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The observed muonic-atom isomer shifts in 29°Bi and 2"Pb are analyzed in terms of a sin-
gle particle or hole coupled to collective vibrations of the nuclear core by means of the weak-
coupling Hamiltonian of Bohr. The isomer shift is a delicate effect which is sensitive to cer-
tain details of nuclear structure. Although the data for these two nuclei are limited, they
strongly suggest two conclusions: (1) that vibrational excitation is not strictly volume con-
serving, but results in a slight increase of nuclear volume; and (2) that the proton core re-
acts significantly to changes in state of the valence particle, in a way which is not accounted
for by the present model. This reaction is found to be stronger in the case of a valence neu-
tron than in the case of a valence proton. In addition, the Ford-Wills radial-moment analysis
is found to be adequate for the analysis of isomer shifts, though the refined method of Barrett
is superior. As a byproduct of this work, nuclear wave functions are obtained which may be
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useful for other applications.
I. INTRODUCTION

When muonic atoms are formed, processes
sometimes occur which result in the muon reach-
ing its ground state at a time when the nucleus is
in an excited state. Subsequent deexcitation of the
nucleus generally occurs before the muon decays
or is captured, and thus the nuclear transition is
perturbed by the presence of the muon. The
change in transition energy from its normal value
is called the muonic isomer shift.}

Isomer shifts for four transitions in 2®Bi have
been measured by two different groups,?:3 and
isomer shifts for three transitions in 2°’Pb have
been measured by a third group.® Their results
are listed in Table I. The known energy levels®-”
of 2%Bi and 2°"Pb which are relevant to our dis-
cussion are shown in Fig. 1. The uncertainties in

AE,,, are all nearly 1 keV in *®Bi, due to the fact
that the reference energies are obtained by Cou-
lbqlb excitation and thus are not especially well
known. In 2°"Pb, however, the unperturbed levels
may be seen through the decay of 2°’Bi, and so the
experimental uncertainties are less. The correc-
tion AE,;,, due to the magnetic hyperfine splitting
of the nuclear levels, will be discussed later. It
is probably sufficient to note here that this cor-
rection is not well known, and though small, may
contribute as much as 1 keV to the uncertainty in
AE,. The values for AE,;, in Table I are those
which have been calculated by the experimental
groups. It appears that 1 keV is a reasonable esti-
mate for the total uncertainty in AE;, though it

could be larger. A consistency check on the iso-
mer shifts for 2®Bi may be made by observing
that the last two lines in the isomer-shift column
should sum to give the entry in the first line.

| >

Since AE,;, should not exhibit this quality (a point
which will be evident later), the fact that AE,,,
nearly does so provides experimental evidence
that AE,; is small.

In what follows, we compare these values for
AE; with predictions based on various applications
of the weak-coupling model of Bohr.?

II. CONTRIBUTIONS TO THE ISOMER SHIFT

We may write the Hamiltonian of the muon-
nucleus system as

H=Hy+T, —ed® +H® +H, +H';

Hy is the nuclear Hamiltonian, T, is the muon
kinetic energy, Qﬂf) is the electrostatic potential
generated by the average charge distribution of
the nucleus when it is in state i, H is the nu-
clear-polarization Hamiltonian for the same state
i, Hy is the magnetic interaction between the muon
and the nucleus, and H' represents everything
else, including radiative corrections and any so-
far unknown effects. Though the third and fourth
terms each depend explicitly on the nuclear state
under consideration, their sum does not, since

-ed) = (i|Vc|i)
and
HY =V +ed®,

where V; is the Coulomb interaction between the
muon and the protons in the nucleus. It is custom-
ary to treat the last three terms in H as perturba-
tions, in which case the unperturbed states of the
system are direct products of muon and nuclear
eigenstates. This procedure is evidently justified,
as studies of ordinary muonic atoms (where the
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FIG. 1. Energy levels of 2Bi and "Pb. Arrows rep-
resent those transitions in which isomer shifts have been
measured.

nucleus remains in the ground state, allowing one
to ignore Hy) based on the second and third terms
are found to reproduce the measured muon energy
levels to within 1% or less. In these studies,
$&? j5 computed from a phenomenological
charge distribution. The splitting of V. into two
terms is convenient, as it separates the difficult
problem of computing the dynamical response of
the nucleus to the muon from the much easier
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problem of finding the muon eigenstates in a static
potential.

The energy of a nuclear transition from state j
to state ; when a muon is present in the ground
state is thus

E(j)-E@)=EY —=E{’ - e(15]|8 - &) |15)
+A(H,) + A(Hy) + ACH'),
where the muon state |1S) is defined by
[T, —ed']|15)=E}9|15),

and &' is the electrostatic potential generated by
a charge distribution which closely resembles that
of the nucleus in any of the states under considera-
tion. Though we are specifying first-order pertur-
bation theory for the change in the Coulomb bind-
ing energy of the muon due to the change in the
nuclear charge distribution, we must use more
elaborate methods if we wish to calculate some of
the other contributions. The difference E} —E\)
is the transition energy observed when a muon is
not present. Thus the uncorrected isomer shift is

AE = —e(15|®'? — @D |1S) + A(H, )+ A(H,)+ ACH') .
(1

We examine the contributions in order of increas-
ing importance.

Effects Other Than Change of Coulomb
Binding Energy

The contribution of H’ to the muon binding energy
in the 1S state is typically about 1%, amounting to
about 70 keV in the lead region. Almost all of this
is known to come from the radiative corrections,
which depend on the nuclear state only through its
average charge distribution and thus contribute an

TABLE I, Experimental isomer shifts, All energies in keV,

209g Darmstadt (Ref, 2) Columbia (Ref. 3)
Transition AE g, AEqg, AE; AE ., AEyg, AE;q
g 6.3+0.6 0.4 6.7 5.7£0.5 0.8 6.5
¥-¥ 7.0£1.1 0.0 7.0 7.5£1.0 -0.4 7.1
o _g- 2.320.7 0.9 3.2 2.5+0.5 0.9 34
Lo 2.7£0.8 -0.2 2.5 3.3£1.0 -0.3 3.0

20Tpp Virginia (Ref. 4)
Transition AEy, AEy¢, AE;
L 1.49+0.3 04 1.9
- 0.06£0.3 0.3 04
-5 6.14+0.4 0.4 6.5

2 This is the state at 1.608 MeV,



2152 GEORGE A. RINKER 4

insignificant amount to the isomer shift when com-
pared with the change in the Coulomb binding en--

ergy. The other known corrections in H’ are even
smaller and can all be shown to contribute negligi-
ble amounts to the isomer shift.

