# Study of Low-Lying States in <sup>53</sup>Fe by the Reaction ${}^{50}Cr(\alpha, n\gamma){}^{53}Fe^{\dagger}$

S. Cochavi\* and K. Nagatani Brookhaven National Laboratory, Upton, New York 11973 (Received 3 August 1971)

Low-lying states in <sup>53</sup>Fe have been studied via the reaction <sup>50</sup>Cr( $\alpha, n\gamma$ )<sup>53</sup>Fe. A Ge(Li)  $\gamma$  spectrum was measured in coincidence with neutrons to identify low-lying states and their  $\gamma$  transitions. A threshold study with a Ge(Li) detector was made at bombarding energies between 5.6 to 10.0 MeV. The  $n-\gamma$  and the threshold studies together with  $\gamma-\gamma$  coincidences suggest the existence of states at 741±1-, 1328±1-, 1423±1-, and 1697±1-keV excitation energies. An  $n-\gamma$  delayed-coincidence measurement has been done for the 741-keV  $\gamma$  ray. The resulting mean life is  $\tau = 92 \pm 2$  nsec.

#### I. INTRODUCTION

Relatively little experimental information exists regarding the excited states of the <sup>53</sup>Fe nucleus. The only available information on the levels of <sup>53</sup>Fe is the neutron-pickup studies <sup>54</sup>Fe(p, d)<sup>53</sup>Fe<sup>1</sup> and <sup>54</sup>Fe(<sup>3</sup>He,  $\alpha$ )<sup>53</sup>Fe,<sup>2, 3</sup> and the  $\gamma$  decays of the 2.5min isomer in <sup>53</sup>Fe.<sup>4, 5</sup> Sherr *et al.*<sup>1</sup> identified four excited states in <sup>53</sup>Fe below 3.2 MeV and made spin and parity assignments to two of them. Trier *et al.*<sup>2</sup> reported three additional levels in <sup>53</sup>Fe and suggested tentative spin-parity  $\frac{3}{2}^{-}$  for the 757-keV state. The estimated uncertainty for the energy levels in the neutron-pickup studies is ±15 keV. Eskola<sup>4</sup> reported additional energy levels obtained through the decay of the 2.5-min isomer at 3.04 MeV.

Properties of the <sup>53</sup>Fe nucleus are interesting with respect to shell-model theory, since it has two proton holes and one neutron hole in the doubly closed shell of <sup>56</sup>Ni. Several theoretical calculations<sup>6-8</sup> have been made for the energy levels of <sup>53</sup>Fe arising from the  $(\pi f_{7/2})^{-2}(\nu f_{7/2})^{-1}$  configuration. Calculations of energy levels in <sup>53</sup>Fe arising from configurations other than  $1f_{7/2}$  have not been reported.

The purpose of the present experiment is to study low-lying states in <sup>53</sup>Fe and their electromagnetic transitions via the reaction <sup>50</sup>Cr( $\alpha$ ,  $n\gamma$ )<sup>53</sup>Fe. This work presents: (1) a  $\gamma$ -ray spectrum in coincidence with neutrons which isolates  $\gamma$  transitions in <sup>53</sup>Fe; (2) a study of the reaction <sup>50</sup>Cr( $\alpha$ ,  $n\gamma$ )<sup>53</sup>Fe thresholds in singles and a  $\gamma$ - $\gamma$  coincidence measurements; and (3) an  $n-\gamma$  delayed-coincidence measurement.

