Parity Mixing and Nuclear Structure in the Decays from Oriented ^{153,159}Gd and ¹⁶¹Tb[†]

K. S. Krane, C. E. Olsen, James R. Sites, * and W. A. Steyert

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

(Received 9 August 1971)

Measurement of the angular distribution of the 363-keV γ radiation following the decay of ¹⁵⁹Gd oriented in GdFe₂ at low temperatures has yielded a vanishing value of the parity-nonconserving forward-backward asymmetry, indicating in this transition no large effect resulting from the parity-violating weak nucleon-nucleon interaction. Vanishing asymmetries were observed for other strongly hindered transitions in ¹⁵⁹Tb and in ¹⁶¹Dy. The 0–90° anisotropy of the 363-keV angular distribution has yielded a value for the magnetic moment of the ¹⁵⁹Gd ground state of $\mu = (-0.44 \pm 0.03)\mu_N$. The magnitude of the hyperfine field of Tb in GdFe₂ has been estimated to be 370 ± 80 kG, based on observation of the 0–90° anisotropy of γ transitions in ¹⁶¹Dy. The multipole characters of various β and γ transitions following the decay of oriented ^{153,159}Gd and ¹⁶¹Tb have been deduced.

I. INTRODUCTION

Recent investigations of the forward-backward asymmetry in the γ radiation from polarized nuclei¹ and of the circular polarization of γ radiation from unpolarized nuclei²⁻⁴ have demonstrated small, but definitely nonvanishing parity admixtures in nuclear states. These admixtures help to substantiate the Feynman-Gell-Mann current-current theory of weak interactions.^{5,6} Comprehensive reviews of earlier parity experiments are found in the literature.⁷⁻⁸

Previous investigation⁹ of the angular distribution of the 363-keV γ radiation following the β decay of oriented ¹⁵⁹Gd suggested an observable forward-backward asymmetry, but these measurements suffered from a relatively large statistical error. Later circular polarization measurements⁴ indicated that a smaller asymmetry would be expected. The present investigation was undertaken to reduce the experimental uncertainty in the asym-

FIG. 1. Partial decay scheme of ¹⁵³Gd.

metry measurements by a factor of 5.

In addition to the 363-keV γ ray of primary interest, the angular distributions of the 58-, 226-, and 348-keV transitions of ¹⁵⁹Tb were also measured. Since ¹⁵³Gd and ¹⁶¹Tb (produced following the 4-min decay of ¹⁶¹Gd), as well as ¹⁵⁹Gd, result from the neutron activation of natural gadolinium, it proved convenient to investigate the angular distributions of the 96- and 103-keV transitions in ¹⁵³Eu and the 49-, 57-, and 75-keV transitions in ¹⁶¹Dy. Various pieces of nuclear-structure information can be extracted from these other measurements, notably γ -ray multipole mixing ratios, angular momentum multipolarities of various (unobserved) β radiations, and the hyperfine energy splitting of the parent state.

II. LEVEL SCHEMES

The partial decay schemes of 153,159 Gd and 161 Tb to levels of 153 Eu, 159 Tb, and 161 Dy, respectively, are illustrated in Figs. 1-3, 10 which include the

1942

4

Nilsson assignments for the levels involved in the present work. The details of the ¹⁵³Eu level scheme, populated by the electron-capture decay of ¹⁵³Gd, have been established¹¹⁻¹³ through investigation of γ and conversion-electron spectro $scopy^{12-14}$ and through $\gamma - \gamma$ directional correlations.¹¹ The β decay of ¹⁵⁹Gd to levels in ¹⁵⁹Tb and the radiations of ¹⁵⁹Tb have been investigated by γ and conversion-electron spectroscopy,^{15,16} Coulomb excitation, ¹⁷ γ -ray coincidence studies, ¹⁸ nuclear resonance fluorescence,¹⁹ and γ - γ directional correlations.²⁰ The low-energy γ transitions following the β decay of ¹⁶¹Tb to levels in ¹⁶¹Dy have been investigated through studies of the γ rays, ^{21,22} conversion electrons,²³ and through $\gamma - \gamma$ directional correlations.24,25

