that: (1) It is zero for r )s.,; (2) it
suppresses the wave function at short distances;
and (3) it gives rise to a wave function which is
as smooth as possible, subject to the constraints
imposed by assumptions (1) and (2).

The extension of our method to higher uncoupled
partial waves with no bound states is straight-
forward, as indicated in Appendix A. Coupled
partial waves introduce no complications of prin-
ciple. The generalization needed to account for
the bound state in the 'S, +'D, wave can probably
be achieved by assuming a wave function for the
bound state (which should be fitted to the deuteron
data) and then requiring that the model scattering
wave functions be orthogonal to it.

We have not required that our model wave func-
tions form a complete orthonormal set. Given
that our underlying assumptions are valid only at
nonrelativistic energies, completeness seems a
moot point; the two-particle scattering wave func-
tions of the real two-nucleon system do not form
a complete set when relativity and additional de-
grees of freedom are taken into account. Even

within the framework of nonrelativistic potential
theory, there are potentials, notably hard-core
potentials, whose wave functions are obviously in-
complete. Yet their predictions for the half-shell
T are strikingly close to those of potentials for
which completeness holds. " Our model wave func-
tions are already quite circumscribed and we do
not expect any qualitative changes in our results
if they are orthogonalized. If one wishes to inves-
tigate the additional constraints imposed by com-
pleteness and orthogonality, it is a straightforward
matter to do so by using our results to make mod-
els of the symmetric part of the half-shell T,
which is the basic input of the BGMS procedure,
and then calculating the antisymmetric part ac-
cording to the BGMS prescription. Since new con-
straints are introduced, the resulting half-shell
T's should show an even smaller range of varia-
tion than those we obtained.

There remains the problem of going from our
results to models of fully off-shell T's. Because
the Low equation relies on the completeness and

orthogonality of the scattering wave functions, the
usual method' for going from the half-shell T to
the fully off-shell T does not apply here. This
difficulty is also encountered with hard-core poten-
tials. However, there is a representation which

gives the fully off-shell T in terms of the half-
shell T and the spherical Bessel transform of an
off-shell difference function. It is this relation
that is used for hard-core potentials. " Using the
ideas of this paper, it should be possible to con-
struct models of the off-shell difference function.

Perhaps the most important advantage of our
method is that, in contrast to the time-honored
potential-model approach, the criteria for its
validity are expressed in clear physical terms.
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APPENDIX A. FORMULAS FOR I)0

The equations given below generalize to uncoupled partial waves of orbital angular momentum L) 0 the
correspondingly numbered equations for I =0 appearing in the body of the paper, i.e., Eq. (1A) is the tran-
scription of Eq. (1), etc. As before, it is assumed that there are no bound states:

+ k — g,'i(k, r) =
Jt U, (r, r')g,+ (k, r')r"dr',1 d d I(I+1) (,)

0
(1A)
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(t(,
' (k r) — (kr) 'e' ( sin[kr+5, (k) ——,'lw]

p~00
(1'A)

t, (p, k; k2) = dr r'j, (pr) U, (r, r ')(t(,
' (k, r')r "dr ',

0 0

t, (k)=-k 'e' ( sin6, (k),

t (p k k')= drr j (pr) ——r —+k — (t(,'(k, r),1 d d l(l+1) ()
y'

v, (kr) = e'~(("~ [cosh((k)j, (kr) + sin5, (k)n, (kr)],

n, (k, r) =kre '~ t'(![ t'(~((k, r) —v, (kr)],

u((pr) = pr j((pr),
1 oo

e ((k;k)=, e (k)(— ~ (Pk) '(k —P )e' 'i') e,(Pe(k, (k, ),
0

n, (k, r) = —sin6, (k) km, (kr) = -(2l —1)!!(kr) ' sin6, (k) .

(2A)

(2 "A)

(3A)

(4A)

(6A)

(8A)

(9A)

Note that, since u, (pr) „,(pr)" ', the integrand on the right-hand side of Eq. (8A) is regular despite the
singularity of A, (kp r} at r = 0 displayed in (9A).

y, (kr) = km, (kr)
7

w, (k, r) =e ' 'u kr(!(,'(k, r)

w, (k, r) = A((k, r) + cos5, (k)u, (kr) + sin5, (k)y, (kr),

g, (k; r, r') = y, (kr)u, (kr') —u, (kr)y, (kr'),

U, (r, r') =N, (r, r')+ 5(r —r')L((r)/rr',

(14A)

(16A)

(» "A)

(18A)

!L,(r) i
» dr'r"!N, (r p

r')
( p

r )R, ,
0

n( (kr) =AIoi(kpr)+ — dr'g, (k; r, r')L, (r')tk, (k, r')1

0

1
AIDE(k, r) =— dr'g, (k; r, r ')L, (r'}[cos5((k)u, (kr')+ sin5, (k)y, (kr')]

r

r)R

(18 'A)

(19A)

Because n, (k, r) is singular at the origin, it cannot be represented by a polynomial in the interior region.
Instead, one can find a polynomial representation of the wave function w, (k, r) and obtain tk, (k, r) from it by
means of Eq. (16A). One writes

w, (k, r) =P, (k, r), 0 (r (R, ,

and finds

P, (k, r) = P„(k, r) + qr'(r —R)'

from the conditions

P, (k, R,)=w( '(k, R, )

P, '(k, R, ) =w( "(k,R,) obtained from the solution of Eq. (19A)

P, "(k,R,)=w, '"(k, R, )

(21aA)

P, (k, 0) = 0

P , '(k, 0) =w('(k, 0)
free parameters .