#### II. EXPERIMENTAL METHOD AND RESULTS

#### A. ${}^{50}Cr(\alpha, n\gamma)$ ; Singles and Neutron-Coincidence $\gamma$ Spectra

The low-lying states of  ${}^{53}$ Fe as found by various studies are shown in Fig. 1. In order to determine

which states are significantly populated in the reaction  ${}^{50}Cr(\alpha, n\gamma)$ , a preliminary investigation was made of singles spectra with a Ge(Li)  $\gamma$ -ray detector. The  $\gamma$  rays were produced by bombarding a thick layer of  ${}^{50}Cr_2O_3$  (which stopped the beam) on Bi or Ta backing, with 10.0-MeV  $\alpha$  particles.  $\gamma$ rays were detected with a 15-cm<sup>3</sup> Ge(Li) detector placed at 90° to the beam direction. The detector energy resolution was approximately 2.6 keV for the 1.332-MeV  ${}^{60}Co \gamma$  ray. Figure 2 shows the resulting  $\gamma$ -ray spectrum. For the  $\gamma$ -energy measurement a run was taken with the beam on together with standard sources.

Figure 2 shows  $\gamma$ -rays singles spectrum taken at  $E_{\alpha} = 10.0$  MeV. The energies of the prominent  $\gamma$  rays are listed in Table I together with the corresponding nuclei and the levels involved in the transitions. Most of the prominent  $\gamma$  rays correspond to  $\gamma$  transitions in <sup>53</sup>Mn and they have been observed previously by means of the <sup>52</sup>Cr $(p, \gamma)^9$ and <sup>53</sup>Cr $(p, n\gamma)^{10}$  reactions with the use of Ge(Li) detectors. The 783-keV  $\gamma$  ray corresponds to the  $\gamma$  decay of the first excited state in <sup>50</sup>Cr; it is populated strongly via the <sup>50</sup>Cr $(\alpha, \alpha')$  reaction. The 1011- and 1328-keV  $\gamma$  rays were observed previously in the decay of the 3.04-MeV isomer in <sup>53</sup>Fe.

In order to isolate the electromagnetic transitions in <sup>53</sup>Fe, the  $\gamma$  spectrum in coincidence with neutrons was also measured. The neutron detector was a 2×2-in NE 213 liquid scintillator coupled to an RCA 8575 photomultiplier tube. Its axis was placed at 0° to the beam direction. An appropriate absorber was placed in front of the neutron detector to attenuate low-energy  $\gamma$  rays. Neutron- $\gamma$  pulse-shape discrimination was used to select the neutrons.<sup>11</sup> The neutron-induced proton recoils produce a larger amount of long-lived components than do  $\gamma$ -induced Compton electrons. The time difference between the initial fast component as observed at the anode and the bipolar crossover of the time-integrated linear pulse from a dynode

2083



FIG. 1. States in <sup>53</sup>Fe excited by the reaction <sup>54</sup>Fe(p,d)<sup>53</sup>Fe (Ref. 1), the reaction <sup>54</sup>Fe(<sup>3</sup>He, $\alpha$ )<sup>53</sup>Fe (Ref.2), and the  $\gamma$  decay from the 2.5-min-3.04-MeV isomeric state (Refs. 4 and 5) compared with the present <sup>50</sup>Cr( $\alpha,n\gamma$ )<sup>53</sup>Fe data.

is thus different for neutrons and  $\gamma$  rays. A measurement of this time difference for each pulse with a time-to-amplitude converter (TAC) allows the selection of only neutrons. The neutron- $\gamma$  pulse-shape discriminator is shown in the right part of Fig. 3. The time-difference spectrum, taken for <sup>50</sup>Cr +  $\alpha$  at  $E_{\alpha} = 10$  MeV, is displayed in Fig. 4.

The Ge(Li)  $\gamma$  spectrum taken in coincidence with neutrons for the reaction  ${}^{50}Cr(\alpha, n\gamma){}^{53}Fe$  is shown in the lower part of Fig. 5. A singles  $\gamma$ -ray spectrum for  ${}^{50}Cr + \alpha$  is shown for comparison purposes



FIG. 2.  $\gamma$ -ray singles spectrum obtained at bombarding energy  $E_{\alpha} = 10.0$  MeV. The Ge(Li) detector was placed at 90° to the beam direction. The  $\gamma$  energies in keV units are written above the peaks.

in the upper portion of Fig. 5 with identical gain and dispersion. For this neutron coincidence measurement, the random events were measured and subtracted from the spectrum. A coincidence resolution time of ~70 nsec was used in this measurement. The lower part of Fig. 5 shows five prominent peaks in the energy region up to 2000 keV; their energies are 351, 682, 741, 956, and 1328 keV.