III. EXPERIMENTAL

Nuclear polarization was achieved through a combination of ultralow temperatures and high magnetic fields. A 3 He- 4 He dilution refrigerator was used to produce temperatures around 18 mK, and the sample used, GdFe₂, was selected to have a large hyperfine field (+453 kG) at the Gd nuclei.²⁶ A much smaller field, about 2 kG, was used to establish the hyperfine field direction. The apparatus has been described in detail in a previous work.²⁷

The GdFe₂ samples were shaped in the form of thin elongated disks with approximate dimensions 0.4 mm thick, 2 mm wide, and 6 mm long. These samples were shown by x-ray analysis to be single-phase polycrystals of pure GdFe₂. They were neutron activated in the Los Alamos Omega West Reactor with an integrated flux of 2×10^{17} neutrons/ cm². Following the irradiation, the samples were

FIG. 3. Partial decay scheme of ¹⁶¹Tb.

annealed at 800°C for one-half an hour.

The angular distributions of the γ rays were measured by intermittently rotating the external magnetic field among 0, 90, and 180° counting angles. Most of the data were taken at the 0 and 180° positions, since the parity mixing, determined by the forward-backward asymmetry, requires greater statistical accuracy than the information derived from the normal polar-equitorial anisotropy. Data from two stationary 40-cm³ Ge(Li) γ -ray detectors were collected for about 15 min between field rotations. The data were stored in two multichannel analyzers and printed out whenever the field direction was changed. Figure 4 shows a typical γ -ray spectrum.

The radiation intensity W as a function of the angle θ relative to the direction of nuclear orientation can be written²⁸

$$W(\theta) = \sum_{k} B_{k} U_{k} A_{k} Q_{k} P_{k}(\cos \theta) .$$
⁽¹⁾

The expansion is in terms of Legendre polynomials, P_k . The B_k give the orientation of the initial state, the U_k show the depolarization due to preliminary decays, the A_k describe the γ ray in question, and the Q_k correct for the finite solid angle of the detector.²⁹ Equation (1) is normalized so that $B_0 = U_0 = A_0 = Q_0 = 1$.

In the absence of parity mixing, only even-k terms appear in Eq. (1), and at the temperatures reached in the present work all terms with $k \ge 3$ could be neglected. The parity mixing appears as a nonvanishing k = 1 term. The actual data analysis proceeded along the same lines as described

FIG. 4. Ge(Li) detector γ -ray spectrum of neutronactivated Gd: (a) ¹⁵³Gd, (b) ¹⁵⁹Gd, and (c) ¹⁶¹Tb.

in Ref. 27, in which the asymmetry for a given point was computed by comparing the counting rate for that point with a logarithmic interpolation of the field-reversed point before and after the given point. The logarithmic interpolation procedure is necessary because of the length of the counting periods (15-20 min) relative to the halflife of the sample (18 h).

IV. RESULTS

A. Parity Impurities

The results derived for the coefficients of the P_1 term in the angular distribution are presented in Table I. These results have been corrected for a small asymmetry in the angular distribution from unpolarized samples at 1°K or at 4°K; this asymmetry (probably due to slight motion of the source) amounted to a correction of (1.6 ± 0.9) $\times 10^{-4}$ for sample I and $(1 \pm 1) \times 10^{-4}$ for sample II. The orientation parameters B, were derived from the values of B_2 deduced from the measured 0-90° anisotropy as discussed below. The sign of B_1 was determined from the sign of the magnetic moment assumed in Ref. 9. The average of all measurements of the parity-violating asymmetry A_{+} shows a vanishing value, in good agreement with the results based on measurements of the circular polarization of radiation from unpolarized sources.⁴ It can be concluded that the parity-violating weak interaction produces no laboratory effect on the 363-keV γ transition of ¹⁵⁹Tb within the limits of the present experiment.

