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Proton form factors for isobaric analog resonances populated directly as residual states in
(d, n) and {~He,d) reactions are discussed and computed explicitly using a Lane-model Hamil-
tonian and the formalism of Feshbach's unified reaction theory. The resonance form factors
thus obtained are compared in specific cases with equivalent parent bound-state form factors
and with single-particle resonance wave f'unctions. Numerical results and tests using data
are presented for Mo(d, n) ~Tc, and it is shown that resonance form factors lead to a dra-
matic enhancement of the magnitude of the calculated cross section for some transitions,
compared with calculations using conventional form factors. Such enhancements are consis-
tent with the available data.

I. INTRODUCTION

Reactions populating residual nuclear states un-
bound to particle emission are attractive from
both experimental and theoretical viewpoints, and
a large number of investigations have been con-
cerned with such reactions. A theoretical study
of direct reactions populating single-particle res-
onances with widths of ~100 keV has been made by
Levin. ' Later work by Bunakov, ' and Vincent and
Fortune' has dealt with the problems raised by the
slow numerical convergence of the distorted-wave
Born-approximation (DWBA) transition amplitude
when the usual bound-state form factor is replaced
by a single-particle resonance continuum form
factor. Huby' has discussed possible approxima-
tions for stripping reactions to "pseudo-bound"
states, i.e. , states unbound by a few hundred keV.

Interest has been spurred recently in such anal-
yses, by the increasing availability of data, "par-
ticularly for population by direct proton transfer
reactions of isobaric analog resonances (IAR) in
medium to heavy nuclei. ' ' However, analysis of
direct reactions populating IAR involves certain
problems which have received little attention in
the literature to date.

Although nuclear forces are charge-independent
to a very good approximation, the total nuclear
Hamiltonian contains the Coulomb potential ener-
gy and various charge-dependent effective nuclear
interactions. If one is interested in the wave func-
tions of various members of an isobaric multiplet,
such isospin-violating terms in the Hamiltonian
cannot be ignored. Use of the isospin raising and
lowering operators T, to connect members of an
isobaric multiplet implies the space part of their
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state functions to be identical.
Thus if 4 „ is the state function of a bound neu-

tron in a medium to heavy nucleus, the state func-
tion of its ideal isobaric analog is

Xp =T (@.),
which we shall call approximation (A). In fact the
actual analog resonance wave function X~ has ap-
proximately the same radial shape as 4 „only in
the nuclear interior. Since 4„ is bound while y~
is a continuum state, the approximation Xp Xp

begins to break down in precisely the most criti-
cal region for a direct reaction, the nuclear sur-
face region.

Such difficulties have already been encountered
in analysis of ('He, d) and (d, n) reaction data for
IAR in the mass-90 region, ' ' where if approx-
imation (A) is used, anomalous enhancements of
3 to 5 in the experimental cross sections for l =2
transitions over the DWBA cross sections are
reported. '

A simple alternate approach is to use as a form
factor a continuum wave function for a Woods-
Saxon potential adjusted to have a resonance at the
observed energy of the IAR. However, such a
form factor does not in general satisfy approxima-
tion (A) in the nuclear interior, except accidental-
ly. In the potential resonance approach such de-
partures from 4 „within the nucleus are arbitrary
and parameter-sensitive. However, such depar-
tures are dependent, in a theory of IAR, on iso-
spin mixing, for example, and thus have consid-
erable significance. Moreover, if there is an an-
gular momentum mismatch, calculations involv-
ing potential resonance form factors may not be
very reliable. ""Finally, the normalization of
such a form factor is ambiguous.

In what follows, we show how to calculate the
wave function of an IAR in Lane's model"" using
Feshbach's unified theory of reactions. " Such an
approach is more useful than solving the Lane cou-
pled equations directly, since we are interested
in the explicit energy dependence of the solution,
as well as generalizations to include effects aris=
ing from mixing of the analog state with surround-
ing T& states, and from other modes of decay of
the IAR."

We find that the calculated resonance wave func-
tion differs significantly from the parent neutron
state function, and present numerical results for
'Mo(d, n)Tc" to the 2, —,', and —,

' IAR.