After all known corrections are applied, however,
there remains a possible discrepancy of as much
as 5 keV between experimental and theoretical
values for the binding energy of the 1S muon in
lead.® ' This apparent discrepancy (whose ex-
istence is not absolutely certain) has been attribu-
ted to an underestimate of the nuclear-polariza-
tion effect in present theoretical calculations.®:°
Another possible source is a so far undiscovered
anomalous muon-nucleon interaction (which we
have implicitly included in H’). If this hypothetical
interaction were due to a central force, it is clear
that it would be too weak to have any appreciable
effect on the isomer shift. If it were to depend on
the relative angular momenta involved, its main
effect would be similar to that due to the magnetic
interaction between the muon and the nucleus, and
we will discuss this possibility when we discuss
Hy,.

The contribution of the nuclear-polarization
Hamiltonian B, to the isomer shift is difficult to
calculate explicitly, but we may make the follow-
ing observation about its probable magnitude,
based on the calculations of Chen!! and Skardham-
ar'? (each of whom independently predicts about a
6-keV increase in the 1S muon binding in 2®Pb due
to Hp). Nuclear polarization does not contribute
to the muon binding energy in first-order perturba-
tion theory, and in second-order the effect comes
primarily from virtual excitations of the nucleus
to highly collective states. For this reason,
changes in the nuclear polarization due to changes
in the state of the valence particle are probably
negligible. Also, the total angular momentum of
the nuclear state is evidently unimportant, since
the ¥ and §* states in *®Bi show approximately
the same isomer shift. It should be recalled that
these states are both almost entirely a 14,,, pro-
ton coupled to a 3~ core vibration. The energy
denominators for virtual multiple transitions with
1= 2 are large enough and their total contributions
small enough that they contribute negligibly to the
isomer shift. It is not possible at present to reach
as firm a conclusion about the contributions of /=0
and /=1 excitations. A definite conclusion must
await further calculations, though it would be sur-
prising if they contributed as much as 1 keV to
the isomer shifts. In what follows, we assume
A(H,)=0. This assumption is subject to greatest
doubt for the collective states around 2.6 MeV.
The nuclear-polarization effect should be greater
for these states than for the ground state, causing

A(H,) to be negative. The reason for this is that
the spectrum of excited states available by /=0 or
1=1 transitions from the 3~ state contains more
members of lower energy than the spectrum avail-
able from the ground state.

The effect of the magnetic interaction Hamil-
tonian H, on the isomer shift has been studied by
Gal, Grodzins, and Hiifner.® The main effect is
to split each nuclear state into an unresolved dou-
blet, so that to obtain AE,, one must average
Eq. (1) in the correct way over the members of
the relevant doublets. It is known that the initial
populations of the upper pair of levels are not sta-
tistical. In addition, there is usually a fast inter-
doublet magnetic dipole transition between the
higher pair of states, which produces a preferen-
tial population of the lower member of the doublet
for decay to lower states. The splitting depends
in an important way on the distribution of magnetic
moment within the nucleus, and at present there
is no direct experimental evidence nor reliable
theoretical prediction of what this should be.*
Calculations indicate corrections in 2°"Pb and 2%°Bi
of the order of 0.5 to 1 keV. We should note that
since these corrections rest heavily on theoretical
calculations of the hyperfine splitting of the nu-
clear levels, an anomalous spin-spin muon-nu-
cleon interaction which is small enough not to have
been seen so far could make a substantial differ-
ence in AE ..

Effect of Change of Coulomb Binding Energy
Radial-Moment Interpretation

Thus we are left with the first term in Eq. (1)
as the dominant term in the isomer shift. In the
coordinate representation we write

AE, = —e f P8 - P]plsv,s

= [rarg® 90 [aalo?® - o0 @], (@)

where we have used Green’s theorem in the sec-
ond step. The spherically symmetric quantity
29 (#) is the potential generated by the muon
charge density, and it satisfies

;Zf"; [72 %&S’ (’r):l = 4mer gl (") hs(r) -

The quantity p'¥(¥) represents the average charge
density of the nucleus in state j, normalized to Ze.
For our calculations we use the relativistic muon
wave function and calculate ¢S numerically,
though there are useful approximations that one
may make for ¢ which lead to simple physical
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interpretations of the isomer shift. We discuss
these next.

Ford and Wills found by a semiempirical meth-
0d'® that a particular transition in a given muonic
atom is sensitive to a specific and generally non-
integral moment of the nuclear charge density. In
particular, they found that small changes in the 1S
binding energy in Pb were proportional to changes
in the radial moment (»!*°). Following Ford,'® we
notice that Eq. (2) tells us that if we can write to
a good approximation,

¢4 (r)=A+Br*, (3a)

in the regions where »2 [[p9) (F) - o (F)]dQ is ap-
preciably large, then we have

AE = ZeBA(r®) .
Barrett'” pointed out that fits of the form
¢(r)=A+Brke™r | (3b)
which lead to
AE = ZeBA(rte =Ty,

can increase the accuracy of analysis for many
transitions.’® It turns out that this additional ac-
curacy is not needed at present in analyzing the
isomer shift, a point which we will demonstrate
in Sec. IX. We will content ourselves for the time
being with asserting that to sufficient accuracy,
one can interpret the isomer shifts in lead and
bismuth by means of the formula

AR, = CAE,,

with k=1.1 and C=1.25 fm/MeV. The quantity R,
is the Ford-Wills equivalent radius, defined by

R, =[5(k+3) M) x.

