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A new version of a method due originally to Marumori for the representation of fermion
pair operators as expansions in boson variables is developed and applied to nucleons confined
to a single j shell. In the present formulation, a seniority basis of good angular momentum
states is imaged in a subspace of the boson space —the physical boson space —characterized
by the same quantum numbers. This transformation has the following properties, only the
first of which is shared with previous work: (i) Pauli-principle restrictions are satisfied.
(ii) The fermion pair operators approach the leading terms of their expansions as j
(iii) For fixed j one can identify maximal subspaces of the physical boson space in which the
boson expansions converge and which define the maximum extent to which the model physical
system can exhibit vibrational behavior. An extension appropriate to systems with an odd
number of nucleons is also described. By consideration of the direct product, the method de-
scribed here should b'e useful for shell-model calculations of a restricted set of states for
large particle number.

I. INTRODUCTION AND SUMMARY

The boson expansion method was introduced into
nuclear physics by Beliaev and Zelevinsky (BZ)'
as a means of studying the anharmonic correc-
tions to the vibrational spectra of spherical even
nuclei. These authors obtained "convergent" ex-
pansions in the sense that each term in the series
is 0(A ') times the preceding one, where 0 is a
"large" number associated with the dimension of
the fermion space [0 = —,'(2j+1) for a single j shell].
In the procedure described, the expansions are re-
quired to satisfy only the Lie algebra generated by
fermion or quasifermion pair and multipole opera-
tors. However, the satisfaction of the Pauli prin-
ciple is not guaranteed by the algebra alone, and
it turns out that the original BZ expansion did vio-
late the Pauli conditions. To solve this difficulty,
Marumori, Yamamura, and Tokunaga' then pro-
posed a method which utilized a transformation
between the fermion space and a subspace of the
boson space (called the physical boson space). Yet
Marumori's expansion is not "convergent" in the
sense described above.

Although the original boson-expansion method
was intended for the study of vibrational nuclei,
it becomes clear from Marumori's point of view
that the boson expansion is in fact a transforma-
tion between the fermion space and the physical
boson space. If there exists a "convergent" ex-
pansion for the shell-model Hamiltonian, then it
can be truncated and used as an approximation

for the exact shell-model Hamiltonian. The boson-
expansion method may thus provide a way to sim-
plify and make possible approximate shell-model
calculations for nuclei relatively far removed
from closed shells.

Our purpose is to investigate the possibility of
constructing a convergent boson expansion using
a modification of Marumori's method. For an ac-
count of the relation between the theory of vibra-
tional nuclei and the boson-expansion method, one
can consult Ref. 2. Here we shall only give a
brief outline of the BZ and Marumori methods,
and then suggest a modification of Marumori's
method which gives convergent boson expansions
in certain subspaces of the physical boson space,
but at the same time shows that because of the
effect of the Pauli principle it is impossible in
general to have convergent boson expansions with-
in the entire physical boson space.

We shall first develop our method for an even
system in a single j shell. Next this method is
extended to include odd systems in a single shell.
There we follow a procedure similar to that used
by Yamamura' and Simard ' in extending the orig-
inal Marumori expansion to odd nuclei.

Our method can also be extended to the problem
of several j shells by considering the multishell
space as a direct product of single shells. We
have chosen to omit any presentation of this ex-
tension not only to keep this paper within bounds,
but also because it fails to do as much for the mul-
tishell problem as we feel the developments of
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this paper do to clarify the significance of boson
expansions for the single-j case. For this case,
given the value of j and relative to a given Hamil-
tonian, we can specify the maximum extent to
which the system can exhibit vibrational degrees
of freedom. The same specification suggests that
for an appropriate subset of levels, we can free
ourselves from the usual practical restrictions of
the shell model which confine us to problems with
small particle number. As anticipated, the re-
sults can be interesting and useful if j is large
enough.

Now our experience with real physical systems
suggests that a system with several closely spaced
levels, with moderate average value of j, should
be capable of "vibrational" behavior with an effec-
tive j determined by the total number of available
orbits. The direct-product method does not put
this possibility clearly into evidence from the out-
set, though we believe it mould do so in practice.

These remarks suggest the need for further the-
oretical development along the lines anticipated
in this work. One obvious suggestion which will
be exploited is to utilize from the start two-par-
ticle eigenoperators of a suitable model Hamil-
tonian (such as the surface 6 interaction). We also
plan to present in a separate brief account some
numerical illustrations of the general points de-
veloped in this paper.

II. GENERAL CONSIDERATIONS CONCERNING
THE BOSON-EXPANSION METHOD

We consider specifically the case of an even
number of nucleons of one charge outside a closed
core. The single-particle states

I
c.) are charac-

terized by the quantum numbers (nljm) and can be
written in the second-quantized form as

=( )/b+mb (2.3b)

where J —= 2J+1, [ ] is a Clebsch-Gordan coeffi-
cient, and the quantum numbers within the paren-
theses are not summed over. From the above
definitions we have

A//'t(ab) = 8(abJ—)A'„'t(ba), (2.4)

B'„'t(ab) = B(abJ-)s~~B' „'(ba), (2.5)

where

(2 8)

These operators form an algebra under the com-
mutation relations-

[A,', A,'] =0, (2.7a)

[B1,B,] = - - 1/b Q((1 —P1P, Pb) Y(132)}(Jb)1/'B~ .
J1Jb

"'
b

(2.7d)

In the above equations we introduced the unified
subscripts 1 =—(a,fJ/, M,), etc. , and P, is a per-
mutation operator acting on this subscript. For
an arbitrary function f (1) we have

Pbf(1) =
P1f (&151,J,M -)

A

[A„AJ'] =d;,'-2g P' 'Y(I.23) (J )"'Bt
(2.7b)

A A

[Bb~,Abt]= - 1/ Q ' 'Y(231) At,

(2.7c)

I/r) -=/1'
I o) (2.1)

= —8(abb,J,)f (bba„J1M,) . (2.8)

where [0) is the inert-core state. We also use a
Latin subscript a to denote all the quantum num-
bers in n except m. Next, we define the pair and
multipole operators as follows:

(2.2a)

The functions d;,' and Y(123) are then defined as

g(+) Pl g' 12 2 12

24 7 5// b/P a 5b b 0( 151J1)5 b 5o b ]
(2.9)

)b +j +J2 J3

A'„"(ab) -=[A„"(af)]', (2.2b)
~3 ~i ~2 ~3 ~i

X ~ ~ ~

M2 ~a~i (2.10)