II. WAVE FUNCTION OF THE ISOBARIC
ANALOG RESONANCE

We are interested in obtaining the wave function
of the resonance state, populated by a proton

transfer reaction. This calculation is performed
using Lane's model. " Subsequently, we will dis-
cuss the domain of applicability of this calculation
and possible generalizations. The Hamiltonian
appropriate to Lane's model may be written as

H =Hc+(—,+t3)K„+(2 —t~)K~+Uo

+ (t T) V, + (-,' —t,) Vc,

where

Hc =
I C&Ec(c I

+ IA&E„&A I
.

Here I C) and IA& represent the nuclear ground
state and its analog, respectively, of the target
nucleus, left behind after the proton decay of the
IAR. Similarly E~ and E„are the respective en-
ergy eigenvalues of the two states. The isospin
operators for the extra nucleon and the core (tar-
get) nucleus are denoted by t and T, respectively.
The charge-exchange potential, the main term of
the optical potential, and the Coulomb potential
are denoted, respectively, by Vy Uo and V~.
Finally, K„and K~ are the kinetic energy opera-
tors for the neutron and proton, respectively.

To proceed we define two projection operators,

& =Jt I Pc& I y, &
«'& y, I & pc I, (3)

and

(Ec +Kq+Uo —~ToV, + Vc —A —e)P, =0;

(Ec +Kq+Uo —~TOV, + Vc —A Ep")4q' =0—,

(t =1~ 2~

(5)

[E„+K„+U +-', o(T, —1)V, E„]4„=0;-
(y, ly, ,)=6(e-e'), and(e„lC„&=1.

(7)

(6)

Equations (5) and (6) are recognized as the optical-
model equations for the scattering and bound states
of the proton. The quantity 4 denotes an addition-
al potential that effectively deepens the total po-
tential for the protons. " The motivation for this
term is as follows: If one deletes the term b,
Eqs. (5) and (7) are the homogeneous equations
obtained from the corresponding coupled Lane
equations by dropping the coupling. It is, how-
ever, often not noticed that with a realistic choice
of optical-model parameters this equation dis-

q =-
I pc& g I+I,")(c,"l(pc I

+ Inc&14„&&c„l&nA I.

(4)

The kets
I pc& and

I nA& stand for the products of
the isospin kets for the extra nucleon and the core
nucleus. The functions P„4~', and 4„satisfy the
following equations:
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plays in general a very narrow single-particle res-
onance far below the Coulomb barrier. This res-
onance is caused by the proton state which has the
same number of nodes and total angular momen-
tum as the neutron orbit of the parent analog state
(nC), formed by adding a neutron to the core nu-
cleus. The occurrence of this proton state in the
continuum renders the proton continuum manifest-
ly nonorthogonal to the isobaric analog state, if
the latter is defined as the state obtained by oper-
ating upon the parent analog state with the isospin-
lowering operator T .

%'e avoid the complications arising from this
nonorthogonality by choosing b such that the sharp
single-proton resonance is moved to negative en-
ergy. The few normalized bound states defined
by Eq. (6), and the continuum eigenstates of Eq.
(5), subjected to the conditions (8), now define a
complete, orthonormal set of single-proton states.
It now follows that

neutron state C„, and the proton state with the
same radial (and angular momentum) quantum
numbers C~(" are large. Finally the matrix ele-
ments connecting neutron and proton functions
with a different number of nodes are small. The
function C~" depends upon the arbitrarily chosen
potential 4; however, for values of b, lying in the
neighborhood of the minimum value of ~ capable
of moving the single-proton resonance to negative
energy, the functions 4~" and C„have essentially
the same radial dependence.