> B. Threshold Study of  ${}^{50}$ Cr( $\alpha, n\gamma$ ) and  $\gamma$  Spectrum in Coincidence with the 741-keV  $\gamma$  Ray

Five prominent  $\gamma$  rays have been observed in coincidence with neutrons. In order to check if these  $\gamma$  rays correspond to levels in <sup>53</sup>Fe a threshold study has been carried out. The 351-keV  $\gamma$ ray peak appears also at a bombarding energy of  $E_{\alpha} = 5.60$  MeV which is below the threshold to a 351-keV excited state in <sup>53</sup>Fe; therefore, the 351keV  $\gamma$  ray is not likely to correspond to a  $\gamma$  transition in <sup>53</sup>Fe. It is populated with a relatively large yield at the low bombarding energy of  $E_{\alpha} = 5.6$  MeV; thus, because of the Coulomb barrier, it probably corresponds to a  $\gamma$  transition of a medium or light contaminant (A < 70).

Figure 6 shows nine  $\gamma$  spectra of <sup>50</sup>Cr +  $\alpha$  at bombarding energies of 5.84 to 10.0 MeV. The 741keV  $\gamma$  ray appears in the  $\gamma$  spectrum taken at 6.90 MeV, while none of the 682-, 956-, and 1328-keV  $\gamma$  rays are seen. At higher bombarding energies the 682-, 956-, and 1328-keV  $\gamma$  rays are also observed as shown in Fig. 6. The 741-keV  $\gamma$  ray has a large yield at  $E_{\alpha}$ =9.5 MeV as shown in Fig. 6; a  $\gamma$  spectrum gated by the 741-keV  $\gamma$  ray was measured at this energy using Ge(Li) detectors. The contribution of Compton events below the 741-keV peak has been measured by gating with a slightly higher  $\gamma$  window and has been subtracted from the spectrum. Figure 7 shows the resulting  $\gamma$  spectrum which shows that the 682- and 956-keV  $\gamma$  rays are in coincidence with the 741-keV  $\gamma$  ray. A coincidence resolution time of ~80 nsec was used in this measurement.

#### C. Neutron- $\gamma$ Timing Measurement with the 741-keV $\gamma$ Ray

The lifetime associated with the 741-keV  $\gamma$  ray was measured by an  $n-\gamma$  delayed-coincidence technique. The measurement was carried out at  $E_{\alpha}$ = 10.0 MeV using a 2×2-in. NaI scintillator placed at 90° for detection of the  $\gamma$  rays. Neutrons were detected by the NE 213 scintillator placed at 0°. Fast-timing signals from the NE 213 and NaI detectors were obtained from the anodes. These timing signals start and stop the TAC 2 as indicated in Fig. 3. Time calibration was made with airdielectric trombone delay lines.

Slow-coincidence requirements were used in conjunction with the fast timing to isolate the excited state of interest and to minimize the time resolution. For the neutron detector single-channel analyzer (SCA) 1 was adjusted to accept pulses in the neutron energy region 1-3 MeV, and SCA 2 of the

TABLE I. Prominent  $\gamma$  rays from  ${}^{50}Cr + \alpha$ at  $E_{\alpha} = 10.0$  MeV.