(J) — ~ ja jb
b/ (J)1/2 ~ M . 8 bt: 8

ma (m b}
{2.2c)

where ( }is a 6-j symbol.
We now define 2Q as the average shell size of

the shell-model space, i.e.„
with

= ( )/b-mb (2.3a)

fl

20 —=—Q (2j, + 1), (2..11)
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where n is the total number of shells considered
in the problem. As Q- ~, the asymptotic value
of the function r(123) is given by'

example, the fifth-order term in Eq. (2.17) will
be

f23432@2 @3~4@3@8 '(9

r(123) 5.-..,5...,5...,(q) '~2-(ig, /g, )'~2

X
J2 Js Jl J2 J3
M2MSMl j, —jb j, —j 4

A3 jbl

(2.12) d 3 { 1g2 r(231)(Q 2

~l
(2.19)

These expansions are then required to satisfy the
algebra (2.17). First, from Eq. (2.7c) we have

(2.13)

( +N (uh)) (J)1I2 g ~ s8(+N+8)
Ply Slb

m4t(nt b)

PEN Sl b(mb)

j, jb J
~

N
(J) ~ -m2 M " 20

sl g {tl1b)

&eb&JO&xo. (2.14)

i=-b.,i.,~,,]"'-(»).
Also the asymptotic value of the vacuum expecta-
tion value of B'~'(ab} becomes, with Ã, the occupa-
tion of level a and N the total number of particles,

Next, with the above expression and Eqs. (2.7a)
and (2.7b) we obtain a set of equations for the co-
efficientss

g2'34.'

(2.20a)

(l) (l)
g234 =g324 ~ (2.20c)

Assuming that g2'3u4 is of the order 0(r') -0(Q '),
one can discard the quadratic term in Eq. (2.20b)
and get a solution

2(1 +p2)Ã234+ 2(1 +p1)g143+Qg334{l +p2) (1 +ps)8333

= -2g(1 +p,}(l+p,)r(125)r(345),
(2.2Ob)

where we have symmetrized g,',"4 so that

[&' &'1=o (2.16a)

[g g T] 5(+) (2.15b)

This argument, at best heuristic, contains no hint
of how any suspected vibrational structure dissi-
pates with excitation of the system.

A. Boson-Expansion Method
of Be1iaev and Zelevinsky

In this method one considers the correction to
Eq. (2.15) and assumes the following expansions
for the fermian operators Al

(2.1
234

a, =gd,'", a[a, +o(4), (2.18)

where the expansions are normal-ordered. For

»om Eqs. {2.12) and (2.14), we shall expect that
for the low-lying states Y(123) 0 and fl'~' 0, as
0-~ and N«2Q. Consequently, the commutation
relation (2.7b) becomes

(2.15)

which means that the pair operator A. t can be ap-
proximated by a boson operator 8~ defined as

(2.21)

Using the above formula and Eq. (2.7c) again, we
can obtain the fourth-order coefficients of 8„
which in turn give the fifth-order ones in A, . In
this way one ean calculate the coefficients one by
one to all orders.

The BZ method described above is unsatisfac-
tory because the Lie algebra, of pair and multipole
operators does not include every possible con-
straint between these operators due to the Pauli
principle. Therefore it'is not clear that any ex-
pansion satisfying the algebra alone wiQ not vio-
late the Pauli principle in some respect. Recent-
ly, Marshalek' has shown for a problem other than
the one considered in this paper, how to obtain ex-
pansions which satisfy aQ Pauli restrictions with-
in a physical boson space which is defined as an
image of the fermion space, provided that one
makes some further assumptions about the boson
vacuum state. (The present authors have applied
the method of this paper to the same problem. ) It
would appear, therefore, that correct completions
of the BZ method can be carried out.

In order to do this, one needs, however, to con-
sider more equations than just the Lie algebra.
One must either impose conditions on the boson
space, as shown by Marshalek, ' or include every
possible Pauli constraint between the pair and mul-
tipole operators, or equivalently satisfy all the
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Casimir operator relations. [Note that in obtain-
ing Eq. (2.21) we arbitrarily discarded the qua-
dratic term in Eq. (2.20b). If one were to include
the required additional equations for these coef-
ficients, then this term might not be small and
could not be neglected. ] There would thus appear
to be several possible ways to generate correct
BZ-type boson expansions. We, however, have
chosen to look into the Marumori-type' expansion
because of the straightforward way in which the
Pauli principle is satisfied in the construction of
the boson expansions.

8. Marumori's Method of Boson Expansion
and Its Properties

In the space of an even number N of nucleons,
a complete orthonormal basis can be designated
as J, l Np)»), where p labels the fermion states,
p =1,2, . . . , p „,mith p~,„being a finite integer.
On the other hand, in the boson space for n bosons
a complete orthonormal basis will be (I nk)»]
where 0 labels the boson states.

In the method of Marumori, a subset g sk)s) of
the entire n boson space f Ink)») is chosen as the
image of the fermion basis ( I 2n, p)»]. Once this
ehoiee has been made, a transformation V can be
introduced:

v-=g
I ,'iv, p)„&~-pl . (2.22)

We note that V is not unitary. In fact, we have

v'v=g
I xp), (&p I

=1 (2.23}

vv' =p I-,'» p), ,(-.'» pl, (2.24)

(2.25a)

v'I-.'»P), = INP&„ (2.25b)

V I ~N, q}s =0

for any state
I ,'» q)s not in the ph-ysical boson

space. It is therefore clear that V ' does not
exist.

With the transformation V, one ean obtain the
image of any fermion operator T in the boson
spa.ce

where the right-hand side ls not a sum over a, com-
plete set of states and consequently is not the iden-

tity operator. The operator V transforms the
states in the following way:

T~= VTV

= Z I-'»p&. .(&~l T I&'p'&" (-'&' ~'I
arm'pp'

Z T»n, »'n I .+ P-)ss(.&
j}tw'pp'

(2.26)

If me write the boson state as

I-,'» k), -=oi„,l0)„ (2.27)

where
I 0)s is the boson vacuum state, and Oi» „

is a polynomial of boson operators, then Eq.
(2.26) becomes

Ts = 2 T»p»'n'O, i»u I0)s a(0l oi»', p'

eject'pp'

(2.26)

By the iteration method, the completeness relation

1 =g lk» k),»(-'.» k
I

Nk

=Rot». a I 0)s s(o I o;»,. (2.29)

I2n, p&» =at„at8 at„at8 a~~ ast IO&, » (2.31}

with IO&» the fermion vacuum state, and the corre-

can be solved for the projection operator
I 0}»(0I

in terms of boson operators. Substituting back into
Eq. (2.28), one obtains the boson expansion for any
fermion operator T Thus, .specifying the set

I np)»
determines the boson expansions uniquely in a man-
ner which guarantees satisfaction of the Pauli prin-
ciple. Also the expansion coefficients are matrix
elements of fermion operators. For illustration,
we shall consider only the lowest anharmonic
terms; consequently only matrix elements between
states containing up to four fermions mill have to
be evaluated.