The solutions of Eq. (14}and the corresponding
eigenvalues have some expected properties. Two
eigenvalues E, and E, lie close to the energy of
the IAR and the proton single-particle resonance,
respectively. Numerical calculations performed
for the IAR in "Tc show that the corresponding
normalized solutions are very well approximated
by

PQ =QP=O. (9) (,—=
(2 )„,[~PC)C,'"+42T, ~nA)4„],

p + (15)

In the spirit of the shell-model approach, we now
seek an expansion of the solution of Lane's model
in terms of the functions $„4~", and the single
function C „discussed above. Thus we write

and

(16)

P+(-) =g(-)+
( ) PHQ

and

X
1

QHP$' '
E —QHQ —QHP[E' ' —PHP] 'PHQ

(11)

Qg(-) 1 ( ~)

E —QHQ —QHP[E' ' —PHP] 'PHQ

(12)

O'E =E%~+QC ~.
The Schrodinger equation corresponding to the
Hamiltonian in (1) is readily solved. One obtains"

The approximation involves dropping the small
components of the eigenvector due to admixtures
of proton wave functions with a lesser number of
nodes. The expressions used to approximate (y
and (, have been derived by several authors using
schematic models. A particularly clear deriva-
tion is found in Robson. " For obvious reasons we
shall also denote &, and f, by () and &(, respec-
tively. " Likewise we shall occasionally write E)
and E& for E, and E,. The other eigenvectors in-
volve almost exclusively linear combinations of
proton functions with a lesser number of nodes.
The set of eigenvectors(g J constitutes a basis for
the space on which Q projects. Next, we consider
the solutions of the eigenvalue equation

where (' ' is a solution of

(E' ' —PHP)$' ' =0. (13) g~ —QHQ —QHP ( ) PKQ
1

(17)

To proceed further, we consider the eigenvalue
problem,

(E; —QHQ)g( = 0, (i = 1, 2, . . . , N+ 1) . (14)

This amounts to the diagonalization of H on the
bound states 4~" and C„. The matrix QHQ has a
very simple structure, since the matrix elements
connecting the bound proton states involve only the
potential h. The off-diagonal elements of this part
of the matrix are very much smaller than diagonal
ones, since the proton functions are mutually or-
thogonal, and we can take 6 to have a volume
shape like Uo. The matrix elements involving the

a~@„ (18)

and seek the coefficients a„, such that Eq. (17}is
satisfied. The matrix corresponding to the Eq.
(17) is complex and symmetric (and thus non-
Hermitian). In addition to =„, we introduce the
adjoint - „as the solution to

8 „* —QHQ —QHP (,) PHQ q= 0 . (19-)

These solutions are needed to obtain a bilinear ex-
pansion of the inverse operator in Eqs. (11) and
(12). It is convenient to write
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In terms of these solutions, we obtain

~(-) ](-) I P~q~ I:"„&&:-„IQff Pl (' '&

jl P

(20)

are valid:

0

(22)
and

q~&-) ~ I=-„&&=-„IQ»l(' '&
(21)g

V
jf

In Eqs. (20) and (21) we now approximate ~:-„& and

~ =„) by it„& and observe that only ir„& and ir. )
give significant contributions. Numerical calcula-
tions show that this is a very good approximation.
One can easily show that the following relations

(~, laHPI&'-')=(»,',) Ql"I~IV')-=(, , )
(23)

In Eqs. (22) and (23), we have introduced the com-
plex quantities I & and I & for convenience. Ex-
panding Green's function (E' ' —PHP) ' in Eqs.
(20) a.nd (21), and using Eq. (10), we write the
solution finally as

( ) ( ) (r(/2v)'"'=' 'E E; i(r-, /2)

(r)/»)"'
E —E,' —f(r, /2)

'"
I' Ig', '&&)', '1~14~A"&«

(24)

The solution demonstrates the occurrence of two
resonances, which are readily recognized as the
T& and T& analog resonances; the resonance en-
ergies E& and E& are shifted somewhat from the
QHQ eigenvalues E& and E& by the usual shifts,
but this is a minor point. The original single-pro-
ton resonance occurring close to the energy E,
has now been aplit up. A fraction [2T, i(2T, +1)]'"
is contained in the T& resonance and a small frac-
tion (2T, + 1} 'i' is contained in the T) IAR.