| $-\alpha$                             |                  |                                                               |                         |                         |
|---------------------------------------|------------------|---------------------------------------------------------------|-------------------------|-------------------------|
| $\frac{E_{\gamma}}{(\text{keV})}^{a}$ | Nucleus          | $J^{\pi}_{i} \rightarrow J^{\pi}_{f}$                         | E <sub>i</sub><br>(keV) | E <sub>f</sub><br>(keV) |
| 377                                   | <sup>53</sup> Mn | $\frac{5}{2} \rightarrow \frac{7}{2}$                         | 377                     | 0                       |
| 682                                   | <sup>53</sup> Fe |                                                               | 1423                    | 741                     |
| 741                                   | <sup>53</sup> Fe | $\frac{3}{2}\left(\frac{5}{2}\right) \rightarrow \frac{7}{2}$ | 741                     | 0                       |
| 783                                   | <sup>50</sup> Cr | $2^+ \rightarrow 0^+$                                         | 783                     | 0                       |
| 912                                   | <sup>53</sup> Mn | $\frac{3^-}{2} \rightarrow \frac{5^-}{2}$                     | 1289                    | 377                     |
| 956                                   | <sup>53</sup> Fe |                                                               | 1697                    | 741                     |
| 1011                                  | <sup>53</sup> Fe | $(\frac{11}{2}^{-}) \rightarrow (\frac{9}{2}^{-})$            | 2339                    | 1328                    |
| 1120                                  | <sup>53</sup> Mn | $\frac{3}{2} \rightarrow \frac{3}{2}$                         | 2409                    | 1289                    |
| 1289                                  | <sup>53</sup> Mn | $\frac{3^-}{2} \rightarrow \frac{7^-}{2}$                     | 1289                    | 0                       |
| 1328                                  | <sup>53</sup> Fe | $\left(\frac{9}{2}^{-}\right) \rightarrow \frac{7}{2}^{-}$    | 1328                    | 0                       |
| 1441                                  | <sup>53</sup> Mn | $\frac{11}{2} \rightarrow \frac{7}{2}$                        | 1441                    | 0                       |
| 1620                                  | <sup>53</sup> Mn | $\frac{9}{2} \rightarrow \frac{7}{2}^{-}$                     | 1620                    | 0                       |
| 2274                                  | <sup>53</sup> Mn | $\frac{5}{2} \rightarrow \frac{7}{2}$                         | 2274                    | 0                       |

<sup>a</sup> The  $\gamma$ -ray energies are accurate to within 1 keV.



FIG. 3. A schematic diagram of the experimental electronics for the  $n-\gamma$  delayed-coincidence measurement.

neutron discriminator was set to accept from TAC 1 a narrow pulse-height region appropriate to neutrons, as shown in Fig. 4. For the  $\gamma$  detector, SCA 3 and 4 were both fed by its amplifier (AMP 2): SCA 3 accepted only the photopeak of the 741keV  $\gamma$  ray in its pulse-height window, and SCA 4 accepted only a region above the 741-keV photopeak and includes the 956-keV photopeak. The outputs of SCA 3 and 4 were also used to route the corresponding time-delay spectra into different halves of a multichannel analyzer. The resulting time spectrum for the 741-keV region is shown in Fig. 8. From several least-squares fits to different portions of the logarithmic slope the extracted mean life is  $\tau = 92 \pm 2$  nsec. The time spectrum which was associated with the higher window did not show a long-lived component. Therefore, the 92-nsec mean lifetime is associated with the 741keV  $\gamma$  ray. The prompt-resolution function is indicated by the narrow peak at zero time; it was produced by Compton events of higher-energy  $\gamma$ rays that enter the pulse-height window. The time



FIG. 4. Pulse-height spectrum from TAC 1 showing discrimination spectrum of neutron and  $\gamma$ -ray pulses from the NE 213 liquid scintillator.



FIG. 5. The upper part is  $\gamma$ -ray singles spectrum from 120 to 2000 keV for  $E_{\alpha} = 10.0$  MeV and  $\theta_{\gamma} = 90^{\circ}$ . The lower part shows  $\gamma$  rays observed in coincidence with neutrons for a resolving time of ~70 nsec.



FIG. 6.  $\gamma$ -ray singles spectra from <sup>50</sup>Cr +  $\alpha$  obtained at bombarding energies of 5.84, 6.30, 6.90, 7.11, 7.75, 8.50, 9.00, 9.50, and 10.00 MeV. The Ge(Li) detector was placed at 0° to the beam direction. The  $\gamma$ -ray energies in keV units are written above some of the peaks.