The transformed operator has the property that
its matrix elements in the unphysical boson space
always vanish. This is easily shown by using Eqs.
(2.25),

.( '»Pl T. I
'lv' ~-'&. =.( '&-, pl I 7 I I-.'~-', q'&, =0.

(2.30)

As a consequence, if one restricts himself to the
physical boson space, he can add to or subtract
from the expansion terms with vanishing matrix
elements within the physical boson space. Also,
the operator V can be regarded as a unitary trans-
formation, even though strictly speaking it is not
unitary and has no inverse. It is to be emphasized
here that these aforementioned properties of the
Marumori expansion do not depend on the choice
of the physical boson space. This is the freedom
which we mill utilize later to obtain a boson expan-
sion different from Marumori's original one.

In their original paper, ' Marumori, Yamamura,
and Tokunaga chose the fermion states
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sponding physical boson states as

mz (m b)

(2.33)

with the properties

181 2 2 1 2 8182 182 281i 6 t' li (2.34a)

~as 68a &
(2.34b)

while g means a restricted summation of permu-
tations which connnects independent boson states
of the form

ea~s~en28 ' ' ' en 8 10)s ~

Since the total number of such states is (2n)! /(2"n! )
—= (2n —1)!!,this gives the normalization factor in
Eq. (2.32).

With the definition of the physical boson states
and the identity

l

Io), ,(0 I =1++, , p e'„, e„', e'„,
l =1 (ns)

n8 as ng (2.35)

obtained from Eq. (2.29), the Marumori expansion
of the operator A1~ turns out to be'

=St — 1 — 1 ~t @t@g 2

2

xQ ' Y(125)Y(345) 82teste4+0(5).

(2.36)

Equation (2.36) now clearly shows the difficulties
of the Marumori expansion. The first one is that
the coefficient of the third-order term is of the
same order as the leading term. In fact, all the
higher-order terms have the same order of mag-
nitude as the leading term. The reason for this
can be traced back to Eq. (2.35), where we can see
that the expansion of

I 0)»(0 I
is not an expansion

in 1/Q. The second difficulty is when Q- ~, the
expansion does not approach the boson operator
limit A, . However, in the next section we will
show that this can be overcome with a suitable
choice of the physical boson space. '

Inp)s =(2 1), ,
g'(-) P(et s 8t

8
~ ~ ~ 8"

8 )Io)

(2.32)

where C &
is defined as the operator

C. A Sufficient Condition for a Fermion Pair
Operator to Have the Correct Boson Limit

The fermion states can be expressed as

I xP&, =- s,f,(A')
I o&„

where f~(A~) is a polynomial of the fermion pair
operators, S~ is the normalization constant, and

I 0&z is the fermion vacuum state. On the other
hand, the boson states have the form

(2.37)

That this most natural choice is also a desirable
one follows from the fact that the normalization
constant S~ of the fermion states is evaluated by
means of the commutation relations Eqs. (2.7). As
Q-~ for fixed J„J„andJ„Y(123)-0'"and thus

S~ - S~ because [A„At]- O';,'. Combined with Eq.
(2.39), this shows that as Q-~ Vbecomes the
identity transformation, and all we are doing is
renaming A~ as 8~ and S~ as S~. Consequently, as
Q-~, we have

VA~V~- 8~. (2.40)

We note that the condition (2.39) is expressed in
terms of the angular momentum coupled operators
A~. This is essential because in this proof we
used the property [A„At]- 5',t2' which is only true
for the coupled operators. If we try to write Eq.
(2.31) in the form

1
I
2n p&p (2 —1)!!

xg (-) P(C„S Ct s Ct
8 ) I0&

with

C„B -—a„as, etc. ,1 1 1 1

then we do get

f,(8') -f,(8') .

In&), =S,f,(&')I o)„ (2.38)

where f,(et) is now a polynomial of the boson crea-
tion operators, S~ the normalization constant, and

I 0)s the boson vacuum state.
From the way the transformation V is construct-

ed, we know that the boson expansions are uniquely
determined by choosing a definite set (I np)s). How-

ever, any orthonormal subset (I np)s] of the entire
boson space is allowed (usually it is chosen so that
particle number and angular momentum are con-
served), and different choices give different boson
expansions related by a unitary transformation.
A sufficient condition for selecting a basis (I nP)sj
so that the boson expansion of A~ approaches the
ideal boson limit, A. 1~ - 8 ~, as 0-~ is to choose

fj,(&') =f,(&') (2.39)
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However, the commutator [C„C,] does not ap-
proach 5~,~2, because it does not contain a small pa-
rameter corresponding to F(123). Consequently,
this shows that the original Marumori representa-
tion does not satisfy the above criterion.

In the next section we will demonstrate the re-
sult of such a choice by considering boson expan-
sions in a single j shell. The "convergence" prob-
lem will also be considered there. Right now we
shall digress for a moment and discuss in the fol-
lowing section some alternatives to Marumori's
method.

D. Other Possible Approaches to Include
the Effect of the Pauli Principle

in the Boson Expansions

A(~1(' = [a( x at]
///

vY~ m m-m M ""- (3.1)

B//
( )1/2 [Q x b]

I
( }/-~st

{3)1/2 M+m
(3 2)

with

(3.3)

Marumori's method gives the boson expansions
without directly resorting to the commutation rela-
tions in Eqs. (2.7}. Yet by applying the transforma-
tion t/ to these relations and using Eqs. (2.23) and
(2.24), one can easily show that these relations are
satisfied within the physical boson space by the
transformed operators.

One alternative which was suggested by Maru-
mori et aL in their original paper is to obtain the
boson expansions by considering these transformed
commutation relations and their effects on the un-
physical boson states as well as the physical ones.
Nevertheless, this method requires the specifica-
tion of the physical boson states and i.s therefore
not very much different from the original method.

Another alternative to the procedure described
in this work is the one invented by Marshalek as
mentioned in the Introduction. This method was in
fact used before in a simplified model. " It can
also be used to solve the problems raised in the
pairing model work of S((frenson. " Marshalek's
work appears to be a complete alternative to the
approach of this paper. However, besides the fact
that this method has not been generalized to the
algebra (2.7), as so far formulated, it still leaves
unclear certain basic physical questions to which

we shall address attention.
In the next section we will use the modified Naru-

mori method to study in detail the behavior of boson
expansions in a single j shell.