The splitting of the (nA) configuration between
the two resonances is also evident. Finally, it is
clear from Eq. (13) that the function $' ' will not
display any resonances in the energy region of in-
terest. We now project out the proton configura-
tion of 4' '.

A comparison with the work of Garside and Mac-
Donald" shows that if 2T, » 1, the first two terms
of Eq. (24}, after projection, reconstruct the solu-
tion of Eq. (5) with A =0. We denote this solution
by X~'. In other words, X~' is the ordinary optical-
model scattering solution for the proton channel.
Thus,

( ) ( ) (r)/2v)"' 1
I z&=xE E EI f(r /2}(2T +I)1/2

&pCI t' &&g' I~IC,'"&de
X 4p+ (-)E —e

(25)
Equation (25) shows that the proton component of
the IAR is a superposition of the ordinary optical-
model wave function and a contribution that reso-
nates at E)." Equation (25} displays several im-
portant features on which comment is required:

(1) The ratio of the resonance contribution to the

4s u»(r) i pC) + b(E)u„(r) i nC&, ——

where

(26)

ups�(r)

=
Jt as(e }y, de (27)

usual optical-model continuum function is depen-
dent on T,. As T, becomes large the resonance
contribution becomes insignificant, whereas y~'
is still the unattenuated optical-model amplitude.

(2) The second term in square brackets de-
scribes the coupling of a fragment of the bound-
state 4~" to the continuum $' ', due to the "deepen-
ing-potential" h. The fragment in question is con-
tained in (&. The charge-exchange potential is re-
sponsible for the fragmentation, which leaves be-
hind a fairly good single-particle resonance at E&.

An approximation to Eq. (25) in which a proton
continuum wave function is made to resonate at
E& by adjustment of the parameters of a Woods-
Saxon potential, and then the entire wave function
is divided by (2T, +1)"', is clearly inadequate in
most cases. Only for IAR well below the Coulomb
barrier, with moderate values of T„would good
agreement between the two methods be expected.
Equations (24) and (25) elucidate the Lane model,
and provide explicit expressions for the solutions
of interest to us. These expressions, however,
require a knowledge of the continuum functions
$', ', which are solutions of (13). Computer codes
for solving Eq. (13) are not in widespread use;
therefore, from a practical point of view, it is
desirable to use a different technique, "being guid-
ed by the results and insights obtained above.

The above solution suggests that we try a solu-
tion to H with the ansatz,
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and

&0, 14, ) =5(~ —~') (28)

The neutron component, however, satisfies the
normalization

&u„lug = 2TO/(2TQ+ 1) . (28)

In addition, (P, and u„satisfy (5) and (8), respec-
tively, with 4 =0. Following now a procedure
similar to the one employed earlier, ' '' we can
straightforwardly solve for b(Z} and a(e) to get

+4' 'I pc).
Here we have defined

u„lnA) +
J

'( )' lpC)

(30)

V,*=(u.ld-,'T, V, I4, '), r =r =2vlV, I' (31)

(32)

Here y denotes the width of the single-particle
resonance. We also observe that

The resonance energy of the IAR is denoted by 8„.
In evaluating the integral in (30) one must realize
that both (t), and V, display a very strong energy
dependence due to the proton single-particle reso-
nance at an energy which we denote by E, . This
energy is far below the Coulomb barrier and the
width of the single-particle resonance is extreme-
ly small (for the cases for which we perform nu-
merical calculations, the width is of the order of
electron volts or less). In a small neighborhood
surrounding the energy E, , we may write

(r/»}'I'
pE n [(z z )2 +r2/4]1/2

tion using Eq. (34). It is clear from the form of
this result that we have a nonresonant contribu-
tion due to |II)'E' which varies smoothly with the en-
ergy of the emitted proton, and a resonance con-
tribution which gives rise to a peak in the observed
cross section at the proton energy 8„. If the two
amplitudes are of comparable magnitude, we ex-
pect interference terms to be important.