With accuracy that is good enough for qualitative
considerations, we may make a further approxi-
mation and set k=1 and C=1.2 fm/MeV. Though
this integral moment is somewhat more conve-
nient to deal with, the results thereby obtained

can be used only as a rough guide, a point which
will be demonstrated in Sec. IX. We should note

in addition that since C is near 1 fm/MeV, the
measured isomer shifts indicate changes in nuclear
radius of a few thousandths of a fermi.

III. NUCLEAR MODEL, METHOD OF CALCULATION
OF ISOMER SHIFTS

Throughout this paper, the nucleus under con-
sideration is assumed to consist of a single parti-
cle or hole coupled to core vibrations by means of
the coupling Hamiltonian®®

Hc=k(r))26>\uy)\y(9; ¢); (4)
b

where the form of k(») depends on the parametriza-
tion used in describing the average single-particle
potential. If we write

V()= Vir - R(8, 4’)3’40)’

where A, is a surface-thickness parameter and R
is a radial parameter which contains all the angu-
lar dependence of V and is written

R=R/[1+ 25 By, Yy ,(6, &), (5)
Au
we get
dv
k(r) = —ROE .

The factor y is a function of the deformation pa-
rameters 8, , and is inserted to conserve volume,
if necessary. Since the Hamiltonian H, includes
only the first-order terms in 8, ,, which conserve
volume automatically, we may sety=1. We should
note that in most treatments the factor R, in k(»)

is replaced by », due to a different parametriza-
tion of the deformed single-particle potential.
However, we have found that the differences thus
obtained are unimportant.

We expand the nuclear wave function in the direct
product basis of core and single-particle states,
with the amplitudes of admixture being determined
by H, and the uncoupled eigenvalues. In order to
calculate isomer shifts for the coupled wave func-
tions, it is necessary to obtain charge densities
and calculate isomer shifts for the single-particle
states and core states separately. We calculate
the single-particle wave functions in a modified,
energy-dependent Woods-Saxon well with spin-
orbit coupling, with the unbound states being han-
dled by a method which is described in the next
section. The proton core is assumed to be approxi-
mately describable by the volume-conserving den-
sity function

p(r —c(6, ), a)

9p
zp(r_co;a)*”coé—_ EB)\HY)\M
C [B=0 ap
a%p a, 9
12 2 2 2 9P
ded Dl P 17, b T8 20
NV Mlbc?|go, 4may dc|goo)’

(6)

where a, = [8p/oc|s. 7?dr and a, = [82p/5 c¥ 5. #2dr,
and we have used the same approach as in param-
etrizing the single-particle potential. That is,
(8, ) =coll1+335 B2, ¥2,(6, ¢)], and a is a sur-
face-thickness parameter. The second term in
braces appears by virtue of the assumption that
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volume is conserved. We have neglected the sec-
ond-order terms B, ,°Y, ,* because they contribute
nothing.

We note that odd powers of j3, . have expectation
value zero, and that

o T
OMEVIPES 2 (COVERE

where Eunk u is the number of phonons present of
mode X\, Zw, is their energy, and ¢, is the nuclear
stiffness parameter for mode 1. If we integrate
Eq. (6)-over angles, this allows us to write for the
purpose of computing the isomer shift due to the
core, with third-order accuracy in the vibrational
parameters,

<fd$2p(7 -c(6, ¢), a)>

7w
=4mp(r - coy @) +3 o ] Ezi-zﬂj(znwu)

B:o%

f a@lp(Tny,=1) = p(Dn, ,=0)]
[ [

o
ac?

_% 3
g=0 @1 ac

X

This gives us

w&u}ﬁ _% 2
© 2¢y (8cP|g=0 @ BC|p=0)’

This is the quantity which is to be inserted into
Eq. (2), which then represents the isomer shift in
a core transition from a state with one phonon of
mode X to the ground state, assuming that the
vibration is volume-conserving. The quantity
(hw, /2¢y)*2, which we call the amplitude of vibra-
tion, may be extracted from observed collective
transition rates. The amplitudes which we use
throughout this paper were so obtained® 2°:2! and
are listed in Table II, along with the experimental
vibrational energies.

We have chosen one of the simpler ways of de-
scribing a volume-conserving vibration. More
complicated ways appropriate for large deforma-
tions can be shown to lead to negligible (and prob-
ably physically meaningless) differences here.

TABLE II, Vibrational parameters.,

Fwy,
AT (w, /2¢y) V2 (MeV)
2* 0.025 4.07
3- 0.042 2.615
4+ 0.024 4.30
5” 0.028 3.20

RINKER 4

Our volume-conservation requirement defines the
volume of the nucleus as

V= p—(l(ﬂ fp('r)de’r ,

and requires it to be independent of all g, u- For
our calculations we used a Fermi function for the
spherical charge distribution, with parameters
¢o=6.6 fm and ¢=0.53 fm. Of the variety of effects
which may result from using different charge-
density functions and parametrizations, probably
the largest comes from the fact that the deriva-
tives are inversely proportional to powers of a,
and that the skin thickness for any smooth distri-
bution is known to only 5 or 10%.22 Due to cancel-
lations, however, the errors therby induced in
the isomer shift are only about 1 or 2%.

IV. CALCULATION OF ISOMER SHIFTS
IN *Bi IMPLIED BY THE MINNESOTA

WAVE FUNCTIONS

Calculations of 2®Bi wave functions perturbed to
first order by H, have been made by Broglia®
using as a basis 11 of the lowest single-proton
states along with the set of core states which con-
sists of the ground state and excited states with
one phonon of mode A=1, 2, or 3. He used k(r)
= —ydV/dr.

As a preliminary exercise, we calculated isomer
shifts for his admixtures, using the vibrational
parameters which he reported (and which coincide
with ours for X=2 and 3) and a set of single-parti-
cle wave functions which we had calculated with no
serious attempt to fit the observed single-particle
energies. The results are listed in Table III, nor-
malized to zero for the 4§~ ground state.

The agreement between these calculations and
the experimental numbers is poor, but we may
make the following observations about the results.

