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The effects of short-range nucleon correlations have been included in intranuclear-cascade
calculations in an approximate manner. Comparisons are made with earlier caleulations and
with experiments, The agreement with experimental data on spallation reactions and spectra
of emitted protons is systematically improved when the nucleon-correlation effect is included,
along with refraction and reflection at potential boundaries and with a velocity-dependent

potential.

I. INTRODUCTION

Down through the years Monte Carlo intranu-
clear-cascade studies have become more sophis-
ticated and, as a consequence, more complex.'~®
Refinements in the nuclear models have some-
times, but not always, led to improved agreement
with experimental data. A particularly puzzling
result of calculations done with and without the
refraction and reflection of cascade nucleons at
the boundaries between regions of different poten-
tials was that the latter (no-refraction) model
gave better agreement with experimental results
than did the former, physically more realistic
model.* Further, the use of a velocity-dependent
potential, ® which also included the refraction and
reflection of cascade nucleons, did not substan-
tially improve the fits to the experimental data
that were obtained from the previous “refraction-
and-reflection” model. In the present paper, a
possible reason for some of the shortcomings of
these calculations is explored.

One nuclear property that has not previously
been considered in these calculations is the corre-
lation of nucleon positions in the target nucleus.
To be more specific, consider the nucleon-pair-
correlation function G(F, ¥’). As is well known,
for an infinite isotropic system in which surface
effects can be neglected, the spatial correlation

.between distinct particles depends only on [f —F'|
and may be discussed in terms of the radial dis-
tribution function which is familiar in both x-ray
and neutron-diffraction studies and in the equilib-
rium statistical mechanics of dense fluids.®

G(¥, T') has the following basic properties:

(@) lim G@F, 7)=1.

[F-F| >
That is, nucleons become uncorrelated for large
separations,
®) [p(F")GE, F')dr’'=A -1, where p(r’) is the nu-
cleon density at ¥’ in a nucleus containing A nucle-

4

ons. This normalization requirement for G(¥, ¥’)

is actually not very restrictive. For example, it
is satisfied for G(7, ') equal to (A-1)/A, which

is the pair-correlation function for a noninteract-
ing group of A Boltzmann particles.

The direct calculation of G(¥, ') is a many-body
problem and hence very difficult. In approximate
calculations of this function, two nuclear proper-
ties have to be considered: the Pauli exclusion
principle and the potential of interaction between
the nucleons. In infinite nuclear matter G(%, ')
is a function only of |¥ —T7’|=R. Thus it is con-
venient to discuss nucleon correlations in such a
system in terms of the radial distribution function
2(R). Because of the short-range character of
nucleon-nucleon forces, the properties of g(R) in
infinite nuclear matter should also provide some
information about nucleon spatial correlations in
at least the inner regions of a finite nucleus.

Perhaps one of the most informative and in-
structive calculations of g(R) was done by Moniz,
Nixon, and Walecka,” who calculated the pair-cor-
relation function for two interacting nucleons in an
infinite nuclear medium. They assumed an inter-
nucleon potential that consisted of a hard-core
repulsive potential at small distances and an expo-
nential attractive potential at large distances.
They also included the effect of the Pauli exclu-
sion principle. Their distribution function dis-
plays the following features:

(1) g(R)=0 for R< 0.5 F. This implies that given
a particular nucleon, it is then impossible to find
another nucleon within a sphere whose center cor-
responds to the center of the original nucleon and
whose radius is ~0.5 F. This fact will be used
later in an attempt to include the effects of nucle-
ar correlations on intranuclear-cascade calcula-
tions.

(2) For R>0.5 F, g(R) first rises steeply from
zero to ~0.75 for 0.5 F<R=< 1 Fand then much
more gradually approaches its asymptotic value
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FIG. 1. Excitation function for the reaction 20°Bi (p, 87)-
22po, The solid points are the experimental data of Ref.
9. The open squares and crosses are calculated with the
VPOT(0.5) and VPOT(Vp =1) models, respectively. The
open circles and solid squares are calculated with the
STEP and STEPNO models, respectively. Since the sta-
tistical errors for the calculated cross sections are
about the same for the different models, the errors for
only a few representative points are given. The same is
true for the rest of the figures which are presented.
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FIG. 2. Excitation function for the reaction 2%9Bj (p, 97)-
20lpo, The symbols used have the same meaning as those
used in Fig. 1.
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of unity for R>1 F.