FIG. 7. A Ge(Li)  $\gamma$  spectrum gated by the 741-keV  $\gamma$  ray. Coincidence events due to Compton  $\gamma$  rays which fell under the 741-keV peak have been subtracted. The coincidence resolving time was ~80 nsec.

spectrum for the higher  $\gamma$  window gives an upper limit of  $\tau < 2$  nsec for the mean life associated with the 956-keV  $\gamma$  ray.

## **III. DISCUSSION AND CONCLUSIONS**

In this experiment, the mean life associated with the 741-keV  $\gamma$  ray of <sup>53</sup>Fe has been measured to be  $\tau = 92 \pm 2$  nsec. The  $n-\gamma$  and  $\gamma-\gamma$  coincidence study together with the threshold measurement suggests the existence of states at 741 ± 1-, 1328 ± 1-, 1423 ± 1-, and 1697 ± 1-keV excitation ener-



FIG. 8. The experimental decay curve for the 741-keV  $\gamma$  in <sup>53</sup>Fe is shown by the dots and the solid line. The  $n-\gamma$  time-delay spectrum was obtained relative to neutrons from the reaction <sup>50</sup>Cr( $\alpha, n$ )<sup>53</sup>Fe. The slope on the right side of the decay curve corresponds to a mean life  $\tau = 92 \pm 2$  nsec. The sharp peak which represents the time-resolution function is a result of prompt events that satisfy the energy requirements.

gies. The levels at 1328, 1423, and 1697 keV have mean lives of  $\tau < 0.4 \ \mu \text{ sec}$  as determined from the resolving time for the neutron- $\gamma$  coincidence measurement. The detailed discussion of the 741-, 1328-, 1423-, and 1697-keV states will be given below.

#### A. 741-keV Level

This state was found to decay to the ground state via a 741-keV  $\gamma$  ray. A mean life of  $\tau = 92 \pm 2$  nsec was associated with this  $\gamma$  ray. Black, McHarris, and Kelly<sup>12</sup> did not observe any  $\gamma$  transition to this state from the  $(\frac{19}{2})$  3041-,  $(\frac{11}{2})$  2340-, and  $(\frac{9}{2})$ 1328-keV states; therefore, it is likely to have a spin  $j \leq \frac{5}{2}$ . A spin  $\frac{1}{2}$  is excluded by the lifetime result, since the expected lifetime for an L=3 transition is  $\tau \gtrsim 50 \ \mu$ sec. According to the calculation of Scholz and Malik<sup>6</sup> one would expect in this nucleus a  $\frac{3}{2}$  state in the energy region 700-800 keV which is the right energy for this state. The 741  $\pm 1$ -keV level can be associated with the  $(\frac{3}{2})$  757 ±15-keV state observed in the neutron-pickup reactions by Sherr *et al.*<sup>1</sup> with the  ${}^{54}$ Fe(*p*, *d*) reaction and by Trier *et al.*<sup>2</sup> with the <sup>54</sup>Fe(<sup>3</sup>He,  $\alpha$ ) reaction. However, for a  $\frac{3}{2}$  741-keV state one would expect a mean life of  $\tau < 0.1$  nsec. In this case, the lifetime is hindered by a factor of >900; a large hindrance for the E2 transition was also observed in the isotone <sup>51</sup>Cr in the  $\frac{3}{2}$ , 748-keV -  $\frac{7}{2}$ , ground-state  $\gamma$  transition.<sup>13</sup> It is thus feasible to assign the present level as a  $\frac{3}{2}$  state.