The discrete neutron groups observed in a (d, n)
reaction to IAR in intermediate to heavy nuclei sit
on a "background" which is, at least in large part,
a neutron continuum from (d, np) breakup. Since
this "background" is simply subtracted away in
reducing the (d, n) data, the theoretical quantity
corresponding to the measured cross section is
the difference between the cross section

dQ dQ dE

computed with Eq. (35) as the form factor, and the
three-body breakup cross section computed with
(t)'E' only as the form factor. Here b is the exper-
imental width of the neutron group which is
summed over. Similar comments apply to the
available ('He, d} data. We would like to choose
cases for analysis in which the resonant contribu-
tion to Eq. (35} is predominant, so that we can
avoid the full complexity of a three-body breakup
calculation and use the ordinary DWBA insofar as
is possible. The data' ' indicate that for many
transitions the resonance amplitude dominates.
In view of this, we approximate Eq. (34) by delet-
ing the last term in the square bracket; thus,

x, '= (pc I
4" ')-

Using Eqs. (32), (33), and (30) we get

(33) V~
z —8„-fr/2

(36)

E-&~ (-) (34)

or

s' Z-8 —r/2 (2T +1)"' "

+P' I

'-' +g~V y' ' +y' '.
E ~ E E E

(35)

In (34) and (35), P' indicates that in evaluating the
principal value integral the contributions from the
proton single-particle resonance are to be deleted.

Equation (35) again shows that the proton wave
function of the IAR consists of a superposition of
the normal optical-model solution and a resonat-
inI. contribution. In the next section, we calculate
the DWBA amplitude for the proton stripping reac-

III. DWBA CROSS SECTION

d o M„qs„M~„MB 2Js+I
do'„de m'I k~'k~k„A 2J„+1

x Z IZc, p...'"I',
/mmmm~ 1s

using the notation of Bunakov' and Satchler. "
P$ Q'"~ contains the radial overlap integral"

Ak„r x(~(r)
JLgJ~ Lg lg ~L (k,r)dr,

LN ~u

(37)

(38)

We write the cross section for an A(d, n}B*reac-
tion to the continuum states of B* within dE~ of E~,
when the neutron is observed in the solid angle ele-
ment dQ„, and the decaying proton is not detected,
as '
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where X»(kr) is the L, Jth radial partial wave cor-
responding to X"'(k, r). For stripping to the con-
tinuum, X,+(r) is assumed in Eq. (37) to carry the
usual factor (4w/k~r). In fact, in Eqs. (34) and (35),
we choose the continuum energy normalization so
that Eq. (38) must be multiplied by (k~/vE~) "'.
Thus Eq. (37) becomes

d c M„~~„B 2Je+1
dQ„dEp 2' k~ k„A 2 J„+1

~ Z IZC...II...'"I (39)
fma ~ ts

which is identical in form to the usual DWBA
cross section. " Since we deal with cases in
which a single sharp resonance dominates the pro-
ton continuum, the sums on j, L, and s can be
omitted.

Many writers have discussed the poor conver-
gence of the overlap integral, Eq. (38), when

y„z(r) is a continuum function. The standard
method of evaluating Eq. (38) under such condi-
tions was suggested by Huby and Nines" and has
been widely used. Studies of the validity of the
approach have been made by Berggren" and by
Vincent. " One simply inserts a convergence fac-

-Sr2tor, e ' or e 8', into Eq. (38}and extrapolates
to a or P =0. Such weight functions have also
been used to "normalize" continuum form fac-

20, 22

Alternate approaches have been discussed by
Bunakov'" and by Vincent and Fortune. ' The gen-

X„,(r) =(2T, +1) "'4„(r)+P'
A

(42)

eral validity of the "surface integral" method of
Bunakov is difficult to establish without extensive
numerical tests, but so far" it does not appear
necessarily more stable than the Huby-Mines
method. The contour -integration approach of
Vincent and Fortune has been applied mainly to
(d, p) and (d, n) for light targets, ' but is clearly
generally useful. We adopt the Huby-Mines pro-
cedure, for simplicity only.