TABLE III, Isomer shifts relative to the ground state
in 209Bj obtained from Minnesota wave functions. All en-
ergies in keV,

Contributions E;, E;
State from (Theory, (Exp)

125" Core 2.6

Single particle -0.2

Total 24 6.5+1.0
%—" Core 2.5

Single particle -0.4

Total 2.1 7.1+£1.0
L3 Core 0.5

Single particle 4.9

Total 54 34+1.0
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The 4 and 4* states are known to be of nearly
pure single-particle character, and the $¥* and £*
are essentially octupole core vibrations coupled
to the 1k,,, single-particle state. The latter fact
shows up well in the near equality of the predicted
isomer shifts for these two states, as well as in
the experimental numbers. It appears that an in-
crease in the contribution from the core by a fac-
tor of about 2.5 and a decrease in the contribution
from the 14,4,, single-particle state by a factor of
about 0.5 is needed to obtain agreement with ex-
periment,

V. METHOD OF CALCULATION OF NUCLEAR
WAVE FUNCTIONS

In order to find the dependence of the results on
the parameters and approximations used, we re-
calculated the amplitudes of admixed states by
diagonalizing the Hamiltonian

Hy, =H(S) +H(P) +H,

to all orders in a variety of direct product bases.
H'S) is Bohr’s surface Hamiltonian, and H® is the
Hamiltonian for the valence particle in the appro-
priate spherically symmetric potential. We took
k(r)= =R,dV/dr.

The single-particle wave functions were ob-
tained by numerical integration using Hamming’s
method,? whose accuracy was carefully investi-
gated and found to be substantially superior to the
usual Runge-Kutta method. We expect numerical
errors in our eigenvalues to be less than 0.2 keV,

with corresponding accuracy in the wave functions.

The potential used in H® was

V=V )+ Vi () + Ve, (),
where for »>1 fm,

V(r)= =Vy(E)/(1+e"F/40),

2 T -
ﬁ) —l——s—d—Vs(r).

Vi) = =X ( 2v dr

mc
For <1, the above expressions were set equal

to their value at »=1 so that a power series solu-

tion about the origin could be obtained, in order

to avoid integrating numerically through the angu-
lar momentum barrier. The Coulomb potential
V., was taken to be that due to a uniform charge
distribution of radius R,=6.6 fm, a number taken
from muonic-atom data. The parameters R,, A,,
and A, were taken to be adjustable.
We' allowed the strength of the potential to be

velocity-dependent in the following way: We set

Vo(E)=V,(0) + CzE,

where V,(0) and Cj are adjustable parameters for
a given nucleus, and V,(E) is the potential well
depth for a state of energy E. Final values of E
and V,(E) were obtained by an interative procedure.
We were unable to get reasonable fits to the ob-
served levels in 2°°Bi with C;=0, since the known
energy differences 2f;,,-2f,,, and 1i,,,-1k,,, are
in that case nearly independent of everything ex-
cept A;,, and a single value of A, could not be
found to fit both differences. We were able to get
good fits, however, with C;#0. The parameters
used for two different sets of wave functions are
listed in Table IV, and the corresponding single-
particle energies and isomer shifts (measured
from the 14, state) are shown in Table V. Set 1
represents a good fit as it is to the observed ener-
gy levels, and Set 2 represents a good fit when the
perturbations due to the core are taken into ac-
count with a particular choice of basis (to be dis-
cussed later).

"Even with Cz#0, it was not possible to obtain a
good fit to the observed levels of 2°7Pb. We attri-
bute this to the inadequacy of the simple diagonal
pairing interaction which we assumed.?® The pa-
rameters of our best fit are shown in Table IV,
and the corresponding single-particle energies
with pairing corrections included are listed in Ta-
ble VI. We have also included in Table VI the iso-
mer shifts which would exist if the neutron had
charge e. This was done so that we could investi-
gate the possibility that an “effective charge” of
the neutron might describe the response of the
core to its motion.

We represented the unbound proton states by the
resonances which were found by applying the arti-

TABLE IV, Potential parameters.

Binding of
lowest single-
V(0) R, Ay Ago R, Cp particle state
(MeV) (fm) (fm) (fm) (MeV)
20981 Set 1 63.0 74 0.74 25.0 6.6 0.40 —3.536(1hy,,)
2098 Set 2 62.0 7.4 0.71 22.4 6.6 0.30 —3.599(1hg)
07pp 46.5 7.31 0.657 32.5 0.16 —6.887(3py,)

2 Includes pairing energy.
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ficial boundary condition that the wave functions
have zero derivative at the outermost turning point,
a condition which insures that the state thus ob-
tained represents maximum probability that the
proton will be found within the nucleus. Normali-
zation was a problem only for the highest states
considered, due to the small amount of tunneling
through the Coulomb barrier for most of these
wave functions.

VI. CALCULATION OF ADMIXED
WAVE FUNCTIONS

We obtained admixed nuclear wave functions, en-
ergies, and corresponding isomer shifts by diago-

nalizing H, numerically under various assumptions.

We used several different sets of single-particle
wave functions, two of which appear in Table V for
29%Bi and one of which appears in Table VI for
207ph, We used various combinations of the four
known one-phonon, isospin-independent core
states, and for a few runs added hypothetical one-
phonon 6*, 7-, 8*, and 9~ vibrations in order to
get an idea of the effect of more degrees of free-
dom for the core. For all of these hypothetical
states we took (Zw,/2¢,)*%=0.028 and 7w, =3.5
MeV.%¢ Since none of them become admixed by
more than a few percent, the exact values of their
parameters are unimportant.

Incorporation of the giant dipole resonance pre-
sented serious problems. When we used the phe-
nomenological coupling strength given in Ref. 5,
we found that the nearly pure single-particle lev-
els were lowered by almost 2 MeV with respect to
the nearly pure core oscillations. If this described
the physical situation correctly, it would mean
that the 2.615-MeV 3~ vibration in 2°® Pb should ap-

TABLE V, Single-particle energies and isomer shifts

pear at over 4 MeV in 2°Bi, which is clearly not
the case. In addition, the results of Ref. 5 require
us to believe that the magnitude of H, for this iso-
spin-dependent vibration is 5 times as large as it
is for the isospin-independent vibrations, and this
does not seem very reasonable. In view of the
above difficulties, we left the giant-dipole state
out of our final calculations, though the calcula-
tions which we did make with it indicate that it is
unimportant in isomer shifts of the low-lying lev-
els.