III. BOSON EXPANSIONS FOR AN EVEN SYSTEM
IN A SINGLE j SHELL

We cons1d81 aD even numb81 of nucleoDS ln a sin-
gle j shell. The creation and annihilation opera-
tors for a single nucleon are a~ and a, respective-
ly, with -j &m &j. The pairing and mu1tipole oper-
ators defined in Sec. II now become

=( )/+m

These operators then have the properties
A(z)t ( )JA(J&t

N -N

(3 4)

(3 5)

g(I )t ( )1/H(/')
N -N' (3.6)

The commutation relations i'n Eqs. (2.7) become

[A,',AJ'] =0,

[A„At] =(i„-2g r(123)(i,)'"a,',
[a,',At] =, „„Pl(231}A,',

(3.7a)

(3.7b)

{3.7c)

[Ht H ] P[1 ( )J'1+/'2+kg]y(132)(g")1/2Ht
~2~2}'" 2

(3.7d)

with At -=A'~1't etc. The function F(123) now re-
duces to

Y(123) ( )2/+ J'2+ J'2(g g )1/2 2 2 1 2 2 1

M2 Ms M) j j j
(3.8)

with the following symmetry properties which can
be derived easily from. the above definition:

y(123) =(-)'1+'2+'2y(132}

=(-)" 1 (»3)
= (-)'1'""'»(»3) (3.9)

where A.—, —=A' 3„'~, etc.(J' )f

Our modified Marumori method is best illustrat-
ed in the current model, although the results we
shall get are quite general. In this section we

start by forming the fermlon states 1D the senlol-
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ity scheme with the SU(2j+1)3 Sp(2j+1}3R(3)
classification. so that in contrast-to Marumori's
basis, ours are eigenstates of the total angular
momentum. Since only the low'est anharmonic
terms in the boson expansions are usually needed,
explicit construction of states with no more than
four particles will be enough. Next the physical
boson states are chosen according to the criterion
in Sec. IIC. With these states one can construct
the transformation V and obtain the boson expan-
sions of fermion operators A, and 9, which are
different from Marumori'8 original exparisions. It
will be verified that as 0-~, the expansion of A. ~~

now has the correct boson- operator limit. How-
ever, one also discovers that for any finite value
of.j,- it is the Pauli principle which always im-
pairs total "convergence" of the expansions. Con-
sequently, one can only compromise by showing
that it is nevertheless possible to find a certain
subspace of the boson space in which the expan-
sions can be made convergent. As a- corollary,
1t. 18 Rlso shown thRt the boson expRnslons w'ill be
totally convergent only when RQ the boson opera-
tors involved are spinless. This explains why
every previous successful attempt to obtain con-
vergent boson expansions" "has been confined
to special nuclear models, all of which require
only expansions in terms of spinless bosons.

A. Constmetion of the Fermion Basis and the
Selection of Physical Boson States

in the Seniority Scheme

In the seniority scheme, the fermion states are
labeled as 1N(&8M(d&, where N is the particle num-
ber, g is the seniority quantum number, J and M
are the total angular momentum and its projection,
respectively, and e denotes additional quantum
numbers needed to completely classify the states.
The operator A'0'~ when operated. on a state of 8e-

niority v does not change its seniority, while A.'„'
w1th J w0 changes it to a linear combination of
states with seniority v+2, g, and g —2. The two-
particle states are therefore,

12ooo& =w" &t
1 o) (3.10a)

122 am &
=a(„"'

1 o&, (s. lob)

where 10) is the fermion vacuum state
The lowest-order anharmonic terms are the

third-order terms in the expansion of A, and
fourth-order terms in that of. 8,. To get them we
have to construct the four-particle states. First,
the four-particle seniority-0 state is

14ooo& =s(,"&~"&t~""
1 o&, (3.11a)

with the normalization constants 800 ' given in
Eq. (B3) of Appendix B:

S(00) (2 2/fl}-&/8

Next, the seniority-2 states are

142 zM& =s',"'w""w(„"'
1 o),

(3.111)

(3.12a)

where again the constant S~~' is found from Eq.
(»).

S(OJ') (1 2/g)-1/8 (S.12b)

Then to get the seniority-4 states, we start from
R state

11M(g g )) S(J'&72) [g(z&)1' &(~(Jg)t] (l&10& (3 13)

with J„J2t0, andI being one of the allowed angu-
lar momenta given by an angular momentum anal-
ysis of the four-particle seniority-4 representa-
tion. '6 " The normalization constant in the above
equation is just the one given in (B3). Since the
above state is a mixture of seniority 0, 2, and 4
parts, we have to project out the seniority-4 part
and obtain

14«M(&& &.)& =A/Y'"[lfM(&& &.)& —142 &I& «2&M lfM(&& &.)& -14000& (4000
1 fM(&, &,)&]

=x",~"'[1fM(g,z, )& p(/'~"'142 JM—
& rf:"1400o)], -

where the coefficients, evaluated with the help of (B2), are

p,"i"'-=(42@MlfM(z, e, )&

. (OI)s (J'&t/~ ) (0 1
g((&&g(/) [~(z& ) t~(J'2 )J] (I&

1 0)

= S&0/)S (z~/2'&G (OI 'Z Z )
' 1/2

1+&s s - 4~~ J2
I (Ixo), (3.14b)
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~;'"'-=&4ooo IIM(J, J,)&

0 I=s""s"&"'
&o Ia"'A."'pV" &t xa'"'(] "Io&Ju

=S S'& G(00'J J)
(3.14c)

~(/&I2) (1 [p(g&JH) ]2 [r(g&j'2) ]2 j-&/2 (3 14d)

Finally, in case of degeneracy, i.e., when there
exist several seniority-4 states with the same
angular momentum I, we will choose a set of
states

I
44IM(J, J,)& with different J', and J', and

orthogonalize them with the Schmidt process such
that:

I
44IM [J,J,]& =I«""&[I 44IM(J, J,)& —Z I 44IM [J',J.']&

&& &44IM [J',J,'] I 44IM(J, J,)&],
(3.15a)

in which the subset
I 44IM [J',J,']& consists «aQ

previously orthogonalized states, the renormaliza-
tion constant is

It'~~ '=[1—g I(44IM[J'J']I44IM(J J )&I'] "'
(3.15b)

while the coefficients (44IM [J,' J,'] I 44IM(J, J,)& can
always be evaluated by using Eqs. (82), (B3), and

(84). We note that as 0- ~, these coefficients
tend to vanish and therefore A(1~~~2) 1. Also from
Eqs. (3.14}, we have p'~&~2& and r&f&~&&- 0, and

N~l 2 1. Consequently, in the limit 0-~,
I44IM[J, J,]&- IIM(J, J,)). This is the result
which will be used later to study the asymptotic
behavior of boson expansions.

As for the boson space, we now choose the phys-
ical boson states such that:

ed later that with this choice we do get an expan-
sion of Alt with the appropriate boson-operator
limit.

With these states given, one ean now proceed
to construct the boson expansions with Marumori's
method.

I 0) (0 I

—1 g a (J')'t a(z) +0(4) (3.1V)

which can be obtained either from Eq. (2.35) or
directly from the completeness relation (2.29).
Only terms up to the second order are given be-
cause those are aQ that we need to get the lowest
anharmonic terms in the expansions of Al~ and 9,.
These expansions are now given in the following
subsections.