The procedure of Huby and Mines has one fur-
ther advantage beyond simplicity, namely that the
stability and reliability of the result is simple to
study by variation of n, the DWBA outer cutoff
radius R„and the number of partial waves. We
find that the procedure works well for the narrow
resonances considered here for the (d, n) case at
12-MeV incident deuteron energy. '

As X,z(r) in Eq. (38), we use Eq. (36). After
integration of the cross section over a proton en-
ergy interval »I', we obtain to a good approxima-
tion

22dc „eM~~ B J~+ 1
d0„2' k„k„A 2 J„+1

(40)

where P depends upon

fL 1 Ig J =Jtu„~„B" XI j(+)XI.
(41)

with

IO

IO

IO
'

lul .,
IOt'

10

IO'

IO

I I I I I I I I I I I I I I I S S I S i S

50 IO.O I50 20.0 25.0
r(fermia)

FIG. 1. Comparison of parent bound-state (93Mo,
dashed line) and IAR (93Tc+, solid line) form factors for
the 2dsy2 and 3s&y2 states. The parent bound-state func-
tions were computed by the separation-energy procedure
in a Woods-Saxon potential with parameters ro =1.24 fm,
Qp =0,65 fm V&0 = 6,25 MeV. The resonance form factors
were computed from Eq. (42) using the same parameters,
with Vi =1.34 MeV.

It is instructive to compare X,& to the approxima-
tion X~ = X~". This is done in Fig. 1 for the d„, and

1/2 IAR in Tc".
We stress that Eq. (40) is the cross section for

population of the IAR, assuming that the neutron
peak in the time-of-Qight spectrum is summed
conventionally (i.e. , we have integrated over the
energy spread due to population of an IAR rather
than a particle-bound state} Becau.se in "Tc"we
deal with a case in which the elastic or proton
channel is the only significant mode of decay, the
spreading of the IAR due to mixing with its sur-
rounding T& continuum will not affect the energy-
integrated cross sections considered here.

One may well be interested experimentally and
theoretically in the precise line shape of the (d, n)
neutron group. In such a case it is necessary to
do a detailed calculation of

d 0'

d A„dApdE„

Such a calculation will require careful treatment
of the spreading of the IAR into the T& states. In-
clusion of such effects in the framework of an ap-
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l OO

lO'

lOo

M FACTOR

RM FACTOR

lOo

used to compute the resonance form factor, since
the usual spectroscopic amplitude (S»)"' is car-
ried by 4„(r), which appears in every term of
Eq. (42). Thus, not only does Eq. (40) have the
same form as the usual DWBA cross section, but

C„&—-S»"'D, has the same meaning as for ordi-
nary (d, n) reactions. We take the zero-range fac-
tor D,' 1 48&&10 MeV'fm' in the calculations re-
ported here.

IV. NUMERICAL RESULTS

E

bP

-Ilo

lOO

l
0- I

r lrr
l 00—

lO-'
3/2

l
0-)

20 40 60 80 100 l20 l40 I60
I I I
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proach to IAR similar in spirit to ours, but more
general, has been discussed by Bledsoe and Ta-
mura. "

Finally we point out that no qualitative argu-
ments' are required to define a spectroscopic fac-
tor when the shell-model theory of reactions is

c. m. A~ALE (deg. )

FIG. 2. Comparison of DWBA angular distributions for
Mo(d, n)~ Tc at E„=12MeV, leading to the d&y&, s&y&,

and d3y2 IAR. The dashed line shows the usual DWBA
cross section using as form factor approximation (A).
The solid line shows the cross section using Eq. (42)
and the Huby-Mines convergence procedure. Optical pa-
rarneters are given in the text. On the right, the angular
distributions are compared with the data of Ref. 8. The
d&&2 spectroscopic factor is 0.87.

Our example is "Mo(d, n) 'Tc" populating the
d, &, IAR at 8.40 MeV, the s», IAR at 9.33 MeV,
and the d», IAR at 9.91 MeV in "Tc. The partial
proton and total widths of these resonances, which
occur at laboratory proton energies of 4.36, 5.31,
and 5.89 MeV are, respectively, -1 keV, -20 keV;
12 keV, 41 keV; 3 keV, 27 keV." The spectro-
scopic factors of the parent neutron states from
(d, P) are 0.84, 0.64, and 0.50."