Since we did not consider single-particle excita-
tions of more than one particle or hole, we decided
that the most appropriate place to truncate our sin-
gle-particle basis was at the minimum energy re-
quired for a combined particle-hole excitation.
This occurs at about 5 MeV in 2°°Bi and about 4
MeV in 2’Pb. The resulting wave functions for
these bases mixed with the four core states of Ta-
ble II are listed in Tables VII and VIII. The single-
particle wave functions and energies used are those
of Tables V and VI, with Set 2 being used for 2°°Bi.
We made use of the fact that in 2°’Pb, the highest
occupied level (3p,,,) contains one particle and one
hole, so that excitations of the particle to higher
levels, as well as excitations of the hole could be
treated within the framework of our model. The
energies obtained for 2°°Bi represent a good fit to
the experimental spectrum, while those for 2**"Pb
are substantially worse but still reasonable.

It should be noted that a predominantly collective
state is mixed with other collective states by H,
only through its pure single-particle components,
as H, connects only those states which differ by
one vibrational quantum. Thus, for example, all
the amplitudes except for two in the higher 3*

TABLE VI. Single-particle energies and isomer shifts

for 209Bi, for 207pb,
Set 1 Set 2 E? E;q b
E Eyq E E; State (MeV) (keV)
State MeV, e Me eV) _
Mev) eV Mev) 1hgy ™t 3429 -2.11
-1 —_
1hy 0.0 0.0 0.0 0.0 2 3.137 0.20
_ _ ligg 1.629 -9.41
2fus 0.916 3.12 1.435 3.54 /2 1
Liggs 1.615  6.38 2.175  6.08 3bsn_ 080 0.58
2152 2.847 -3.87 3.264 —4.18 2S5 0.751 0.11
3D3p 3,105 —5.72 3.747 =6.09 3py,7 0.0 0.0
2 Zosn 3.422 7.32
3P12 3.884 —5.59 4480 —5.94 Ligy 1.505 5.78
280/ 6.283 2.22 7.174 2.01 Sdy 5.180 14.04
1i49)9 6.327 2.82 6.630 2.89 Litsrs 5.205 12.95
1159 7.073 9.22 8.036 8.98 /
3ds 8.657 2.65 9.632 3.38 4549 5.749 24.76
3dyy, 6.436 22.98
2812 9.065 1.94 9.787 1.95 281 6.512 10.09
454/ 9.720 6.29 10.645 9.72
3dg 9,997 4,60 10.862 6.28 2 Hole energies include pairing energy.

b Calculated as if the neutron had charge +e.
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state in 2°°Bi are essentially second-order in the
vibrational parameters. The net effect of this is
that although the addition of more degrees of free-
dom for the core lowers the single-particle ener-
gies substantially, it has little effect on the vibra-
tional states. This must be viewed as a defect in
the present scheme, since the experimental fact
that the 2.615-MeV 3~ level in 2°®Pb appears at
nearly the same energy in 2°°Bi and %°"Pb indicates
that the degrees of freedom which perturb the sin-
gle-particle energies have either a negligible ef-
fect on them or have nearly the same effect on the
energies of the collective states. Since the effect
was found to be nonneglibible in all our calculations,
we must conclude that the picture of noninteracting
core vibrations is incomplete.

The wave functions listed in Tables VII and VIII
probably represent the most reasonable compro-
mise within the framework of our model, though
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the values given for the smallest components
should probably not be taken too seriously.

VII. CALCULATION OF ISOMER SHIFTS

The isomer shifts in Table II indicate that for
the states under consideration the mixing caused
by H, has little effect on the isomer shift. We
found this to be true with only a few exceptions in
all of the calculations which we did. For this rea-
son, the problem of fitting the observed isomer
shifts in 2°°Bi has two nearly independent aspects:
fitting the vibrational shifts, and fitting the single-
particle shifts.

In attempting to fit the vibrational shifts exhibited
strongly in the 4" and 3* states, we may assume
either that the 3~ vibrational amplitude in Table II
is wrong, that Eq. (6) does not adequately de-

-scribe the vibrating charge density, or both. If we

TABLE VII, Energies and amplitudes of the admixed wave functions for 2®Bi calculated using the core states of
Table II and the six lowest proton states of Set 2. All energies in MeV,

Other
septuplet
¥ A g ¥ il i b states
nlj, A 0.0) (0.903) (1.586) (2.808) (3.078) (3.646) (2.867) (2.832)
1ry 0.980
2fup 0.926
liygp 0.883 —-0.136
2fsp 0.872
3037 0.869
3P 0.751
gy, 2 0.117 0.033 0.354
2f13, 2 —0.019 0.097 —0.060 0.229
1igg/, 2 0.124 -0.026
2F 5/ 2 0.060 0.024 0.091 0.054 0.144
3pams 2 0.064 -0.038 0.077 -0.107
3P4, 2 0.063 0.067
1hgs9, 3 0.179 0.982 1.000
2fq9, 3 0.333 ~0.098
Lig39, 3 0.059 -0.302
2f520 3
3p3/2s 3
3P1/2 3
1hgs9, 4 -0.103 —0.058 -0.238 -0.163 —0.572
2fq. 4 0.033 -0.084 0.109 -0.151 0.277
Ligg/p, 4 —0.112 0.023
2fsm, 4 —0.046 —0.046 -0.073 -0.121
3Py, 4 0.020 -0.044 0.085
3pym 4 —0.032 -0.049
kg9, 5 -0.140 £ 0.072
2f19 5 -0.144 0.037
1iyg, 5 —0.060 0.140 -0.126 0.340
2f52: 5 —0.046 0.009
3pgps B -0.083 0.017

3P120 5




2158 GEORGE A. RINKER

assume that Eq. (6) is adequate, we must multiply
the 3~ vibrational amplitude in Table II by about
1.5 in order to reproduce the experimental result.
There are two objections to this, however. One is
that the collective transition rates are fairly well
known,® and they imply the values listed in Table
II. The second is that the over-all energy splitting
of the |3~, 14,,,) septuplet is essentially proportion-
al to the square of the 3~ vibrational amplitude,
and with a suitable choice of basis, the present
model predicts over-all splittings which are al-
ways at least as large as the experimentally ob-
served value of 0.25 MeV (though the level order-

|

ing is not correct).