Thus far, only some general properties of nu-
clear-correlation functions have been discussed.
However, what is actually required is to include
'them, at least approximately, in intranuclear-
cascade calculations. Therefore, in the following
the reasons for their inclusion will be discussed
and it will be shown that when they are included,
even in an approximate manner, the agreement
between experimentally determined properties of
nuclear reactions and those predicted by intra-
nuclear-cascade calculations is generally im-
proved.

II. INCLUSION OF CORRELATION EFFECTS
IN INTRANUCLEAR-CASCADE
CALCULATIONS

Let us first discuss why correlations should be
included in intranuclear-cascade calculations. In
order to do so consider the details of a hypotheti-
cal cascade. Suppose the incident nucleon enters
the nucleus and undergoes a Pauli-allowed colli~
sion at ¥, with some nucleon in the target. Then
suppose the incident and struck nucleon each make
Pauli-allowed collisions with two other nucleons
in the target at ¥, and ¥;. The collision sites at
T, T, and I, represent the locations of three dif-
ferent target nucleons. Therefore, from our pre-
vious discussion of the nucleon-radial-distribu-
tion function, these sites must be separated by at
least 0.5 F. However, since in previous intranu-
clear-cascade calculations!~® all cascade nucleons
were treated as independent points, one can read-
ily find, in examining such calculations,*® cas-
cades in which collision sites are separated by
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FIG. 3. Excitation function for the reaction 299Bi (p,p77)-
22Bj, The symbols used have the same meaning as those
used in Fig. 1.
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FIG. 4. Excitation function for the reaction 2"*Bi(p,p3n)-
206Bj . The symbols used have the same meaning as those
used in Fig. 1.

0.1 F or less. This is merely a reflection of the
fact that in these cascade calculations short-
range nucleon correlations in the target nuclei
were completely neglected. As a consequence,
one might expect these calculations to overesti-
mate the number of nucleons involved in a cas-
cade and thus the energy deposited in the target
nucleus.

In order to circumvent the problems mentioned
above, the short-range nucleon-correlation effect
was approximated by simply imposing the restric-
tion that if a given nucleon made a Pauli-allowed
collision at the point ¥,, then neither the incident
nor the struck nucleon were allowed to interact
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FIG. 5. Excitation function for the reaction 2°%Bi-
(b, 2967)2%Pb. The symbols used have the same mean-
ing as those used in Fig. 1.
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FIG. 6. Excitation function for the reaction 2%9Bi-
(p,2957)*%Pb. The symbols used have the same mean-
ing as those used in Fig. 1.

with another nucleon within a distance d from F,.
Two values of d were used in the cascade calcu-
lations. The first and also the smallest value was
0.5 F which, from the previous discussion of the
distribution function of Moniz, Nixon, and
Walecka,” should be the minimum separation for
two nucleons in a target nucleus. The second
value of d that was used is density~-dependent. If
one simply assumes that each nucleon in a partic-
ular density region which is characterized by a
total density p occupies the same volume V, then
one has Vp=1. If one further assumes that a col-
lision occurs in the center of the volume assigned
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FIG. 7. Excitation function for the reaction ¥Au(p,pn)-
1%Ay, The solid points are the experimental data of Ref.
11. The open squares, crosses, open circles, and solid
squares are calculated from the VPOT(0.5), VPOT(Vp =1),
STEP, and STEPNO models, respectively, for the reac-
tion 209Bi (p,pn)2%®Bi.
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to a particular nucleon, then one has the restric-
tive distance d simply given by $7d%p =1. In the
following this restrictive distance will be denoted
by Vp=1. Note that if one is dealing with a nu-
cleus of constant density whose radius is 7,43,
then d is simply 7,, which is ~1.3 F.