Since A")~ does not change the seniority„we
have

VA& '~Vt = Q O~t»&/ Io)s&¹IM(dI/i&0&tIN&/IM(d')

)& s(olo~.m " (3.18a)

Keeping only the first- and third-order terms in
the boson operator, the above expansion becomes

&~&0&t I/t = a&0&t(1 ~a &z&ta v&) + Ci a&0&ta(0&ta(0&
N N 0

Cl a(0)ta(/)('a(J'& + 0(5)
J'v' 0,N

(3.18b)

where we have used Eq. (3.17}. The coefficients
ale

c,-=&4ooo Ix""
I
2ooo&

1

B. Boson Expansions of A ~~~ and 8

We shall need the following expansion of the pro-
jection operator Io)»(0I:

a&'»a"'('
I O),- I 4OOO&,

2

a""a&„"t
I o),—I42 JM& (J~o),

(3.16a)

(3.16b)

(3.16c)

(3.16d)

=~ S O00'Go(00; 00)0 0

c,' -=&42 JM Ia""
I
22 JM)

S(QJ)G {0J.0J)

(3.18c)

)&./2 &/ &&„,[a"&&t x a"2"]'„"
I o),—I

44IM [J,J,]& .
1 2 (3.16e)

In choosing -the physical boson state correspond-
ing to the fermion state

I 44IM[J, J,]&, we did not
follow the prescription (2.39) exactly. However,
since I44IM[J, J,])-IIM(J,J,)& as Q-~, we see
that the condition (2.39) is satisfied in the limit,
i.e., f~(A~) -f~{A~) as Q -~. It will be demonstrat-

= (1 —2//n)"'. (3.18d)

Substituting them back into Eq. (3.18b), we get
l/2-,

y~(0)f y$ g(0)f + 1 + y g(0)fg(0) tg(0)
0

l(2
+ —1+ 1-— a"' Q a"' a"'+0(5)

(3.19)
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Z. ExPansion of A(J&t (Jag)

The pair operator A.„", with j,40 changes the seniority quantum number by at mist two units. We find
after some calculation, "utilizing also Eq. (3.17),

VA&„'1» Vt = g Ot„,„&0&,(IIvlM~ ~A&„' "
( X 2,-&}'I'M'(d'&, (0IO&,,„;„

1 N vs(u 1
v'I'N'fd'

(t(J1&&'+C(J1& e(J1&t&f(0}t(t&0&+C(J1}( )J(lg(0&t&t&0&t&t&J1&
j 1 ~100 +1 ' 1 Nl

with

+ ~ C&J1& e(0&t[@(J0&t(t(J,&]&J,&+B +B +0(5)
0J'2J3 &1

J'3 A0

(3.20a)

[It
&& g ](Jl&—:V 0 8 1 ( )&&0@(J0&&'g(d'8&

M M M ' ~a ~3
) 2 3 1

2 S

Here, the various coefficients, as evaluated with the help of Eqs. (3.15), (3.14), and (B2) are

C'Jl' = -1+(42Z1M& ~A(J1&t
~

2OOO)

= -1+(1 —2/0)"',

(3.201)

(3.2la)

c'"=-(-)" (4ooo ~A" "~22m, -M,&
v)

(3.21h)

"-1
C"' =-(-)" ~ ~ ' «2m~ A'"»~ 22m, M, &0J'2J3 Mq. -Ms Ml Nl

ai, i, "'
& (3.21c)

g (J'l)f .~ g (J4)fg (J4)
1 Nl ~ g4 g4

4 [g(J1&t X e(Z0&&'] Q)g (J0&
N N4

g~ I 1 4

with

P

C(J'1) I +V2)t & +(J3)tq (1)~V4)
(Z2J33 IJ N

J4&0,N4 I&J2J33

'
C&;.&„„-=(1+0„)-'~'(44IM[Z,Z,] ~A'„'1" ~22m, M,&.

1 4

(3.22h)

(3.23)

8. ExPans2on of B
The multipole operator B'„"conserves the particle number but changes the seniority. We find, with the

help of Eq. (3.1'l), that the leading anharmonic terms are of fourth order:

VB 1 V = Q O}t}„J&( [0)&&(¹IM(d[8 1')¹'I'M'&o'&J}(0|ION„.J &&

Evict(I
v'I'N'ur"

d(J1 & [&t(J0&t && (t(J0 &] (Jl&+f(J& & (1(0&tg(0&t (i(0& @(0&
J'2J3 ul OOOO'

J2Js

+f&J1& ( g&Jl&tg(0&te(0&g(0& +( )&&le(0&tg(0&tg(0&Q&J1&1.
J1000 jul N1~

P f&J'1& g(0&1' [g(J0&&'&& (t(J0&](J1&@&0&+~ +T +~ +0(6)0J2J3 Nl

Js&0

(3.24)
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whqre

-1

23 3- 3

2( )J, ~0~0,
"' ~1 ~0 ~0

(3.2s)

f(J ~) d(J ) + (4QQQ [
gg(J )

[ 4QQQ)

=0 (3.26a}

f'"' =d'"&+ (42~M I&&"'14QQo&
J1000 J10 ~2 )&1

(g, 4Q, even),

f'"' =-«'J)'(& P'd'J)'+( )"' ' ' ' (42m I ~a&"&~42m, M,&JP 00 ~2~3 M2 -M3 M~ '

(O', =Q or J, odd)

J2J3 j 2 J~ J2 J3
(3.26c)

T — g &f
(J) & 1 4 [(t(J))t && @(J4)t] (f)(t (J4)(t(0&J J I,

1 -N

J4 & O, N4

+ ( })&1(i(0)t(t(J4)t[g(J4) &( g(J))] (J) ] (g ~() eve )

g(J'2)f
&( g(J3)t (I) g(J'4)e(0)J J I

~J~J3]IJ4. MX ~4 I N
J'4 vc O, N4. I.[.J2J3]

+ ( )&41'(0)t &t(J4)t [e(J0 »( (t(J0)] (I) (g 4 Q even)

(3.27a)

(3.27b)

(3.27c)

while

with

(f P}1&2 d(J1& (
)I'-)&' 1 (t(J2&t X g(J4)t (J) (t(J4) &( g(J0) &1')

J. ), I I II J
J3J4J'5 & 0 II'N '

I'I
Z. f(J1) ( )I' J&' -1 [e&J2)t && (t(J0)t]'(J)[(t&J4))( e(J0) ](J')4 ' [g J ]I,fJ' J]1 M Mt ~ '

Jr&I N'

I(J2J3]
I'L J4J5 ]

(3.28a)

(3.281)

f",,",„„.„,,(-)' ",' =[(&+6„)(&+6„)]"'&44fM[Z, Z] ~

a"1'~44I'M'[Z, J,]&. (3.26c)

%'e have thus obtained the boson expansions of
A~~ and B~ to the lowest anharmonic terms which
are the third-order ones for A~~ and the fourth-
order ones for 8,, The coefficiegts are either
evaluated explicitly or given as matrix elements
which can always be expressed i.n terms of the. in.-
variant functions defined in Appendix B. Besides,
there is no difficulty in w)riting a computer pro-
gram to c'alcu1late the:8'e c'06Qlclents.