For these reasons, we were led to question the
form of Eq. (6). Since it seems highly unlikely
that a different volume-conserving parametriza-
tion or a different method of requiring volume con-
servation can make up the really enormous differ-
ence between experiment and theory, we decided
to try dropping volume conservation. This is of
no consequence for the energy levels, since the
changes of core radius being considered are only
a few thousandths of a fermi, and the associated
compressional energy changes may be estimated?®”

" to be less than 1 keV. In addition, any physical

TABLE VIII. Energies and amplitudes of the admixed wave functions for 2'"Pb calculated using the core states of
TABLE II and the eight lowest single-particle or hole states of Table VI. All energies are in MeV.

3 ¥ ¥
nij, A 0.0) (0.692) (0.856)

+ I1- _3_— ,g_+ _é{;l-

(1.577) (2 .275) (3.326) 3 .’006)

3pypt 0.972
2f5 0.964
3pat 0.945

0.953
0.845
0.914

2 0.086 0.089
2 0.109 0.083 0.047
2 -0.084 —0.035 0.068
2

2

2

—0.022 0.076
0.063

0.042 0.177
0.105
0.113
0.065 -0.018
0.015 0.076
0,065
0.012

-0.420 0.159
0.169
0.038 1.000

0.055
-0.145

-0.186

-0.151
-0.039

0.050
-0.162

3?1/2_1: 4

0.082
-0.063

—0.066
0.079

0.041
—0.047

-0.105

-0.052
-0.,028

—0.102

-0.051
—0.021

—0.126
-0.075
-0.070

—0.056
—-0.026

-0.157
—0.122
0.050

0.032
-0.067

289/2 5
144472, 5

-0.125
0.095

-0.069

—0.061
0.068

0.173

0.079
0.044

-0.073
-0.132

-0.079
-0.039

0.175

0.081
0.041

—0.126

-0.046
0.090
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TABLE IX. Energies and isomer shifts in 2%9Bi calculated using the core states of Table II and proton states from

Set 2,

Number of single-

particle states Experimental
in basis: 6 9 11 13 values
E E E E E
State (MeV) (MeV) (MeV) (MeV) (MeV)
¥ 0.0 0.0 0.0 0.0 0.0
(-0.217) (—0.365) (—0.411) (—0.428)
¥ 0.903 0.858 0.836 0.804 0.897
L 1.586 1.497 1.533 1.550 1.608
¥ 2.808 2.675 2.588 2.565 2.822
¥ 3.078 2.937 2.836 2.788 3.108
¥ 3.646 3.584 3.342 3.359 3.624
¥ 2.832 2.980 3.026 2.976 2.491
b 2.832 2.980 3.020 3.037 2.615
¥ 2.832 2.980 2.939 2.956 2.581
o 2.832 2.962 3.008 3.025 2.563
151+ 2.832 2.737 2.780 2.797 2.598
L3+ 2.867 3.010 3.055 3.072 2.600
Lo+ 2.832 2.980 3.026 3.043 2.740
Ejq Ejs Ejs Ejs Eg
State (keV) (keV) (keV, (keV) (keV)
¥ 0.0 0.0 0.0 0.0
¥ -1.85 -1.91 ~1.92 -1.91
L 5,46 5.57 5.55 5.54 34+1.0
& -2.82 -2.80 -2.81 —-2.79
'a ~3.76 -3.80 -3.83 -3.82
¥ -2.93 -345 -3.67 -3.68
$ 6.65 6.53 6.51 6.46
¥ 6.65 6.53 6.50 6.49
¥ 6.65 6.53 6.39 6.38
& 6.65 6.48 6.46 645 7110
U 6.65 6.12 6.09 6.07
L 6.57 6.48 6.46 6.44
L 6.65 6.53 6.51 6.49 6.5+1.0

process (such as a transition rate) which is sensi-

tive to the first-order terms in an expansion in

powers of §8,, is not capable of providing informa-

tion on the matter, since these terms conserve

volume automatically.

We may generalize Eq. (6) to describe a non-

volume -conserving vibration by allowing the sec-

ond term in braces to have adjustable magnitude.
Charge must still be conserved, however, and to
do so we multiply the right side of Eq. (6) by a
factor (1 —¢€), where € is second order in Bxu:
This is equivalent through second order to adding
a term inside the braces proportional to p(¥)|4-,
and of magnitude such that the integral over all
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space of what is in the braces is zero. The re-
sult is

d
p(7 =0, 0), d=pla-o+coss| LYo
0Ap

B=
+ 9 )\ZEIBMJ IYMAI 3(,‘2 8=0

_(1_a)_‘fL8_P

_aa—zpl -
4ra, dc Ze'BTo

B=0

where « provides a measure of the change of vol -
ume. The case ¢=0 corresponds to volume con-
servation, while a=1 corresponds to setting y=1
in the charge-density version of Eq. (5). We ob-
tained reasonable fits to the observed vibrational
isomer shifts only with ¢ in the vicinity of 3,
which corresponds to an average value of ¢ in the
vibrational state which is larger than ¢,. Thus we
conclude that the vibrations result in an increase
in the volume of the nucleus. All results in the
remainder of this paper reflect the choice a=3.

We should note in addition that if the nuclear
polarization by the muon contributes a negative
shift for these transitions, which we concluded
was likely in Sec. II, the need to increase the iso-
mer shift contribution from the vibrating core is
even greater.