Another possible explanation is that the 741-keV state has a spin  $\frac{3}{2}^+$  which requires an *M*2 transition to the ground state and is consistent with the mean life  $\tau = 92 \pm 2$  nsec for the 741-keV state. A  $\frac{3}{2}^+$  hole state is not expected to be populated directly with large yield at low bombarding  $\alpha$  energies; the yield could be explained by a cascade from the 757keV ( $\frac{3}{2}^-$ ) state. However, the transition  $\frac{3^-}{2} \rightarrow \frac{7^-}{2}$  in <sup>41</sup>Ca and <sup>47</sup>Sc is preferred over the  $\frac{3^+}{2} \rightarrow \frac{3^+}{2}E1$  transitions, while here a 757-keV  $\frac{3}{2} \rightarrow \frac{7}{2} \gamma$  transition is not observed. In any case, a spin assignment of  $\frac{3}{2}$  ( $\frac{5}{2}$ ) is suggested for the 741-keV level.

# B. 1328-keV Level

As shown in Fig. 1, 1328- and 1011-keV  $\gamma$  rays were observed<sup>4, 5</sup> in the decay of the 2.5-min isomer of <sup>53</sup>Fe. The order of these  $\gamma$  rays was not established by these studies.<sup>4, 5</sup> The yield of the  $1328 \pm 1$ -keV  $\gamma$  ray is larger than that of the 1011keV  $\gamma$  ray; therefore it is likely from the present study to correspond to a transition from a 1328keV state, and thus it establishes the order of the  $\gamma$  rays in the cascade. This is in agreement with a recent study  $^{12}$  which has shown a weak  $\gamma$  transition from the 3041-keV isomer to this level. The tentative spin assignment of this state made by previous studies<sup>4, 5</sup> is  $\frac{9}{2}$ , this is consistent with the relatively weak yield observed at low bombarding  $\alpha$  energies. The yield of the 1011-keV  $\gamma$  ray is smaller; this is in accord with the higher threshold energy and the high spin,  $\frac{11}{2}$ , of the 2339-keV state.

#### C. 1423-keV Level

The  $\gamma$ - $\gamma$  coincidence study and the threshold measurement suggest that the 682-keV  $\gamma$  ray corresponds to a 1423 - 741-keV  $\gamma$  transition. Thus, the  $n-\gamma$  timing measurement with the 741-keV  $\gamma$  ray gives some information on the lifetime of the 1423keV state, since the neutron window includes neutrons populating this state. No long-lived component besides  $\tau = 92$  nsec is observed in the decay curve shown in Fig. 6, which suggests  $\tau(1423) < 10$ nsec. Black, McHarris, and Kelly<sup>12</sup> did not observe  $\gamma$  transitions from the  $(\frac{19}{2})$  3041- and  $(\frac{11}{2})$ 2340-keV states to the 1423-keV state. In the present study no  $\gamma$  decay from this state to the ground state has been observed [see Fig. 5(b)]. Therefore, it is likely to have a spin  $J \leq \frac{3}{2}$ , which is consistent with the fact that it decays to the  $\frac{3}{2}$  ( $\frac{5}{2}$ ) 741keV state and has a lifetime limit of  $\tau < 10$  nsec.

## D. 1697-keV Level

The  $\gamma - \gamma$  coincidence study together with the threshold measurement suggests that the 956-keV  $\gamma$  ray corresponds to a 1697 – 741-keV  $\gamma$  transition. The  $n-\gamma$  timing measurement with the 956-keV  $\gamma$  ray gives an upper lifetime limit of  $\tau < 2$  nsec. No  $\gamma$  transition from this state to the ground state has been observed in the  $\gamma$  spectrum in coincidence with neutrons. This together with the fact that this state decays mainly to the  $\frac{3}{2}$  ( $\frac{5}{2}$ ) 741-keV state and the lifetime limit  $\tau < 2$  nsec suggest a spin  $J \leq \frac{3}{2}$  for the 1697-keV state.

It should be noted that of the four excited states at 741, 1328, 1423, and 1697 keV, only the  $(\frac{9}{2})$  1328keV state is associated with the  $(\pi f_{7/2})^{-2} (\nu f_{7/2})^{-1}$ configuration according to shell-model calculations of McCullen, Bayman, and Zamick,<sup>7</sup> and Vervier.<sup>8</sup> The  $\frac{3}{2}$  ( $\frac{5}{2}$ ) 741-keV state can be associated with the low  $\frac{3}{2}^-$  state predicted by the Coriolis-couplingmodel calculation of Scholz and Malik.<sup>6</sup> However, the 1423- and 1697-keV states with spins  $J \leq \frac{3}{2}$  are not predicted with this model, and probably correspond to configurations including orbits other than  $1f_{7/2}$ .