-In Ule last sectiOn we) mentioned that 'the original.
Marumori. expansion contained two undesirable
features. .So far our modified method has avoided
one of them, that the fermion, pair operator does
not have the appropriate boson operator limit as
Q- ~. This. problem has been solved by a suit--
able choice of. the physical. boson. space. On the
other hand, an.examination. of Eq. .(3.22a), for ex-
amp1e, shows that ou&r method stiIl. possesses. =the
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other difficulty, i.e, the expansions are not "con-
vergent. " However, we shall see in the. following
section that it is the Pauli principle itself which
prevents us from having a totally convergent ex-
pansion for any finite value of j. Therefore any
boson expansion which takes into account the effect
of the Pauli principle correctly will not in general
be "convergent. " Fortunately, it can nevertheless
be shown that there exists a certain sequence of
subspaces of the boson spmee such that we can al-
ways find among them one element, whose size
depends upon the value of j, in which the expan-
sions .can. be made convergent.

In the next section we shall study the asymptotic
behavior of our expansions as Q- ~. One of the
advantages of our choice of the physical bos.on
space is that it clearly shows how the Pauli prin-
ciple impairs total convergence, while this in turn
suggests by itself a natural way of constructing the

C. Asymptotic Behavior of Boson Expansions
as(moo

We shall begin with the expansion of A(J1)~ with

J, 40.. First of all, it is found that whi. le the co-
efficients in Eqs. (3..21) all behave like 0(Q ') as
Q -~, those in R, and R, are in general 0(1), and
therefore the convergence of the expansion must
depend on a relative cancellation of contributions
from the corresponding terms in them.

As Q-~, we obtain for the coefficients C', 1 J ]IJ
of Eq. (3.23), using Eqs. (B5), (B3}, and (B2),

+0(Q '}. (3.29)

subspaces mentioned before in which the boson ex-
pansions can b.e made convergent.

Substituting this back into Eq. (3.22b), we get

Jl
J4&O, N4 II.J2J3]

M
Jl J4 I tX ~(I)

&J2J'~ &, &J'~J~ & [@2 @3 ] &&
@4 &

J4&0,N4 I[J2J3.]
(3..30)

where

(J2J3), (JlJ4)

1, J2 =Jl, and J3=J4

1, J, =J4, and J3=J,
0, otherwise. (3.31)

Here- J, is:fixed and J4 can assume all allowed
values [J,=2, 4, . . . , (2j —1)]. From Eq. (3.30}we
find that there are two kinds of terms in R2. That
which is not matched by any term in R, (6&& ~ & &z ~ &

=0) always has a coefficient 0(Q '). That which is
matched by a, certain term in R, (6&& z & &z z &

=1)
carries a coefficient 1+0(Q '). The latter, how-
ever, when combined with the corresponding term
with the coefficient -1 in R„also gives a resul-
tant coefficient of the order 0 '. Thus every term
found in R, will eventually contribute a term- with
a coefficient 0(Q ').

We must now remember that the sum over J,
and J'~ in Eq. (3.22b) or (3.30) is restricted to
those values which specify the basis of fermion
states. Therefore there are, in general, terms
in R, which are not matched in R, and always have
the coefficients -1. With the existence of these
terms which are of the same order of magnitude
as the first-order term, it is now clear that our

(JlJ2). (J3J4) ~

~J& Jg JgJgl

(3.32)

which means that in the limit 0-~ the overlap in-
tegral between any two states among the set of
four-particle states ~IM(J, J,)) tends to vanish and
therefore all possible values of J, and J, would be
needed to specify the four-particle states. Conse-
quently, every term in R, would be canceled by a
corresponding term in R„and we have verified
the statement (2.40) that the expansion of A&~&&t

has the correct boson-operator limit. Neverthe-

expansion is still. not convergent; but it is also
clear that the re.ason for this can be attributed to
the Pauli principle which, instead of aIlowing all
possible fermlon pair operators A(J2)~ and A(J3)~

to couple together and form four-particle- senior-
ity-4 states, restricts J2 and J, to those values
which are initially selected to specify the fermion
st.ates.

As Q» ~, we note from Eq. (B4) that

(44IM[Z, Z,] ~44IM[Z, Z,])

-(IM(z, z,) ilM(z, z,)}
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less, we also discover that this only means that
the relative number of terms of 0(l) tends to zero
as 0 —~, and for any finite value of j the expan-
sion cannot in general be totally convergent.

We have discussed in detail the asymptotic be-
havior of the third-order terms in the expansion
of A' &'~ with Jy40 but the results we found are
in fact entirely general and can be applied to
terms of all orders in the expansion. It is also
obvious that the same result can be obtained for
the expansion of B'~~'. The third-order terms in
the expansion of A")t all behave as 0(A '), but
that is because the matrix elements of seniority-4
states do not contribute to these terms. We shall
expect that in the fifth order it will begin to show
the same sympton as other expansions.

The previous studies also reveal another impor-
tant fact, that those terms in R, not matched in R,
always have vanishing matrix elements in the sub-
space of physical boson states with no more than
two bosons. However, in actual calculations boson
states with more than two bosons are sometimes
included, and therefore the above statement is not
a very satisfactory answer to the problem of find-
ing a truly convergent boson degree of freedom.
Nevertheless, it has provided a clue to the solution,
and in the next section we shall carefully investi-
gate the possibility of having a convergent boson
expansion within certain subspaces of the physical
boson space.

D. Construction of Subspaces in Vfhich the Boson
Expansions Are Convergent

We have seen in the last section that it is in gen-
eral impossible to have a totally convergent boson
expansion in the entire physical boson space. This
is due to the fact that there are always terms
which have the same order of magnitude as those
of a lower order. Nevertheless, in certain sub-
space of the physical boson space, the matrix
elements of these terms will all vanish and one
obtains a convergent boson expansion. If the physi-
cal states in which we are interested can be trans-
formed largely into this subspace, then the boson
expansion will provide a useful representation of
the original fermion operator within this conver-
gent subspace. To repeat, the best we can hope
for is that the boson expansions will be useful for
a subset of all the physical states. The choice of
the proper fermion basis involves dynamical con-
siderations, i.e., it depends on the structure of
the Hamiltonian. Yet just from the kinematical
conditions we have considered so far, it is pos-
sible to discuss the construction of these conver-
gent subspaces and their maximum possible size.
We shall therefore proceed to find these spaces.