Energies and isomer shifts for 2°°Bi calculated
under various assumptions are shown in Tables
IX and X. Table IX shows the effect of changing
the number of single-particle states in the basis.
Single-particle energies and wave functions from
Set 2 were used, with the lowest 6, 9, 11, and 13
states forming the basis along with the four core
states of Table II. The numbers in parentheses in
the first line of the energy columns represent the
shift in energy of the ground state due to the ad-
mixtures of other states. It should be noted that
the energy splitting of the |37, 14, s2) septuplet is
about 0.27 MeV in all cases except the first, lend-
ing support to the contention that the 3~ vibrational
amplitude used is not too small.

Table X shows the effect of varying the core
states in the basis. We have used all 13 proton
energies and wave functions of Set 1 (so that to
see the effect of changing from Set 1 to Set 2 we
may compare column 2 of Table X with column 4
of Table IX). The splitting of the septulet increas-
es slightly when the number of core states is in-
creased, but in all cases it is >0.25 MeV.

A qualitative feature of all our calculations,
which is exhibited in Tables IX and X, is that the
isomer shifts are generally slowly varying func-
tions of the variables involved. The only excep-
tion which we found to this rule occurs when a near
degeneracy occurs in two admixed wave functions

RINKER 4

of the same spin and parity. In this case, the am-
plitudes of admixture become rapidly varying func-
tions of the variables and the resulting isomer
shifts are sensitive in an unphysical way to the pa-
rameters used. The only example of this effect of
interest which we found involves the 3* state in
20°Bj, and the result may be seen in the unusually
low value of the £* isomer shift in column 3 of
Table X. The low value of the ¥* isomer shift in
the same column is probably due to the same ef-
fect but in a less marked way. When this occurs,
of course, it is necessary to determine whether
the near degeneracy really exists or is merely an
unfortunate result of a particular choice of vari-
ables. It is worth noting that the nearly pure sin-
gle-particle states are generally too low in energy
to encounter nearly degenerate admixed states of
the same spin and parity.

Though the experimental isomer shifts for the
3" and ¥* states are well reproduced for all cases
except one in Tables IX and X, none of the calcula-
tions which we did came very close to the experi-
mental value for $* state. Evidently the core re-
adjusts to partially compensate for the change in
the single-particle state. Table X shows that add-
ing more degrees of freedom for the core pro-
duces a small effect in this direction, but it is not
nearly enough.?®

Energies and isomer shifts calculated for 2°"Pb
under various assumptions are shown in Table XI.
Except for the last column, we have used the sin-
gle-particle energies and wave functions listed in
Table VI, and the number of core states and single-
particle states used appears at the head of each
column. Column 5 shows the results of using the
same wave functions to calculate the matrix ele-
ments of H, but adjusting the single-particle en-
ergies so that the energies of the admixed states
are close to the experimental energies. In all the
calculations, the 4~ isomer shift is much larger
than the other nearly pure single-particle shifts,
in qualitative agreement with the experimental re-
sults. However, neither it nor the 3~ shift is near-
ly large enough. It appears again that the proton
core is responding strongly to the single-particle
motion in a way which is not accounted for by the
present model. It also seems fairly clear that the
proton core responds more strongly to a valence
neutron than a valence proton, since the discrep-
ancies in 2°"Pb are substantially larger than the
one in 2%°Bj.

VIII. MONOPOLE CORE READJUSTMENT

The weak-coupling model takes into account
changes in shape of the core in response to single-
particle motion, but it has nothing to say about
over-all changes in size of the self-consistent po-
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TABLE X. Energies and isomer shifts in 2Bi calculated using the 13 proton states of Set 1 and varying numbers
of core states.
Core states 2%3-4%5- Experimental
used: 3~ 2+t3-4*+5~ 6*7-8*9- values
E E E E
State (MeV) (MeV) (MeV) (MeV)
2 0.0 0.0 0.0 0.0
(—0.184) (—0.442) (—0.953)
-
2 0.454 0.294 0.198 0.897
1
il 1.175 1.021 0.810 1.608
¥ 2,575 2.196 1.864 2.822
¥ 2.747 2.177 2.216 3.108
1-
7 3.565 2.856 2.824 3.624
¥ 2.728 2.976 3.476 2.491
3 2.792 3.049 3.559 2.615
1
7 2.712 2.955 3.434 2.581
# 2.778 3.025 3.426 2.563
1
tal 2.574 2.783 3.155 2.598
1
2 2.826 3.077 3.580 2.600
X ;
bl 2.799 3.057 3.568 2.740
Eis ' Eis Eis Eis
State (keV, (keV) (keV) (keV,
9-
3 0.0 0.0 0.0
r -149 -1.54 -1.61
1
§3+ 6.00 5.85 549 34+£1.0
¥ -3.30 -2.71 -1.94
& -4 .89 -3.59 -3.22
1_
7 —4.96 -3.86 —-2.86
¥ 6.51 6.37 6.10
? 6.54 645 6.18
3 6.46 6.29 5.87
9+
27 6.49 6.29 4.23 7.1+£1,0
1
7 6.29 5.95 5.03
13+
2 6.51 6,43 6.18
15+
2 6.55 6.46 6.20 6.5+1.0
tential caused by changes in state of the valence- in the following semiquantitative way.
particle, potential changes which in turn produce If we approximate the nucleon-nucleon potential
changes in the size of the nuclear core. A quanti- by means of a § function, we may write for the to-
tative treatment of this effect requires knowledge tal potential seen by a proton in the nucleus,

of the realistic nucleon-nucleon interaction and - > -
the ability to calculate second- and higher-order V()= Cppp(F) + Cupy(F) ™
effects, since these are probably substantial. where we have assumed that the nn and pp interac-
However, we may look at the first-order effect tions have average strength C; and the np interac-
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TABLE XI. Energies and isomer shifts in 20"Pb calculated using varying numbers of core states and single-particle

states.