In Fig. 1, we compare the proton form factors
computed using Eq. (36) with the corresponding
bound-neutron functions of the parent states in
"Mo, for d, &, and s„,. It is seen that the form
factors agree quite well within the nuclear inte-
rior, but become appreciably different beyond the
nuclear surface. Since it is the surface region
which makes the predominant contribution to the
DWBA amplitude in general, a difference in the
detailed shape and magnitude of the cross section
is expected. At large distances, 30-40 F, the
bound-state form factor becomes negligible, while
the resonance form factor oscillates with a small
(10 ') amplitude, relative to its interior values.

A convergence function e " was used with the
minimum value of o in the extrapolation to n =0
taken as o. & 10/R, fm ', where R, is the outer
cutoff radius. R, was varied from 40 to 100 fm
to test the stability of the extrapolated result.
The cross section for the two l =2 transitions was
constant to within a few percent during all varia-
tions.

In Fig. 2 are shown the results of the calcula-

TABLE I. Mo(d, n)~ Tc theoretical and experimental cross sections (in mb/sr) at 25' lab.

Method
(der/d 0)

S =1 S =S~p
(der/dQ)~ b

S=1 S=S&& (do/dQ)spR c (der/dg)

d5]2, 4.32 MeV

(Sqp =0.84)

s&&&, 5.25 MeV

(S„,= 0.64)

d3g2, 5.83 MeV

(S~p =0.50)

L
NL

L
NL

L
NL

0.469
0.351

0.136
0.076

0.213
0.166

0.393
0.294

0.087
0.048

0.106
0.083

1.895
1.867

0.219
0.256

1.131
1.139

1.591
1.568

0.140
0.163

0.565
0.569

2.20

0.130

0.750

1.3 +0.2

0.12 + 0.04

0.32 + 0.05

'Using approximation (A) .
Using Eq. (42).

'Calculations of Ref. 10.
See Ref. 8; and J. Horton, private communication.
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TABLE II. Mo(d, n)~'Tc" theoretical and experimental cross sections (in mb/sr) at 15' lab.

Method
(do /dQ)~

S =1 S =S~p

(do/dQ)~ b

S =1 S =Stfp (der/dQ)Exp c

d5~2, 4.32 MeV
(S„=0.84)

s,f~, 5.25 MeV

(S~p = 0.64)

d3)2, 5.83 MeV

(S~p =0.50)

L
NL

L
NL

L
NL

0.545
0.408

0.459
0.287

0.237
0.197

0.457
0.342

0.239
0 ~ 183

0.118
0.098

2 ~ 720
2.662

0.665
0.525

1.664
1.708

2.283
2.236

0.425
0.336

0.832
0.854

2.3 +0.2

0.14 + 0.04

0.48 +0.05

'Using approximation (A).
bUsing Eg. (42).

cSee Ref. 8; and J. Horton, private communication.

tions. The dashed line is the angular distribution
for each transition, with a bound- state form fac-
tor (2T, + 1) "'4„(y), as in approximation (A).
The solid line is the angular distribution computed
using Eq. (42). Normalization is absolute.

The optical parameters used in these calcula-
tions, in a standard notation, are: deuteron chan-
nel, V=88.0 MeV, W'~ =14.0 MeV, V„=6.0 MeV,
ro = 1.281 fm, ao = 0.727 fm, r' = 1.41 fm, a' = 0.694
fm, r„=1.20 fm, a„=0.687 fm, r„=1.3 fm; neu-
tron channel, V=48 MeV, 8'~ =8.1 MeV, V„=7.0
MeV, r =r' =r„=1.27 fm, ao =a„=0.66 fm, a'
=0.47 fm. These parameters are taken from op-
tical-model analyses reported by Coker and Ta-
mura, "and Clarkson and Coker. " The program
VENUS, by Tamura, "was used with an outer cut-
off of up to 100 fm. A Percy nonlocality correc-
tion was made using P~ =0.65 fm and J3„=0.85 fm,
for the calculations shown in Fig. 2.