The computation of the forward-backward asymmetry $\alpha = [W(0^{\circ}) - W(180^{\circ})]/W(0^{\circ})$ for the strongly hindered 226- and 348-keV γ transition in ¹⁵⁹Tb and the 49- and 75-keV transitions in ¹⁶¹Dy like-wise yielded vanishing values, indicating the absence of any observable parity-violating effect. The values measured were α (¹⁵⁹Tb, 348 keV) = +0.0017 ± 0.0050, α (¹⁵⁹Tb, 226 keV) = -0.0012 ± 0.0040, α (¹⁶¹Dy, 49 keV) = -0.0030 ± 0.0032, α (¹⁶¹Dy, 75 keV) = -0.0022.

B. Nuclear Structure

¹⁵³Eu

97 keV. The 97-keV radiation has been determined to be of E1 multipolarity by measurement of its internal-conversion coefficient.¹³ Assuming the hyperfine splitting of the ¹⁵³Gd to be similar to that of 159 Gd, the B_2 for 153 Gd will probably be within a factor of 2 of that of the 159 Gd as derived below. With the A_2 coefficient for a pure E1 ($\frac{5}{2}$ - $\frac{5}{2}$ transition, we therefore estimate $U_2(\beta_2) = 0.21$ ± 0.18 , based on the measured value presented in Table II. Since $U_2(\frac{3}{2}^+ - \frac{5}{2}^-\beta) = 0.748 |\alpha_1|^2$ $-0.107 |\alpha_2|^2$ (where $|\alpha_L|^2$ is the amplitude of the Lth multipole component in the β radiation field, normalized such that $\sum_{L} |\alpha_{L}|^{2} = 1$, we estimate, under the above assumption, $|\alpha_2(\beta_2)|^2 = 0.63 \pm 0.28$, indicating most of the β_2 transitions carry two units of angular momentum. Although the β transition violates the Nilsson selection rule³⁰ for a $\Delta K = 1$ transition (Nilsson asymptotic selection rules require $\Delta n_z = 0$, while we have $\Delta n_z = 2$ for β_2), the

Reference	Experimental asymmetry ^a $B_1U_1A_1$ (units of 10^{-4})	Gd polarization ^a $(-0.74B_1)$	Parity-violating angular distribution coefficient A ₁ (units of 10 ⁻⁴)
Present work, sample I	$+0.7 \pm 1.7$	0.135	4 ± 10
Present work,	3.9 ± 3.0	0.15	21 ± 16
sample II	-1.2 ± 1.7	0.19	-5 ± 7
	-1.3 ± 2	0.23	-5 ± 7
		Average of present work	-3.0 ± 4.3
Previous nuclear orientation results ^b	$+2.7 \pm 1.8$	0.07	31 ± 21
	·	Average of nuclear orientation work	-1.6 ± 4.2
Circular polarization results ^c			-1 ±5

TABLE I. Parity-nonconserving forward-backward asymmetry of the 159 Tb 363-keV γ ray.

^a Defined with respect to the direction of nuclear polarization, opposite to the direction of the applied field.

^b Reference 9.

^c Reference 4.

small expected deformation of this nucleus casts doubt on the validity of the asymptotic selection rules. However, the large fraction of the β decays which carry two units of angular momentum suggests that the Nilsson selection rules may indeed have some influence on the β radiation field.