We construct a sequence of boson subspaces D~'
such that each D~ contains states constructed
from boson operators 8', 8~, . . . , 8 up to
g boson states. For example, we can have

(3.33)

or

D(&) — (0) g(o)&
~
P) (t(2)') (0) (t(0)t(t(0)t (P) (t(0)1' (t(2)t

~
P) [ (t(2)'t (3(2)1'](0.2, 4)~ P)

1 1
(3.34)

From the definition it ls clear that D(J") 3 DJ",') if,
and only if, J~ J' and n ~ n'.

Now if the physical boson space D~ is chosen
so as to conserve both the particle number and
the total angular momentum, then we have

D2; ~ QD~QDO(o) (o) (3.35)

(3.36)

B(m I vTF j n)B

where ~m)s, ~n)seDP, and T is either A( ~) or

For a given j, if we can find n, and J, such that
the condition

(no)
D~ZD,,

is satisfied, then from what we have discussed in
the last section, it is not difficult to see that the
matrix elements

B ~', will be convergent expansions in the sense
that terms of a certain order will be 0 ' times
smaller than those of the previous order provided

J~ ~Jo. Consequently, the matrix elements of the
expansion of a chosen Hamiltonian ~(m (Hs ~n)s will
also be convergent in the subspace. Finally, if
there are states of the physical system which are
imaged largely into this subspace, then and only
then can we expect to have vibrational spectra.

As an example, take j= —,'. Here a Slater count
establishes that

Dpg D2
(2)

For larger j values, we will be able to find larger
no and J, to satisfy Eq. (3.36), and indeed we should
have to expect to go to such larger values of j to
establish a self-respecting vibrational behavior.



BOSON EX PANSIONS FOR FERMION PAIR OPE RATORS: . . . 1583

D(n)J
np+n2+ +n J =n

d(np~ g d("2~ g ~ ~ ~ g d("J')
0 2 J

(3.38)

where the summation extends over all possible val-
ues of n„n„.. ., nJ which form a partition of n.

From the above discussion it is obvious that
one can also consider any direct-product space
with the form

~ (n) = ~ d(n g& g d( 2~ g ~ ~ ~ g d(nIt
JXJ2 "~ ~ Ja J2 JI

with

Pl S ~

(3.39a)

(3.39b)

It is interesting to note that

(3.37)

if Jp ~ 2. This is because Dz contains only one 0-
boson state, namely the closed-shell state; but
DJ" with J, ~ 2 will always contain more than oneJp
Q-boson state. Therefore, only in the spin-zero
case, when it is possible to have D~ gD',"', can
we have a totally convergent boson expansion.
This explains why everyone who succeeded in ob-
taining convergent Marumori expansion considered
models involving spinless bosons only.

We should remark here that the subspaces DJ
are by no means the only possible convergent sub-
spaces in the physical boson space. In cases when

only the quadrupole vibrations are of interest, for
example, one can consider the subspace d J
which contains states constructed from 8" ~ up to
n bosons. In this way DJ" can be expressed as

To study the expansions for the general system
we will follow the same steps as those in Sec. III.

A. Fermion States and the Physical
Boson States

I fqvlm&& = 0l/ /l/~(A (4.3)

and S„„~,„ is a normalization constant.
The one-particle state is at IO&. The N= 3, v = 1

states are

(4.4a)

with the normalization S,". given by

S(0) [g (0 0)] -1/2

= (1 —1//n)-'/',
(4.4b)

where the function g,(j„g,) is defined in Eq. (Bll)
of Appendix B.

The N = v =3 states can be constructed in a way
similar to that of N=v =4 states. First one forms
a state

I~q(~)& -=s"'["»""]'."I0&, (4.5a)

The fermion space now contains states with an
odd number of particles; these states can be gen-
erated by operating g~ on those even states de-
fined in the last section. In the seniority scheme
they have the general form

I &v~q~& S=.„[n' & 0~ ... /~. ,(A')]~.l.„l0&

(4.2)

where 0„,„»„(A ) is a polynomial of At gen-
erating the even state,

IV. BOSON EXPANSIONS FOR A GENERAL SYSTEM
IN A SINGLE j SHELL

The boson-expansion method can also be genera-
lized to include systems with odd number of nu-
cleons. ' ' In that case the operator algebra should
be extended to include the single-fermion opera-
tors a and a~ as well as the pairing and multi-
pole operators. The commutation relations

with J40 and S~J given by

s, =[(OIaxA ],' [a xA' t],' IO&]

=[go(~.~)] '"
1/2

= 1+2J~ ~jkJ (4.5b)

Next, one projects out the v =3 part and obtains

133jq(A& = &'l"( I ~q(~)& —
I »jq&(3 I jql&q(~)& j

[a„',A'„" ]=0, (4.1a)

(4.1b)
with

(31jq(z)& = s",. 's'„'&6,.„g,.(0, g)

(4.6a)

and

[s + ] 2g l/2 I + +l/ ( ' c)4,mlm+I
(J)l/2 1 -1/2

-5. 1-—
n a

x 1+2J (4.6b)
1 j J j[ et l/ l (2fl)l/2 ~ I lcm-// v (4.1d) and

together with Eqs. (3.7) form the complete algebra. ft',"= [1- I(31jq I kq(z)& I'] -'" . (4.6c)
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Finally, in the situation when there exist several
states with the same angular momentum k, we
orthogonalize them with the Schmidt process such
that

jkq(J)) - jkq[~]) . (4.7)

In the image space, we now define a set of ideal
fermion operators a~ with the properties

(4.8b)

(4.8c)

where O~t, „»„(Ct)generates the boson states
jN 1, v —1, I-Ma&)s of the even system and S„„,„

(a., a.'.] =O, (4.8a)

(a, a'.)=8

[a, a"„"]=0,
where I „'~ are the boson operators defined pre-
viously. We shall still call this space the boson
space, but the physical boson states now include
all the even states, plus those states which are
generated from the even states by a single ideal
fermion operator g~, i.e., the states of the form

jN~kqp)B =SNukqp[ a N-l, v-1.yN~( )]Ã,p, y j )Bs

(4.9)

where the individual subscripts of the operators
have been omitted. This can be proved with the
help of the commutation relations and of the con-
dition

&OjaA'=O, (4.11)

but further details will be omitted. "
We can proceed then to construct the boson ex-

pansions.

is a normalization constant. Note that we have
explicitly excluded any boson state with more than
one ideal fermion in it.

The criterion discussed in Sec. II C for selecting
proper physical boson states is still valid for the
odd system with the obvious modification to in-
clude ideal fermions as well as bosons. To prove
this criterion, we only have to show that as Q-~,
$N„~,„-9N„~,„, which in turn is equivalent to estab-
lishing that

(0 j a(AA A. )(A A~ A~)a jo)

—,(Oj(AA A)(A'A' ~ A')aa' jO)„
(4.10)

B. Boson Expansions and Their Asymptotic Behavior

With the physical boson states chosen according to the criterion of the last section, the expansion of the
projection operator jo)»(oj becomes

jo)ss(0j=1-Qa a -gA~ A„+0(4).
m JM

(4.12)

The boson expansions are obtained as before by using Marumori's method.