Before proceeding further, let us briefly review
some characteristics of the intranuclear-cascade
models of Refs. 4 and 5. First, the nuclear-radi-
al-density distribution was represented by a se-
ries of steps which approximated a Fermi distri-
bution that was consistent with Hofstadter’s data
on the nuclear-charge distribution.® The step den-
sity distribution is equivalent to a series of con-
centric regions, each having a constant but differ-
ent density., Each region was assigned a particu-
lar nuclear potential which acted on the cascade
nucleons. Calculations were then done with and
without the refraction and reflection of cascade
nucleons as they moved from one potential region
to another. One of the surprising and inexplicable
results from these calculations was that for inci-
dent energies below 200 MeV, better agreement
with experimental data was obtained if the refrac-
tion and reflection of cascade nucleons was neg-
lected.*

Two possible explanations for this result were
then proposed: (a) The classical treatment of re-
fraction and reflection is such a poor approxima-
tion to a correct quantum mechanical treatment

100 | T T T

o(mb)
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that it is better to ignore refraction and reflection
entirely; (b) the potential used was incorrect.

The first explanation was investigated and it was
shown that just the converse was true.* The sec-
ond explanation was partially explored by using a
velocity-dependent potential of the form V=V,

X (1 = €/€ max) fOr € <€ paxand V=0 for € = € p,y»
where € is the kinetic energy of the cascade nu-
cleon. This potential form was suggested by op-
tical-model potential analyses of nucleon-nucleus
scattering experiments which also suggest values
of € ,,x = 100 MeV. However, when cascade cal-
culations were done using this potential, only
slightly better agreement was obtained between
the calculated and experimental results than was
found previously using the velocity-independent
potential.’

In the following the velocity-dependent potential
will be used and some results of cascade calcula-
tions using this potential and the restrictive dis-
tances mentioned previously will be presented.

The objectives of this study are then: (1) to
study the effects of short-range nucleon correla-
tions, and (2) to see if these effects allow one to
get satisfactory results when refraction and re-
flection are treated classically. For the sake of
brevity, this cascade model will be denoted as
VPOT(d) where d refers to the particular restric-
tive distance used, i.e., 0, 0.5 F, or Vp=1. Fur-
ther, all calculations were done with € ,,,, = 100
MeV. Brief comparisons will be made with re-
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FIG. 8. Excitation function for the reaction ®*Cu(p,pn)-
84Cu. The solid points are the experimental data of Ref.
12. The open squares, crosses, open circles, and solid
squares are calculated with the VPOT(0.5), VPOT(Vp =1),
STEP, and STEPNO models, respectively.
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FIG. 9. The ratios of the calculated to experimental
cross sections for the mass-yield curve from the inter-
action of 378-MeV protons with As. In Fig. 9(a) the tri-
angles, squares, and crosses are calculated with the
VPOT(0), VPOT(0.5), and VPOT(Vp =1) models, respec-
tively. In Fig. 9(b) the circles and daggers are calculated
with the STEP and STEPNO models, respectively.
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sults obtained from the above model and the STEP
and STEPNO models of Ref. 4. The latter two mod-
els refer to the calculations done with the veloc-
ity-independent potential. The STEP model includ-
ed refraction and reflection, while the STEPNO mod-
el did not.

III. COMPARISON AMONG MODELS
AND EXPERIMENTAL DATA

Three types of experimental data were chosen
for comparison with the different model calcula-
tions:

(1) excitation functions for spallation reactions,
(2) mass yields in spallation reactions,

(3) energy and angular distributions of emitted
“fast” nucleons.