Number of core states:

Number of single- 4 4 8 4 .
particle states: 8 8 13 13 8 Experimental
values
E E E E E? E
State _(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
+ 0.0 0.0 0.0 0.0 0.0 0.0
(~0.391) (~0.557) (~0.617) (~0.908) (~0.384)
& 0.692 0.453 0.792 0.636 0.587 0.570
¥ 0.856 0.877 0.929 0.947 0.897 0.897
L 1.577 1.254 1.607 1.323 1.620 1.633
1 2475 2.252 2.561 2.359 2.389 2.339
& 3.326 3.026 3.489 3.276 3.422 3.43
¥ 3.006 3.172 3.110 3.384 2.999 2.610
It 3.006 3.172 3.104 3.361 2.999 2.655
Eys Ejs Eis Ejs Ejs Eis
State (keV) (keV) (keV) (keV) (keV, (keV)
¥ 0.0 0.0 0.0 0.0 0.0
¥ 0.14 0.21 0.05 0.11 0.11 0.4+0.6
ol 0.28 0.25 0.20 0.7 0.27 1.9£0.6
f 0.22 0.36 0.19 0.28 0.24
T 1.42 1.20 1.21 0.96 1.30 6.4+0.6
¥ 0.49 0.57 0.36 0.43 0.50
¥ 6.57 6.49 6.00 5.79 6.57
¥ 6.57 6.49 6.11 5.84 6.57

2 Single-particle energies fixed so that the resulting mixed states have energies which are nearly correct.

tion has strength Cy. The densities p,(F) and p,(F)
are those for the protons and neutrons, respective-
ly, and their normalizations determine the scale
for C; and C,. A change in proton or neutron den-
sity gives for the fractional change in potential

AV,(F) _ CLap,(F) + Cytp,(F)
V,F) (ZC,+NCpp,T) ’

where p,(f) is assumed to describe the radial de-
pendence of the total proton or neutron densities
but is normalized to represent one particle. If we
assume that the protons in the core respond to lo-
cal changes in potential like a degenerate Fermi
gas, we have

Ap(E)_ 3 Ap,(E)+(Cy/Cr)Ap,E)
p(T)  2p(F)  [Z+(Cy/Cy)N]

where p,(f) represents the density of protons in the

2

core and is equal to Zp,(¥). Thus if Ap,(T) and
Ap,(T) represent changes in state of a valence pro-
ton or neutron, the above result gives these par-
ticles a total effective charge of

L Cu 3
¢C, [1+(Cy/CWN/2)] (82)

for the neutron, and

€n

3/2
Y TG, /c W)

for the proton.

The idea of using Cy and C, as adjustable param-
eters in calculations of nuclear properties was ap-
parently originated by Seyler and Blanchard.?®
Since then others have used similar approaches
with varying results, as C, and C, depend on the
form of the interaction assumed (not generally a
6 function) and the data being fit. If we use Eq. (7)

e,=e (8b)
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TABLE XII. Isomer shifts in 2¥Bi calculated with the
Ford-Wills and Barrett approximations, using the wave
functions of Table VII, All energies are in keV.

Ford- Ford-
Wills Wills Barrett Exact
k: 1.00 1.10 2.315
B: 1.10x107% 8,28x107% 1.570x107°
o 0.134
State Ey, Ej Ej, E;,
¥ 0.0 0.0 0.0 0.0
¥ -2.23 -1.91 -1.85 -1.85
L+ 544 543 546 5.46
e -3.23 -2.91 -2.82 -2.82
- -5.28 -4.58 -3.77 -3.76
L+ —4.07 -3.53 -2.93 -2.93
¥ 6.82 6.75 6.65 6.65

to reproduce the potential well strengths in Table
IV, we get C,/C,=5. From Eq. (8a) we see that
e,/e varies between 0 and 1 as a function of C,/C;,
for the nuclei under consideration, since Z/N =§-,
and Eq. (8b) tells us that e,/e varies from 3 to 1.
For Cy appreciably greater than C;, both the pro-
ton and neutron have effective charges of about e,
with magnitudes which are fairly insensitive to the
actual value of Cy,/C;.

If incorporation of an effective charge is to re-
produce the isomer shift of the §* state in 2°°Bi,
however, it must be less than e for the proton.
Thus we must make the hypothesis that there is a
second-order effect, larger than and in the oppo-
site direction from the first-order effect, which
produces an effective charge of the proton of
about 0.5¢. This is not unreasonable, but it is
certainly beyond the scope of the present discus-
sion.

We made several isomer shift calculations for
207ph in which we allowed the effective charge of
the neutron to be nonzero. Typical results are ex-
hibited in Fig. 2, where we have plotted the isomer
shifts relative to the ground state vs e,/e for the
three measured excited states. The basis used
was that of column 1 of Table XI. The cross-
hatched areas represent the experimental shifts,
and it is quite obvious that no single value of e,
can reproduce these numbers. Thus it appears
that an effective charge approach is not adequate.

8777000257777 7
6 772
51 i
41 _
3 N
~ 2 %% % W
3! /27
ém (o] /f o2z 92,5609
w2-1[-572 —
-2 32~ .
=3 772 .
_4_ -4
_5_ —
_6»— -
L | L I ! L |
-4 -3 -2 - o0 | 3 4
en/e

FIG. 2. Predicted isomer shifts in 2" Pb relative to the
ground state as a function of neutron effective charge.
Cross-hatched areas represent the experimental isomer
shifts.

IX. COMPARISON OF EXACT CALCULATIONS
WITH THE FORD-WILLS AND BARRETT
APPROXIMATIONS

All of the above calculations are exact from the
point of view of the muon, since the exact muon-
generated potential was used in Eq. (2). Results
obtained by using the approximations (3a) and (3b)
for various values of the parameters involved are
shown in Table XII, using the 2°°Bi wave functions
of Table VII. The first column of isomer shifts
contains the result of a Ford-Wills fit where &
was forced to be 1, and the next two columns con-
tain results from best fits over appropriate re-
gions for the two approximating forms. The exact
result is shown in the last column. The accuracy
of the Barrett fit is remarkable. However, the
simpler Ford-Wills form produces errors which
are smaller than the present uncertainties in
AE.,,and AEy¢, and thus we see semiempirical
evidence that the equivalent radius interpretation
discussed in Sec. II is justified. It is also clear
from the first column that interpretation of iso-
mer shifts in bismuth and lead in terms of changes
in the first radial moment of the nuclear charge
distribution is only qualitatively justified.
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