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Potential-energy surfaces and shell-correction-energy surfaces for nuclei in the A = 200
region and for actinide (A 230) have been calculated in the improved two-center model.
These surfaces are shown in a two-dimensional representation as a function of the elongation
and the constriction of the nuclear shape. Both the ground-state shell corrections and the fis-
sion barriers in the A =—200 region agree well with experiment. It is found that the saddle-
point position in this region is shifted significantly towards smaller deformations compared
with the liquid-drop-model prediction, this shift arising from a very pronounced valley in the
shell-correction surface at the position of the liquid-drop-model saddle point. The implica-
tions of this finding for a nuclear mass formula and for the application of the liquid-drop mod-
el to fission of these nuclei are discussed. In both mass regions (A —= 200 and A) 230) the
shell corrections alone show pronounced structure which changes slowly with mass number.
At small deformations, up to the region of the second maximum in the potential, this struc-
ture is determined by the compound-nucleus shell structure. At larger deformations this
structure is shown to arise from the shell structure of the nascent fragments, thus establish-
ing the importance of fragment shells early in the fission process for the entire mass range
A & 200. As a consequence of these studies the regions of validity for the liquid-drop model
in describing nuclear fission are explained. Finally, it is shown that the recently observed
symmetry in the mass distribution of 57Fm is due to the approach to the nucleus Fm,
which can split symmetrically into the two energetically strongly favored ~32Sn nuclei.

I. INTRODUCTION

The development of phenomenological methods
for the calculation of shell corrections to the liq-
uid-drop-model (LDM) potential-energy surfaces
(PES's) in recent years has led to a revival of in-
terest in fission theory. A number of calculations
of PES's have been performed in the last few years
with the aim of exploring their features for heavy
nuclei. ' These calculations, based on the Strutin-
sky prescription' for the calculation of shell cor-
rections from deformed single-particle models,
have been carried out using mainly an extension of
the Nilsson model to higher multipole deformations,
and have been relatively successful in their predic-
tion of barrier heights in heavy elements and of
shape isomeric states. One of the most interesting
results has been the instability of the second barri-
er against asymmetric deformations. '

The experimental results on nuclear fission-
e.g. , the fragment-mass and kinetic-energy distri-
butions and fragment excitation energies —seem to
indicate that the fragment shells have an important
influence on the fission process in heavy elements
(see, e.g. , Figs. l and 2 of Schmitt'). However,
because of the particular types of single-particle

models (i.e., one-center deformed potentials) used
in the majority of calculations previously report-
ed, ' ' it has not been possible to take these frag-
ment-shell effects quantitatively into account.
Thus, for instance, the instability of the second
barrier has been discussed by Gustafson, M511er,
and Nilsson' in terms of properties of a specific
Nilsson level. Although correct, this explanation
does not especially help in understanding the gener-
al features of the process. It is therefore desir-
able to do calculations which are able to connect
this result with the fragment-shell properties and
thereby to determine to what extent the observed
properties of nuclear fission are determined pre-
dominantly by the structure of the fissioning nu-
cleus, or by that of the fragment nuclei —i.e., at
what stage specific fragment-structure effects be-
come important.

A nuclear model, the two-center shell model,
has been developed recently and is well suited for-

the investigation of this problem. " It is able to
describe the fragment shells on the same basis as
the shells of the fissioning nucleus and to describe
the complete transition between them. First calcu-
lations of the PES in this model have been pub-
lished and have indicated that the fragment-shell
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influence is already important in early stages of
the fission process. '

In this paper we shall report calculations in the
two-center shell model with more realistic angular-
momentum-dependent terms. Fission barriers in
the lighter elements (A =200) are calculated here
for the first time and are compared both with ex-
perimental results and with LDM predictions. We
will also specifically analyze the shell corrections
as a function of the constriction and elongation of
the nucleus and show their connection with the frag-
ment-shell structures by comparison with an inde-
pendent fragment model, both in the region around
mass 6=200 and in actinide (A~230) nuclei. Pres-
ent calculations are still limited to reflection sym-
metric configurations. The results, however, can
be used directly to understand the relative success
of the LDM in the description of nuclear fission in
the lighter elements and its failure in the heavy-
element region. The discussion of the PES in the
Fm isotopes, where even in symmetric fission the
doubly magic nucleus "2Sn can be formed, particu-
larly adds to the understanding of this latter ques-
tion. The very recent results' showing increased
symmetric yields in the mass distributions for the
fission of Fm isotopes when going to higher mass
number provide direct evidence of fragment-shell
influences as described here.