First, the experimental and calculated excitation
functions for the production of various nuclides
from the interaction of protons with 2°°Bi will be
compared. Figures 1-6 show the excitation func-
tions for the (p, 8n), (p, 9n), (p,p'n), (p,p3n),
(», 2p6n), and (p, 2p5n) reactions® from 2°°Bi,
respectively. These particular excitation func-
tions were chosen to give two examples each of
(p, xn), (p,poam), and (p, 2pxn) reactions: one
showing very good agreement between calculation
and experiment and the other showing not such
good agreement. In all cases except the 2°°Bi-
(p, 2p5n)*°3Pb excitation function, the VPOT(d#0)
models give better agreement with experiment
than the STEP model. Further, in all cases ex-
cept the 2°°Bi(p, 2 p57)°**Pb excitation function the
results from the VPOT(Vp =1) model either agree
with experiment better than the STEPNO results
or are statistically the same as these latter re-
sults. The immediate conclusion that one can
draw from these comparisons is that even an ap-
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FIG. 10. Differential cross section for protons emitted
at 30° in the laboratory system in the interaction of 160~
MeV protons with 20°Bi, The solid circles are the experi-
mental data of Ref, 15 and the crosses were obtained
from the VPOT(Vp =1) calculation.
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FIG. 11. Differential cross section for protons emitted
at 80° in the laboratory system in the interaction of 160-
MeV protons with 20°Bi, Symbols have same meaning as
in Fig. 10.
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FIG. 12, Differential cross section for protons emitted
at 30° in the laboratory system in the interaction of 160-
MeV protons on %Ni. The solid circles are the experi-
mental data of Ref. 15. The triangles and crosses were
obtained from the VPOT(0) and VPOT(Vp =1) calcula-
tions, respectively.
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proximate inclusion of short-range nucleon corre-
lations in intranuclear-cascade calculations of
excitation functions for rather complex reactions
generally improves the agreement with experi-
ment, without sacrificing the classical refraction
-and reflection of the cascade nucleons.

In Figs. T and 8 the excitation functions for two
(p, pn) reactions are presented. In Fig. 7 there
is shown a comparison between calculated'® and
experimental excitation functions'! for '°"Au-
(p,pn)'°Au. The VPOT(d #0) results agree better
with experiment than the STEP results, and the
VPOT(Vp =1) results are statistically the same as
the STEPNO results. Neither of these conclusions
can readily be drawn from the experimental? and
calculated excitation functions for the ®Cu(p, p»)-
84Cu reaction shown in Fig. 8. In this case the
STEPNO results agree slightly better with experi-
ment than the VPOT(Vp =1) results.

Comparisons between experimental and calcu-
lated excitation functions do not always indicate
the differences between various intranuclear-cas-
cade models because some calculated cross sec-
tions are extremely dependent on the evaporation
calculations that follow the intranuclear cascades.
This is especially true when large numbers of
particles are evaporated. For this reason a sec-
ond type of comparison between observed and cal-
culated cross sections is made: a comparison
between calculated and experimental mass yields.
In such comparisons the dependence of calculated
cross sections on evaporation details is some-
what diminished because in the evaporation cal-
culation the yield of a given mass does not depend
too strongly on the branching ratio for the emis-
sion of a proton or a neutron, since both process-
es lead to the same mass.

Accordingly, in Figs. 9(a) and 9(b) a comparison
of the ratios of the calculated-to-experimental
cross sections for the production of various
masses from the interaction of 378-MeV protons
with ™As is given. The experimental data are
those of Cumming'® and extend over almost 3 or-
ders of magnitude with values of ~100 mb for
A="14 and ~0.5 mb for A=50. Hence, the compar-
isons near A=50 may not be very meaningful. If
one uses Y 4|(0cae/0exp)s — 1| as the measure of
the over-all agreement between calculated and
experimental mass yields, then the VPOT(0.5) and
STEPNO mass yields agree slightly better with the
experimental mass yields than those obtained

from the other three models.

In all the excitation-function and mass-yield
calculations, the evaporation phase of the reac-
tion was calculated by the method described by
Dostrovsky, Fraenkel, and Friedlander'* and
without any parameter variations.

A third type of experimental data, and one that
can be directly compared with the output from
intranuclear-cascade calculations, is the energy
and angular distributions of emitted “fast” pro-
tons. Figures 10 and 11 present experimental*®
and calculated spectra of protons emitted at 30
and 80°, respectively, from the interaction of 160~
MeV protons with 2°°Bi. The VPOT(Vp =1) model
reproduces the experimental spectra as well as
does the STEPNO model and better than the STEP
model (refer to Figs. 8 and 9 of Ref. 4 for the
STEP and STEPNO results). In Fig. 12 the calcu-
lated and observed!® spectra of protons emitted at
30° from the interaction of 160-MeV protons with
58Ni are presented (refer to Fig. 11 of Ref. 4 for
the STEP and STEPNO results). None of the calcu-
lated spectra reproduce the experimental spec-
trum very well, However, both VPOT models
do a better job than the STEP model, and the
VPOT(Vp =1) model reproduces the experimental
spectrum about as well as the STEPNO model does.