103 keV. Results of measurements of the 70– 103-keV γ - γ directional correlation¹¹ showed a vanishing anisotropy. Since both γ rays are expected to be of M1 character with small E2 admixtures, it is impossible from the directional-correlation data alone to determine whether the vanishing anisotropy is due to the B_k of the 70-keV radiation of the A_k of the 103-keV radiation. Since the present work measures the same $A_k(103 \text{ keV})$ as does the γ - γ correlation, the nonvanishing of the $B_2 U_2 A_2$ result of the present work implies a vanishing $B_2(70 \text{ keV})$ in the directional-correlation results,¹¹ from which we derive the E2/M1 mixing ratio

 $\delta(70 \text{ keV}) = +0.085 \pm 0.006$.

The γ -ray mixing ratios are defined according to the phase convention of Krane and Steffen,³¹ in which the interference term in the expression for A_k is written with a positive sign and the corresponding term in B_k with a negative sign. From the $B_2 U_2 A_2$ value of the 103-keV transition, using the above estimate for B_2 , and estimating a U_2 value from the branching intensities with the multipole character of β_1 taken to be $(50 \pm 50)\% L = 1$, we estimate $A_2(103 \text{ keV}) = 0.42 \pm 0.16$ from which estimate we obtain the E2/M1 mixing ratio of the 103-keV transition, $\delta(103 \text{ keV}) = 0.27 \pm 0.13$. Although the value of A_2 yields two values of δ , the second value $(+11\frac{++}{-5})$ can be excluded based on internal-conversion results.¹³

TABLE II. 0-90° anisotropy of γ radiation from oriented ^{153, 159}Gd and ¹⁶¹Tb.

Isotope	Energy (keV)	$B_2U_2A_2$
¹⁵³ Eu	97	-0.0027 ± 0.0018
	103	$+0.0091 \pm 0.0021$
¹⁵⁹ Tb	226	$+0.0096 \pm 0.0018$
	348	-0.0013 ± 0.0015
	363	$+0.0051 \pm 0.0003$
¹⁶¹ Dy	49 ^a	$+0.0165 \pm 0.0023$
	57 ^b	$+0.150 \pm 0.018$
	75	$+0.0244 \pm 0.0015$

^a Derived from compound line containing 42% K_{β} x ray.

^b Derived from compound line consisting of 25% of the 57-keV transition in ¹⁶¹Dy and 75% of the 58-keV transition in ¹⁵⁹Tb.

¹⁵⁹ Tb

226 keV. From the value of B_2 derived below from the analysis of the 363-keV line, and from the the U_2 for a pure Gamow-Teller $(\frac{3}{2}, -\frac{5}{2})$ β transition, we derive

 $A_2 = +0.36 \pm 0.07$,

from which we obtain the M2/E1 mixing ratio

 $\delta(226 \text{ keV}) = 0.17 \pm 0.05$.

The other value of δ obtained from A_2 ($\delta = +40^{+2}_{-2\delta}$) can be excluded based on systematics of E1 transitions.

348 keV. The vanishing value of the product $U_2 A_2$ leads to either (or both) of the following interpretations: (1) $U_2 = 0$, in which case $|\alpha_2(\beta_2)|^2$ = 0.87; (2) A_2 = 0, implying $\delta(348 \text{ keV}) = +0.2 \text{ or}$ -10. The β transition β_2 (for which $\Delta \Lambda = 2$) violates the Nilsson asymptotic selection rule³⁰ $\Delta\Lambda$ =0,1 for first-forbidden transitions, and hence we would expect the larger multipolarities to dominate. In addition the 348-keV γ transition (also $\Delta \Lambda = 2$) violates the selection rule for *M*1 transitions, and we would expect a substantial E2 admixture. However, $|\delta| = 10$ is somewhat large for such a transition, and $\delta = 0.2$ is perhaps somewhat small. Hence we conclude that the vanishing anisotropy is probably due to a vanishing U_2 term, which yields, assuming A_2 is not small, $|\alpha_2(\beta_2)|^2 = 0.87 \pm 0.13$.