II. TWO-CENTER MODEL

The Hamiltonian of our model is given by

H= 7+ -,'ma&p'p'+-', ma&, '(~ z~ —zo)'+ V„„+V/1, s),

spectively. The operators 1, and 1, are defined in
the stretched coordinate basis as defined by Nils-
son. ' Only for && =e, and z, =0 are they identical
with the exact angular-momentum operators. This
change compared with Ref. 7 has been made be-
cause it was preferable to reproduce exactly the
Nilsson model for z, =0, thus avoiding the neces-
sity of a redetermination of the parameters C and
D. Also, the stretched representation is seen to
be more realistic for deformed shapes, especially
for the 1' term, when one recalls that the original
purpose of this term is to compromise between the
harmonic oscillator and the more realistic finite
depth potentials. The stretched representation al-
so gives better convergence properties at large de-
formations. In detail these operators are then giv-
en by

8 8't
~&8

)/

and cyclic permutation foi the other components.
The stretched coordinates are given by

with r&
——g(z) —1(+zo), for i =1, 2.

The single-particle parameters C and D depend
on the half center separation z, in the same way as
discussed in Ref. 7. They are interpolated between
the values for the actinides and the Pb region on
the one hand' and the mass region around A =100
on the other hand. ' The connection between them
and the single-particle parameters K and p, is, as
usual,

where V(1, s) is defined as a direct generalization
of the Nilsson model:

C = -2I(OOK& D=Wp, .

C(zo)1, ~ s+D(zo)[1, —zN(N+3)] z&0
V(T, s) =

C(z,)1, ~ s+D(z, )[1,' —,'N(N+ 3)] z&0-.~ ~

TABLE I. The table lists the single-particle parame-
ters v and p, for protons and neutrons for the two com-
pound-nucleus regions discussed in the text and for the
fragment region. They are, except for very small
changes, taken from Nilsson et al. (Ref. 1) for the two
compound-nucleus regions and from Arseniev, Sobic-
zewski, and Soloviev P.ef. 10) for the fragment region.

Mass region
Protons Neutrons

K P

100 «A «136
200 «A «212
226 «A «272

0.0688 0.558
0.0610 0.626
0.0580 0.645

0.0638 0.491
0.0636 0.370
0.0635 0.330

Here 1, and 1, are the pseudoangular momenta with

respect to the two centers at z= z, and z= -z„re-

V„„=-—ro,', ([ z (
—z,)'8(z, —

[ z ( ),
0

(5)

where 8 is a step function [8(x) =0 for x &0, 8(x) = 1

for x&0].
For all further details of the Hamiltonian we re-

fer the reader to Ref. 7 and for the mathematical
details of the solution to Ref. 6. The general meth-
od is first to diagonalize the double-oscillator part
of Eq. (1) by a simple matching procedure, and

then to use these wave functions as a basis for the
diagonalization of V„„and V(1, s).

The values for K and p, which have been used in the
calculations are listed in Table I. For Sot, we have
used the value aco0=41A ' ' MeV.

The term V „in Eq. (1) is necessary for a smooth-
ing of the potential at z =0 and for the description
of a smooth neck in the potential and is the same
as the one used in Ref. 7:
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After this diagonalization the total PES,

E =E~M+Ep+ 5Uy (6)

elongation degree of freedom. These are defined
with the quantities of Eq. (7} in the following way:

can be easily calculated. Qnly the diagonal matrix
elements of the pairing interaction are assumed to
be contained in the LDM; no further renormaliza-
tion of the pairing energy has been made. The
LDM energy is computed with the Myers-Swiatecki
mass formula parameters. " The shape of the liq-
uid drop is given by the equipotential surface that
coincides with the nuclear radius for the spherical
shape:

The shell-correction energy 6U is obtained from
the Strutinsky prescription' with a correction poly-
nomial of sixth order and a smearing width of y

1 25'4)p The pairing energy E~ is calculated in
the BCS formalism with the strengths:

G~=19/A MeV and G„=14/A MeV (8)

which are known to fit the empirical odd-even
mass differences in the actinides if Z levels for
protons and N levels for neutrons are used. " The
pairing strengths have been made surface depen-
dent.

The use of a potential with infinite depth in Eq.
(1) is chosen not only because of convenience but is
suggested by the good results for the PES obtained
in the Nilsson model. ' It should also be noted that
the use of the Strutinsky prescription is only well
defined for the case of potentials without unbound
states. In the case of the Nilsson model the appro-
priate smearing width y is determined by a stabili-
ty condition on the shell correction 6U. In the ease
of a finite depth potential, however, such a condi-
tion does not exist, "and here the shell correction
even depends on the size of the basis used for the
diagonalization of the single-particle potential if
energies in the continuum are taken into account.

III. BARRIERS IN THE A ~ 200 REGION

The two-center mode1. al1ows the treatment of
very constricted shapes, since the basis itself
already contains the constriction degree of free-
dom. Thus it is possible to calculate fission bar-
riers for lighter as well as heavier nuclei in this
model. (This has not been possible in the ¹isson
model. ) The LDM surfaces for the two nuclei "'Pb
and Rn together with those of the heavier nuclei
a,re shown in Figs. 1 and 2 in a contour line repre-
sentation. The surfaces are given in a two-dimen-
sional plane consisting of a constriction and-an

and

p+C
R

where d, is the absolute neck thickness (see Fig. 4
of Ref. 7}. Thus, l gives directly the length of the
nuclear shape in units of the radius of the fission-
ing nucleus. The constriction parameter d is de-
fined in such a way that for d=0 the shapes are
pure spheroids, whereas d= 1 corresponds to the
scission configuration. For values in between,
1-d gives the ratio of the neck thickness to the
greatest dimension in the p direction.