The right-hand strip of Fig. 2 shows a compari-
son of the predicted angular distributions with re-
vised data of Ref. 8 (private communication from
J. Horton). It is seen, particularly for the d»,
transition where there is a reasonable range of
data, that the angular distributions computed with
the bound-state form factor do not have the proper
slope at forward angles, whereas the angular dis-
tributions computed with the resonance form fac-
tors are consistent with the available data.

Finally, in Tables I and II are shown the numer-
ical results of the calculations. It is seen that
with or without a nonlocality correction the mag-
nitude of the calculated angular distributions is in
remarkable agreement with experiment using Eq.
(42), but that approximation (A) fails to account
for the magnitude of the observed cross section

for the l=2 transitions by factors of 3 to 5.
Since these calculations were completed, a Let-

ter by Cole, Huby, and Mines' has appeared in
which these same data were fit using potential res-
onance form factors to describe the IAR. The re-
sults of these calculations are given in Table I as
(dg/dD)~p', for comparison. It is seen that the
use of Eq. (42) gives considerably better results.

V. CONCLUSIONS AND SUMMARY

We have shown how to obtain a form factor for
proton transfer reactions populating IAR, using
an approach which readily generalizes to include
many open channels and isospin mixing with the
T& spectrum For .the example of "Mo(d, n)"Tc"
to three prominent IAR, we have shown that IAR
form factors calculated according to the methods
outlined in Sec. II give relative cross sections in
good agreement with experiment when the Huby-
Mines procedure is used to produce convergence
of the DWBA amplitude. In further work, use of
the approach of Vincent and Fortune would be
more suitable in obtaining convergence. Direct
solution of Eq. (13) by iteration would also be of
interest in constructing the exact expression (25),
as an alternative to Eq. (35) used in the present
work.
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A new P active K~ =8 isomer of 9&& 10 -yr Hf has been produced via the reaction ~ W-
(p,po. ) ~Hf. 14 y rays have been observed to follow a half-life of 65 + 5 min. Six of the tran-
sitions result from the deexcitation of a K" =8 isomeric level in Hf at 1173.5 keV to mem-
bers of the K~ =0+ ground-state rotational band. The decay of this new K isomer is discussed
in relation to the well-known decay of 5.5-h ~Hf to which it is remarkably similar.

A number of isomeric states have been found"'
in the mass range A =176-184. The N= 106 iso-
tones "'Yb "'Hf "W '"Os, "'Pt and the addi-
tional Hf isomers at masses 176 and 180 have
been interpreted' as K' = 8 two-quasiparticle
states with probable ¹ilsson configurations of
T [514]„, ~'[624]„ or T'[404], T [514]~.

In the present investigation a new 65 ~ 5-min
y-ray activity assigned to '" Hf was observed in
the Hf fraction from targets of tungsten metal or
isotopically enriched "WO, (97%) that were ir-
radiated with 33- or 50-MeV protons. Cross sec-
tions for the production reactions at these ener-
gies were estimated to be -5 p.b. The radiochem-
ical separation of Hf from irradiated tungsten tar-
gets consisted of three main decontamination
steps: (a) precipitation of hafnium from HF solu-
tions as BaHfF„' (b) extraction of hafnium into
0.5 M TTA in xylene, with back extraction into

0.5 N HNO, -0.5 N HF solution; and (c) the final
precipitation as hafnium tetramandelate with man-
delic acid. The sources of hafnium obtained were
highly decontaminated from neighboring elements.
Chemical yields of about 60% were obtained in
separation times of 40-60 min. The sources
were counted with commercially available Ge(Li)
detectors which had been calibrated for energy
and efficiency with International Atomic Energy
Agency standard sources. Analysis of the y-ray
spectra was performed by means of a modified
version of the BRUTAL' computer code. The CLSQ'
program was used for decay-curve resolutions.

In Table I are listed the y-ray energies and
relative intensities for "' Hf. The values for
5.5-h " Hf are listed for comparison. Least-
squares analysis of the more intense lines yield-
ed a 65 ~ 5-min half-life. All y rays assigned to
"'~Hf decayed with approximately this half-life.