363 keV. The A_2 coefficient of the 363-keV transition is known from angular distribution measurements following nuclear resonance fluorescence¹⁹ to be $A_2 = 0.243 \pm 0.030$, corresponding to an M2/E1mixing ratio $\delta = + (0.06^{+0.01}_{-0.02})$. Using this value along with the U_2 coefficient for the β transition feeding the 363-keV level, we obtain

$$B_2 = 0.028 \pm 0.003$$
.

This corresponds to a hyperfine energy splitting of

$$\frac{|\Delta|}{T} = \frac{\mu H}{Ik_{\rm B}T} = 0.24 \pm 0.01 \,.$$

From previous experiments,²⁷ we know $T = 20 \pm 1 \text{ mK}$, and thus

$$\Delta = 4.8 \pm 0.3 \, \mathrm{mK}$$
,

from which we derive (assuming H = +453 kG²⁶)

$$\mu = (-0.44 \pm 0.03) \mu_N$$

Although the B_2 values are independent of the sign of μ , the negative sign is indicated based on the negative moments of ¹⁶¹Dy and ¹⁵⁷Gd.³² This result differs from the earlier result of Ref. 9 [$\mu = (-0.22 \pm 0.05)\mu_N$]; however, it is felt that the earlier result is uncertain because of the possibility of a reduced average hyperfine field in the unannealed samples used in Ref. 9, or of the possibility of faulty resistance thermometry.

 ^{161}Dv

49 keV. The value presented in Table II for the 49-keV radiation is based on a measured value of 0.0087±0.0012 corrected for the presence of the Gd K_{β} x ray, the distribution of which is assumed to be isotropic. Since the 75-keV (discussed below) and 49-keV transitions come from the same level, the ratio of the anisotropies of the two transitions is identical to the ratio of their A_2 coefficients. From the A_2 (75 keV) value derived below (based on an estimated U_2 value for transitions populating the 75-keV level), we estimate A_2 (49 keV) = 0.11±0.07 from which we compute

 $\delta(49 \text{ keV}) = -0.01 \pm 0.06$.

The alternate value of $\delta = +5$ is unlikely based on conversion-electron measurements²³ which indicate a predominately *M*1 multipolarity for the 49-keV radiation.

57 keV. From the measured P_2 coefficient of $+0.0362 \pm 0.0017$, the value presented in Table II was derived by considering the presence of a 75%contribution due to the 58-keV transition in ¹⁵⁹Tb. From directional correlation data,²⁵ $\delta = 0.22 \pm 0.02$, for which $A_2(57 \text{ keV}) = -0.053$. This value is not consistent with the large, positive anisotropy observed in the present work. From internal-conversion data,²³ $\delta^2 = 0.04$, and to obtain a positive anistropy we take $\delta = -0.2$, for which $A_2 = 0.73$. Assuming that most $(75 \pm 25)\%$ of the β decays to the 132-keV level carry one unit of angular momentum, we obtain $U_2 = 0.54 \pm 0.21$. From these estimated values of U_2 and A_2 we obtain $B_2 = 0.29$ ± 0.10 , corresponding to a hyperfine splitting energy (at $T = 20 \pm 1$ mK) of $\Delta = 18 \pm 4$ mK. Assuming $\mu \simeq 2\mu_N$ (in agreement with values reported³² for 157 Tb and 159 Tb), the hyperfine field of Tb in GdFe₂ has a magnitude $H = 370 \pm 80$ kG.

75 keV. Based on the branching intensities¹⁰ for the transitions feeding the 75-keV level and assuming the character of β_1 to be $(80 \pm 20)\%$ L=1and that of β_2 to be $(60 \pm 20)\%$ L=0 and $(20 \pm 20)\%$ L=1, we estimate the value $U_2=0.44\pm0.22$. From the above estimate for B_2 , we obtain $A_2=0.19$ ± 0.12 , for which $\delta(75 \text{ keV}) = +0.08 \pm 0.10$. While a pure E1 multipolarity is permitted, a small M2 contribution is allowed by the measured δ . Such an M2 admixture should not be surprising in view of the large retardation (10⁵) of the 75-keV E1 transition.³³