In summary, the present study suggests the existence of states at 741, 1328, 1423, and 1697 keV. A spin assignment of  $\frac{3}{2}$  ( $\frac{5}{2}$ ) was suggested for the 741-keV level. Spins of  $J \leq \frac{3}{2}$  are likely for the 1423- and 1697-keV states. A lifetime of  $\tau = 92 \pm 2$ nsec was associated with the 741-keV  $\gamma$  ray. However, more information is needed, such as: (a) a measurement of the neutron energy spectrum by the time-of-flight technique to check if there is another state slightly above the 741-keV level; and (b) a conversion-electron measurement to obtain more definite spin-parity parameters for the 741-, 1423-, and 1697-keV states.

# ACKNOWLEDGMENTS

One of us (K.N.) wishes to thank Dr. D. B. Fossan and Dr. L. L. Lee for the hospitality extended by the nuclear-structure group at the State University of New York at Stony Brook.

†Work supported in part by the U. S. Atomic Energy Commission and the National Science Foundation.

\*Work supported by the National Science Foundation while at State University of New York at Stony Brook, Stony Brook, New York 11790.

<sup>1</sup>R. Sherr, B. F. Bayman, E. Rost, M. E. Rickey, and C. G. Hoot, Phys. Rev. <u>139</u>, B1272 (1965).

<sup>2</sup>A. Trier, L. Gonzalez, J. Rapaport, T. A. Belote,

and W. E. Dorenbusch, Nucl. Phys. <u>A111</u>, 241 (1968). <sup>3</sup>A. G. Blair and H. E. Wegner, Phys. Rev. <u>127</u>, 1233 (1962). <sup>4</sup>K. Eskola, Phys. Letters <u>23</u>, 471 (1966).

<sup>5</sup>I. Dernedde, Z. Physik <u>216</u>, 103 (1968).

<sup>6</sup>W. Scholz and F. B. Malik, Phys. Rev. <u>147</u>, 836 (1966); <u>150</u>, 919 (1966).

<sup>7</sup>J. D. McCullen, B. F. Bayman, and L. Zamick, Phys. Rev. 134, B515 (1964).

<sup>8</sup>J. Vervier, Nucl. Phys. <u>A103</u>, 222 (1967).

<sup>9</sup>S. Sterner, L. Jonsson, and S. E. Arnell, Arkiv Fysik <u>31</u>, 567 (1966); R. L. Auble and M. N. Rao, Nucl. Data <u>B3</u>(Nos. 5, 6), 127 (1970); S. Maripuu, Nucl. Phys. <u>A149</u>, 593 (1970).

<sup>10</sup>M. T. McEllistrem, K. W. Jones, and D. M. Sheppard, Phys. Rev. C 1, 1409 (1970).

<sup>11</sup>M. L. Roush, M. A. Wilson, and W. F. Hornyac, Nucl. Instr. Methods 31, 112 (1964).

# PHYSICAL REVIEW C

## VOLUME 4. NUMBER 6

DECEMBER 1971

<sup>12</sup>J. N. Black, W. C. McHarris, and W. H. Kelly, Phys.

<sup>13</sup>W. Haar and F. W. Richter, Z. Physik 231, 1 (1970).

Rev. Letters 26, 451 (1971).