IV. SUMMARY

The effect of including short-range nucleon cor-
relations in an approximate manner in intranu-
clear-cascade calculations using a velocity-de-
pendent potential has been studied. In these cal-
culations the refraction and reflection of cascade
nucleons were treated classically. It was found
that the inclusion of these correlations leads, in
general, to better agreement with a variety of ex-
perimental data. Further, the agreement with
experiment in most cases was as good as or bet-
ter than that obtained from the STEPNO model. It
is rather difficult to explain why the STEPNO mod-
el, which neglects both the refraction and reflec-
tion of cascade nucleons as well as nucleon corre-
lations, reproduces experimental data so well.
However, it is possible that the neglect of short-
range correlations, through rather fortuitous can-
cellation of effects, makes up for the neglect of
reflection and refraction in the STEPNO model. In
any case, it is satisfying to have found a physi-
cally more reasonable model than STEPNO that
gives fair agreement with experimental results.
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In order to test a procedure for resolving the problem of discrete real-well-depth ambigu-
ities found in optical-model analyses, a particles were elastically scattered from "Ge, ¥zr,
107Ag. and 1499Ce at incident energies from 0.6 to 1.2 times the classical Coulomb-barrier
height for each nucleus. The real and imaginary nuclear potential-well radii and the Cou-
lomb radius (assuming a uniformly charged sphere) for each nucleus were taken to be R=R
=1’0(A}u/gm+A ¥§get), where 7;=1.22 F, A diffuseness of 0.57 F was used throughout. For three
of the nuclei, only one pair of real (U) and volume-imaginary (W) potentials was found, with
the real-well depth for *Zr showing a slight energy dependence. The potentials obtained were
(in MeV): U =23.5, W=11.0 for “Ge; U~22, W~10.3 for ¥Zr; U =25.5, W=14.5 for 1"Ag;
and U =18.0, W=6.0 for 0ce, Analysis of angular distributions taken with 15—18-MeV « par-
ticles did not yield evidence of expected ambiguities in the real-well depth, so further calcu-
lations were performed in which the effect of absorption was more generally explored. The
usefulness of the proposed method was found to be limited to cases where the absorption is
either ineffective, or small compared with the average spacing between single-particle levels

of the same spin and parity.

I. INTRODUCTION

It is well known that optical-model analyses of
elastic scattering data using the Woods-Saxon po-
tential form factor have been unable to experimen-
tally distinguish between several values for the
real potential well depth, because nearly equiva-
lent cross sections were predicted for each. Two
types of ambiguity have been observed. Examples
of the first type' ™ were derived from analyses in
which only the optical-potential strengths were
variable while the Woods-Saxon geometrical form
factors were held constant. A series of solutions
is found for the real-potential strength, extending
from about 20 to about 200 MeV and spaced by
roughly 30 MeV. Potentials which are ambiguous
in this discrete manner are hereinafter called type-
one potentials. Previously, type-one ambiguities

have been found with some certainty in the analyses
of a-particle scattering from Mg, %S, and *’Ca.

Ambiguities of the second type differ from those
of the first in that all parameters are free and
several different real-well depths may be obtained,
but only if compensating changes are made in the
geometrical parameters so that the Woods-Saxon
potential tails of the different optical-parameter
sets effectively appear to be of nearly equivalent
strength, and indeed may all converge at the
“strong-absorption” radius Rg,.* The strong-ab-
sorption radius is analogous to the classical turn-
ing point for a particle with angular momentum /. -
In quantal terms, this radius is defined by kRg,
=n+[n?+U(1+1)]"2, Here 7 is Coulomb parameter
and  is the angular momentum for which Re(S;)
=3, where S, is the S matrix element for partial
wave I, Type-two ambiguities have also been