V. DISCUSSION

The 363-keV transition in ¹⁵⁹Tb has a relatively large (10⁵) retardation³³ for a K-allowed E1 transition. This retardation is due to the violation of the Nilsson asymptotic selection rules, which require $\Delta n_z = 0$, while in actuality $\Delta n_z = 2$. (This selection rule would not inhibit the emission of M2 radiation, and hence the relatively large 6% M2 amplitude.¹⁹)

Defining the relevant mixing ratios as

$$\delta = \frac{\langle ||M2|| \rangle}{\langle ||E1|| \rangle}, \qquad (2a)$$

$$\epsilon = \frac{\langle \|M\mathbf{1}\|\rangle}{\langle \|E\mathbf{1}\|\rangle},\tag{2b}$$

$$\tilde{\delta} = \frac{\langle \| \vec{E} 2 \| \rangle}{\langle \| \vec{M} 1 \| \rangle};$$
(2c)

the circular polarization P_{γ} of the 363-keV radiation is given by

$$P_{\gamma} = \frac{2\epsilon}{1 + \epsilon^2 + \delta^2 + \epsilon^2 \tilde{\delta}^2} (1 + \delta \tilde{\delta}) \approx 2\epsilon (1 + 0.06 \tilde{\delta}) , \qquad (3)$$

and the A_1 term measured in the present work is given by

$$A_{1} = \frac{2\epsilon}{1+\epsilon^{2}+\delta^{2}+\epsilon^{2}\overline{\delta}^{2}} \left[-1.03 + 0.52(\delta+\overline{\delta}) - 0.54\delta\overline{\delta} \right]$$
$$\approx -2\epsilon(1-0.49\overline{\delta}). \tag{4}$$

In obtaining Eqs. (3) and (4) we have used the result $\delta = 0.06$ from resonance fluorescence measurements.¹⁹

The vanishing value measured⁴ for P_{γ} , which is not particularly sensitive to $\tilde{\delta}$, indicates a vanishingly small value for ϵ ; that is, there is little or no $\tilde{M}1$ radiation admixed with the regular E1. The present result for A_1 , which is an order of magnitude more sensitive to $\tilde{\delta}$, indicates a similar vanishingly small value for the product $\epsilon \tilde{\delta}$; that is, there is likewise little or no $\tilde{E}2$ admixed with the regular E1.

The absence of $\tilde{M}1$ or $\tilde{E}2$ admixtures in the 363keV radiation field indicates the lack of an observable parity-nonconserving effect in the case of ¹⁵⁹Tb. These results are in qualitative agreement with predictions by Vogel³⁴ who estimates $\epsilon \leq 2$ $\times 10^{-4}$ and $\epsilon \tilde{\delta} \leq 2 \times 10^{-5}$.

- †Work performed under the auspices of the U.S. Atomic Energy Commission.
- *Present Address: Department of Physics, Colorado State University, Fort Collins, Colorado.
- ¹K. S. Krane, C. E. Olsen, J. R. Sites, and W. A. Steyert, Phys. Rev. Letters <u>26</u>, 1579 (1971).
- 2 J. C. Vanderleeden and F. Boehm, Phys. Rev. C $\underline{2}$, 748 (1970).
- $^{3}\mathrm{B}.$ Jenschke and P. Bock, Phys. Letters <u>31B</u>, 65 (1970).
- ⁴E. D. Lipson, F. Boehm, and J. C. Vanderleeden, Phys. Letters <u>35B</u>, 307 (1971).
- ⁵R. P. Feynman and M. Gell-Mann, Phys. Rev. <u>109</u>, 193 (1958).
- ⁶M. Gell-Mann, Rev. Mod. Phys. <u>31</u>, 834 (1959).
- ⁷W. D. Hamilton, Progr. Nucl. Phys. <u>10</u>, 1 (1969).
- ⁸E. M. Henley, Ann. Rev. Nucl. Sci. <u>19</u>, 367 (1969).