# Magnetic Transition Strength in <sup>32</sup>S and <sup>40</sup>Ca from 180° Electron Scattering

L. W. Fagg, W. L. Bendel, L. Cohen, E. C. Jones, Jr., and H. F. Kaiser

Nuclear Sciences Division, Naval Research Laboratory, Washington, D. C. 20390

and

# H. Überall\*

Naval Research Laboratory, Washington, D. C. 20390 and Catholic University of America, Washington, D. C. 20017 (Received 9 August 1971)

The magnetic excitation structures of <sup>32</sup>S and <sup>40</sup>Ca have been studied by 180° inelastic electron scattering from natural targets of CaS and Ca at energies of 39 and 56 MeV. The significant feature of the  ${}^{32}$ S spectrum is the fragmentation of the  $\Delta T = 1$  magnetic dipole strength into transitions to several levels in contrast to the strong concentration into a very few that is observed in <sup>20</sup>Ne. <sup>24</sup>Mg, and <sup>28</sup>Si. In the <sup>32</sup>S spectra excitation peaks are observed at 8.13, 10.82, 11.14, 11.62, 13.37, and 13.85 MeV. Analyses of the peaks at 8.13, 11.14, and 11.62 MeV yield M1 ground-state transition widths  $\Gamma_0$  of 2.8, 18.9, and 9.7 eV, respectively. Peaks in the <sup>40</sup>Ca spectra are observed at 5.94, 6.94, 8.43, and 10.34 MeV. The peaks at 8.43 and 10.34 MeV are found to be due to an M2 transition,  $\Gamma_0 = 2.6 \times 10^{-2}$  eV, and a possible M1 transition,  $\Gamma_0 = 7.0$  eV, respectively. The analyses of the remaining peaks in the <sup>32</sup>S and  $^{40}$ Ca spectra are discussed. The  $^{32}$ S results are examined in terms of the theory of Kurath.

#### I. INTRODUCTION

At this laboratory a systematic study has been made of the strong  $\Delta T = 1$  magnetic multipole transitions in the self-conjugate nuclei of the s-d shell. Our studies of those nuclei thus far reported,<sup>1-3</sup> <sup>20</sup>Ne, <sup>24</sup>Mg, and <sup>28</sup>Si, have revealed in each case very strong magnetic dipole transitions to T = 1, 1<sup>+</sup> excited states in the 10-MeV region. These results have been generally consistent with the theory of Kurath<sup>4</sup> who indicated that such nuclei should exhibit a strong concentration of the magnetic dipole strength into transitions to the lowest few of these states. However, in marked contrast with these three nuclei, the <sup>32</sup>S spectra show considerable fragmentation of this strength. The measurements of multipolarity L, radiation width  $\Gamma_0$ , and transition radius R are discussed for those transitions in <sup>32</sup>S and <sup>40</sup>Ca corresponding to the peaks that were observable. These results are interpreted in terms of the theory of Kurath and also from the point of view of analog resonances.

#### **II. THEORETICAL CONSIDERATIONS**

A discussion of the relevant theory has been given in several earlier reports, 1-3, 5, 6 but will be again outlined here as an aid in understanding a variation in the application of the theory used for the first time in this paper and explained below. The experimental results are analyzed using the model-independent plane-wave Born-approximation (PWBA) results of Rosen, Raphael, and Überall.<sup>7</sup> A correction is made in the analysis for distorted-wave Born-approximation (DWBA) effects using the ratios of DWBA to PWBA cross sections for M1 and M2 transitions reported by Chertok, Johnson, and Sarkar.<sup>8</sup> The differential cross section for 180° magnetic scattering is given by [Ref. 7, Eq. (5)]

$$\left(\frac{d\sigma}{d\Omega}\right)_{180^{\circ}} = \frac{\pi\alpha}{[(2L+1)!!]^2} \frac{L+1}{L} \frac{q^{2L}}{k_1^2} B(ML,q),$$
(1)

where L is the multipolarity of the induced transition, q the momentum transfer,  $k_1$  the incident electron momentum, and B(ML,q) the reduced transition matrix element. The latter can be expressed as

$$B(ML,q) = B(ML,O)G^{2}(L,q,R),$$
 (2)

where the q dependence is in G, and R is the transition radius. Rosen, Raphael, and Überall<sup>7</sup> evalu-

4