In Figs. 3 and 4 the corresponding shell-correc-
tion energies together with the total PES's are
shown for the same two cases. Two of the points
in these surfaces are directly comparable with the
experimental data: the total shell energy SU+ E~
at the ground state (d = 0, 1 = 1) and the absolute
height of the fission barrier above the ground state.
The relevant numbers are given in Table II. It is
seen, that the theoretical quantities reproduce the
experimental numbers' '6 quite mell. Since the
barrier heights given here are obtained as the dif-
ferences between the barrier energies and ground-
state energies, it is clear that their inaccuracy is
of the same order as that of the ground-state shell
energy (which includes both the shell correction 5fJ
and the pairing energy). The discrepancy in the
ground-state shell energy of 0.3 MeV in the case
of ' 'Pb can presumably not be improved without a
simultaneous refit of the total energy formula (6).
It turns out that in this case, the pairing energy
contributes only 0.3 MeV because of the proton
shell closure. Thus the total shell energy is pre-
dominantly due to the shell correction 5U. In the
case of '~Rn the shell correction alone gives ex-
actly the experimental value 5U = -7.6 MeV."
Thus the discrepancy between experiment and theo-
ry for the ground-state mass is due exclusively to
the overestimate in pairing energy, whose strength
should perhaps be lowered in future calculations.

For the nucleus ' 'Pb, however, where the pair-
ing energy is negligible because of the shell clo-
sure, the agreement with experiment both for the
saddle point and for the ground-state shell energy
is very good. We mill, therefore, discuss this
case in detail in the following paragraphs.

It is seen from Table II that the LDM does not
predict the correct barrier heights, mainly be-
cause of the large negative shell correction at the
ground state originating from the double shell clo-
sure at ' 'Pb. Because of this property Myers and
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gion A. —=200 agree well with experimental values.
In addition, the calculated total shell-plus-pairing-
energy correction for the ground state agrees with
experiment.

The coordinates of the calculated barrier are not
the same as those of the LDM barrier. In the real-
istic calculations we obtain much smaller constric-
tions (d values) and slightly smaller elongations (l
values) than are given by the LDM. That is, the
saddle-point shapes are much less constricted
(necked in) than has been previously supposed from
LDM calculations.

In spite'of this, the minimum-potential-energy
path to scission is not changed appreciably. Thus
for these nuclei (A—= 200) we conclude that the chief
effect of the fragment shells on the fission barrier
is to change its position and magnitude (relative to
the LDM), but in such a way that the fi.ssion path
remains almost unchanged.

Barrier heights obtained for compound nuclei in
the region A. ~230 are somewhat higher than experi-
mental values. This result is understandable, how-
ever, both from our basic results as described
above and from earlier calculations of M511er and
¹ilsson' which yield lower second-barrier heights
for asymmetric shapes than for symmetric shapes,
for compound nuclei with 4~230.

As indicated above, when nascent fragment nu-
clei are in the region of Z=50, N=82 in an asym-
metric configuration, the effects of fragment
shells on the PES are expected to be enhanced rela-
tive to the symmetric configuration. It is almost
surely the case that the effect observed by M5ller

and ¹lsson is a direct result of fragment-shell ef-
fects which are sufficiently strong in this case to
affect the height of the second barrier in the PES.
It is clear that this leads to a preference for asym-
metric fission, but further quantitative calcula-
tions are necessary to determine whether the cor-
rect maximum yield at fragment mass -140 amu
(not 182 amu) is predicted for the lighter actinides
(230~A S252).

Fragment Mass and Energy Distributions

1. A = ZOO. It was found by Nix and Swiatecki"
that the fission properties of nuclei in this mass
region could be reasonably well reproduced by the
LDM, completely without shell effects, even
though the calculated LDM saddle-point shapes
were so highly constricted that they could be ap-
proximated initially by tangent spheroids. This
rather outstanding success can now be understood
within the framework of the present results: Frag-
ment-shell effects are relatively weak for this re-
gion of compound nuclei, since the fragments are
soft midshell nuclei, and furthermore do not ap-
pear to change the LDM minimum-potential-ener-
gy fission path appreciably. It is reasonable to
suppose, therefore, that the fragment-shell ef-
fects also do not change the potentia1. -energy sur-
face along coordinate directions orthogonal to the
fission direction appreciably. Since it is these co-
ordinates which are dominant in determining the
mass and energy distributions, it follows that LDM
calculations should be rather successful.

202 pb 2~6U 252F

FIG. 12. Nuclear shapes for Pb, U, and Fm at the ground state, the first barrier, the second minimum, the
second barrier, and at scission. These shapes correspond to the appropriate points in the shell-corrected potential-
energy surfaces.
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