⁹W. P. Pratt, Jr., R. I. Schermer, J. R. Sites, and W. A. Steyert Phys. Rev. C 2, 1499 (1970).

- ¹⁰C. M. Lederer, J. M. Hollander, and I. Perlman, *Table of Isotopes* (Wiley, New York, 1967).
- ¹¹R. E. Sund and M. L. Wiedenbeck, Phys. Rev. <u>120</u>, 1792 (1960).
- ¹²P. Alexander, Phys. Rev. 134, B499 (1964).
- ¹³P. Boyer, P. Chedin, and J. Oms, Nucl. Phys. <u>A99</u>, 213 (1967).
- ¹⁴R. L. Graham, G. T. Ewan, and J. S. Geiger, Bull. Am. Phys. Soc. 5, 21 (1960).
- ¹⁵L. Persson, Arkiv Fysik 25, 307 (1963).
- ¹⁶J. C. Hill and M. L. Wiedenbeck, Nucl. Phys. <u>A111</u>, 457 (1968).
- ¹⁷D. Ashery, A. E. Blaugrund, and R. Kalish, Nucl. Phys. 76, 336 (1966).
- ¹⁸R. A. Brown, K. I. Roulston, G. T. Ewan, and G. I.

- Andersson, Can. J. Phys. 47, 1017 (1969).
- ¹⁹R. S. Raghaven, Phys. Rev. 143, 947 (1966).
- ²⁰B. N. Subba Rao, Nucl. Phys. 36, 342 (1962).

²¹P. Gregers Hansen, O. Nathan, O. B. Nielsen, and

- R. K. Sheline, Nucl. Phys. <u>6</u>, 630 (1958). ²²R. T. Brockmeier and J. D. Rogers, Nucl. Phys. <u>67</u>, 428 (1965).
- ²³R. L. Graham, J. S. Geiger, and G. T. Ewan, Bull.
- Am. Phys. Soc. <u>6</u>, 72 (1961).
- ²⁴B. N. Subba Rao, Nuovo Cimento <u>23</u>, 477 (1962).
- ²⁵B. N. Subba Rao, Nucl. Phys. <u>72</u>, 414 (1965).
- ²⁶R. E. Gegenwarth, J. I. Budnick, S. Skalski, and J. H. Wernick, Phys. Rev. Letters <u>18</u>, 9 (1967).
- ²⁷K. S. Krane, C. E. Olsen, J. R. Sites, and W. A. Steyert, Phys. Rev. C 4, 1906 (1971).
- ²⁸R. M. Steffen, Los Alamos Scientific Laboratory Re-
- port No. LA-4565-MS, 1971 (unpublished); S. R. de Groot,
- H. A. Tolhoek, and W. J. Huiskamp, in *Alpha-, Beta-, and Gamma-Ray Spectroscopy*, edited by K. Siegbahn (North-Holland, Amsterdam, 1965), p. 1199.
- ²⁹D. C. Camp and A. L. Van Lehn, Nucl. Instr. Methods <u>76</u>, 192 (1969). The Q_k for odd k are discussed by K. S. Krane (to be published).
- ³⁰B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. Skrifter <u>1</u>, No. 8 (1959).
- ³¹K. S. Krane and R. M. Steffen, Phys. Rev. C <u>2</u>, 724 (1970).
- $^{32}V.$ S. Shirley, in Hyperfine Structure and Nuclear Radiations, edited by E. Matthias and D. A. Shirley
- (North-Holland, Amsterdam, 1968), p. 985.
- ³³K. E. G. Löbner and S. G. Malmskog, Nucl. Phys. <u>80</u>, 505 (1966).
- ³⁴P. Vogel, California Institute of Technology Report No. CALT-63-155, 1971 (unpublished).