P, "(k, 0) = w ( "(k, 0)

(21bA)
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w P'(k, r) is obtained by adding cos5, (k)u, (kr)+ sin5, (k)y, (kr) to the solution of Eq. (19A). The rest of the
analysis proceeds as before.

APPENDIX B. CONVERGENCE OF THE ITERATION OF EQ. (19)
FOR THE KALLIO-KOLLTVEIT POTENTIAL

The 'Sp potential of Kallio and Kolltveit" in MeV is

-330.8e &" ' r~ c,y««(
+ 00 r&c,

where

e =0.4 F, y =2.4021 F-'.

The exterior potential corresponding to Eq. (1B) is

L «(r)=-ge "", r&%, ,

with

g=330.8e&' MeV.

(1B)

(1'B)

(2B)

(2'B)

As shown in Fig. 8, in the region ii, &r & 2K„ the exterior potential given by Eq. (2B) resembles quite
closely the RSC exterior potential used in our calculations. For ~ &2%.„, both potentials are small and, as
may be seen from Fig. 3, the difference function is negligible. It therefore seems reasonable to expect
that a study of the convergence of the iterative solution of Eq. (19) using (2B) as the exterior potential
should indicate the rate of convergence which obtains when the RSC exterior potential is used.

Let f(k, r) denote the solution of the Schr5dinger equation which goes as

f(k, r) — e-"". (3B)

For the potential (2B) it is easily shown" that

e-7 2e-2yr
f(k, r)=e ' " 1- . +

y(y+ 2ik) y(2y)(y+ 2ik)(2y+ 2ik) (4aB)

I' 1+ J2,~( (4bB}

Here 1 (z) is the I' function and J„ is a Bessel function of order v. The regular solution w, (k, r) which
approaches sin[kr+ 5,(k)] for large r may be written in terms of f(k, r) as

wo(k, r) = (2i) '[e'~i'~f(-k, r) —e 'Da~f(k, r)] (5aB)

wo(k, r) =Im[e' o ~f(-k, r)].
Then

ao(k, r) =wo(k, r) —sin[kr+ 5,(k)]

is

(5bB)

h, (k, r) = Q 2,"'(k, r)
n=P

with

(6aB)

~"'(k, r) =1m e'"&"e""
y(y —2ik} (6bB}
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2 -2y' r
r =Im e'~" e""

y(2y)(y —2ik)(2y —2ik) (6cB)

( )n+ ie-(n+ 1)g r
i)(n) (k r) lm e i 60(k) e ikr

y(2y) [(n+ 1)y](y —2ik)(2y —2ik) [(n+ 1)y —2ik]
(6dB)

More explicitly, we have

60 (k, r) =—, , (2k cos[kr+60(k)]+y sin[kr+60(k)]jr(r'+ 4k' (7aB)

&0 (k, r) = »», (3ky cos[kr+ 60(k)]+ (y —2k ) sin[kr+ 60(k)]).4y'(y'+4k' y'+ k' (7bB)

Setting r =R =1.43 F, we find the following values:

0.75
1.05
1,50

i)( )(k, R)

-0.079
-0.045
-0.001

~"'(k, R)

+0.001
+0.0002
+0.000 01

It is clear from E(l. (6dB} that h, )(k, R} and
higher terms will be extremely small and that con-
siderable cancellation among these contributions
will occur, Since the above values show that
6,' (k, R) already is negligible, it is apparent that
60(k, R}=600(k, R} is an excellent approximation
for the Kallio-Kolltveit exterior potential.

-20—

-30—

FIG. 8. Comparison of the Kallio-Kolltveit (KK) exte-
rior potential (---) with the RSC exterior potential (—).
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The bound state of three n particles is considered. For the n-cluster model, we consider
the Coulomb Green's function in the nucleus C. The calculated binding energy of the C nu-
cleus is consistent with previous calculations.

I. INTRODUCTION

The n-cluster model consists of taking the nu-

cleus to be composed of n clusters as elementary
constituents, in view of the strong binding of an n
cluster. Therefore, we consider the ' C nucleus,
on the basis of the n-cluster model, as three
bound e particles. The aim of this work is to
study the three-body system when all of these par-
ticles are charged. We consider two approxima-
tions for the Coulomb Green's functions. The
first, suggested by Schulman, ' yields an approxi-
mate form of the Coulomb Green's function in
momentum space. The other is the improved ver-
sion of the Schulman approximation based on the
Yamaguchi' potential. This will be discussed in
Sec. II.

In Sec. III we introduced the Faddeev' equations
which are modified to include the Coulomb poten-
tial between the three n particles. Neglecting the
internal construction of the a cluster, we take the
two-n-cluster short-range interaction to be of the
separable form

II. COULOMB GREEN'S FUNCTION

Taking the momenta of the three u particles in
the c.m. system to be p„p„and p„ the relative
momenta of the pairs (2, 3), (3, 1), and (1, 2) will
be given by

q, -=q„=-,'(p, -p, ), etc.

The total Hamiltonian K is given by

K =HO+ U+ V, (2)

where U is the sum of the two-body Coulomb po-
tential; V is the sum of the short-range nuclear
interactions; and the kinetic energy, in the c.m.
system, is given by

with z(q) =(p'+q') '. Thus, the aim of this paper
is to calculate the binding energy of "C in the
three-n-cluster model in the framework of the
Faddeev formalism.

The results for the different approximations in-
troduced are compared with previous results in
Sec. IV.

(q Ivlq) =~~(q )~(q), ff, =p, '/2M + q, '/2 (3)