I. ExPansion of a

We have

Ua„U = g O„„„.„~jo)s(N+1, v'kqp, ja jNvIM&)s(ojO„„,u + Q O„„,s jo)s
NvIM m

v 'Aqua

x(Nv'IM&u ja jN —1, vkqij. )s(ojO„, „„„.
Keeping terms up to the third order, we get

Ua U =(11jm ja jo) a jO)ss(oj+ Q (»JMja jlljm')8~~' jo)»(oja
vJM

+ g (3v'kq[Z, ] ja j 2vJM)[a xA & ] jo)ss(0 jA~ +0(4) .
v'0 I Jg]

(4.13a)

(4.13b)

(4.14)

Substituting Eq. (4.12) into this formula, we notice however that terms like a„a .a ~ alw-ays have vanish-
ing matrix elements in the physical boson space, because all physical boson states have the form (4.9).
Therefore, we can omit terms creating or annihilating more than one ideal fermion, and the above expan-
sion becomes

Ua" U =a + —g(j)' '[8 xa] ' +p, ooa"A A + Q p, ozQ [a xC ] ' +K, +EC2+0(4),
1

J J=0
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with

[it( )t)&g](') —~ ~ j j
( )'+ 'A( n'-I ~'m N -m'

N(m')

and

(4.15a)

[ txQJ ]/—:~ r r
( )//at

m ~ p ~ m' -NP
N(m')

where

p,, =-1+(31jm la I2000)

(4.15b}

(4.16a)

p,.„.= r, r (-)"&31jm'la'I2urii)

(gP/2 1 -1/2
(v ~0),0 0 (4.16b)

Z, =-a' ~~ e""e")
M N

J &O, N

allCl

with

-f & +(J)t (a)

mM qJ &O, N

~ ~ p. [-'x e&'~'"]&"g&"
q N

J ~O, N e[J~]-

(4.1Va}

(4.17b)

p, ,«,„-=(33r q[z, ]Ia.'I 22@M) . (4.17c}

For A( ~ we find after some calculation:

Z.. Expansion of A~'~

UA""U' = p o„„„.l o)s&»IM ~ IA"'t
I
N- 2, rl~'

NeIN (//r, ur

~(olo„,„.+ Z o'.„„10)&&»rqu IA""IN- 2, »qu~) (oIo
Nvkqu, jr.

'

1/2
=VA "tVt+ -1+ 1-— 8"tQata +0(5)g ', m m

where VA~'~tVt is the expansion given in Eq. (3.19).

(4.18)

In this case the new expansion is

8. Expansion of A ~~ (J g 0)

o~t„„.l0).&»I~~IA~ "IN-2, v'I'M e')~(OIO, , „...
Nv IM or

fIINt~ I

+ Q 0/t/„/~ql 0)s(Nvkqi/IAYg, ' IN 2, v'0, 'q'P')s(0-IO// 2 „, /

NVkqP

—VA( IitVt y q(zy)i4(o)t[ gt x g ] (zy) +g +/ 4, 0(5) (4.19)



with

1/2
S(o}

J,

=- 2 1-1

g(J'1)l~ @1 g1 N1 ~ m m

1 2 g(Z1)f X gf (u)g
M, m q

4. ExPansion of B(

Finally the expansion of B 1 is generalized to

I
UE(Jy) U1' yE(zy)pl+ [g1' x g ](J'y) + (l'y) g(0)1'[ g1 )( g ](z~)g(o) + pi+ yI+ yt+ ye+()(6)

hf1 J//I1 v $1/2 hf1 ~Oj jO 1 2 3

j)'/o- +( }/ ~ ~ ~ ' (21jmla"~}l31jm')
(»&/& m -m' M 1

0 (J', odd)

(J, even)

0 (Ji =0 oF Ji odd)

2( )zg 1 1
1 — (J~ 40 even) ~

n(J p/o

TI ~~ d(zy} 2 Jl ([g1' &( g(J'y)tj %)g(o)g y ( )tl/y gt e(o)1'[ g(zy) )& g](k) }q &m ~m 6

(z~) 2 o (-f X @(Jo)t)(o)@(o)- +( }/(, -1' ~(o)t(~(z) ) -~(a)
~~

~ jiffy ]Oj ~ I q
~g X ~q Qm+ — 0 g-qP

p «&]
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with

(4.26c)

/

( )/+ «z+y( $f I)l~ /a 1 a a d(z&) ( )a'-q' 1 [ +t + ft(za)t](a)[ g(ja) X -](a')Q

z2, z3~p ea'q'

&I~2 l~' «31~'

(4.2Va)

(4.27h)

(4.2Vc)

We have considered the boson expansions in a
system with even or odd number of nucleons oc-
cupying a single j shell. In this general case when
odd systems are included, we define an ideal ferm-
ion operator a in addition to the boson operators
C~~~t in the image space. The criterion (2.39) for
selecting physical boson states is easily genera-
lized, and the modified Marumori method can
still be used to construct the boson expansions to
the lowest-order anharmonic terms. For the ferm-
ion pair and multipole operators we have seen
that their expansions turn out to be just generali-
zations of the expansions obtained in the last
chapter.

With the coefficients of these expansions given,
it is easily seen that the asymptotic behavior of
these expansions as 0-~ is exactly the same as
those given in the last chapter, and the general
behavior and properties of the boson expansions
discussed before ax e still true here.

In the next section we shall consider the con-
struction of subspaces of the image space such
that the expansions can be made convergent in them.

C. Convergent Boson Expansions %within
Subspaces of the Image Space

For an odd number of nucleons in a single j shell,
the physical boson space is a direct product of the
space which contains the single ideal fermion and
the boson space which contains the even states.
Therefore, we can define a sequence of subspaces

~(n+1) gt g D(n)J —
g J

with D~) defined in Sec. III D such that g~~") con-
ta ns all the even states within D~,"), plus the odd
states formed by a single ideal fermion operator
a a11d every state in D~ . As an example, we
have

(4.28)

y (s) —Lib) U(gt
l 0) gt e(o)tl 0)

[
-t

)& g(a)t](1 j-al, y, j+a) li))

From Ule deflQltlon we Ilave E QE lf
and only if, n ~ n' and J ~ J'.

If for a given j we can find n and J~ such that
the physical boson space I ~ contains E~~p'" as a
subspace,

(4.29)

F (np+ l) (4.30)

then within E~~"p") the boson expansions are con-
vergent. The reason is exactly the same as that
discussed in the last chapter and we do not have to
repeat it here.

It is perhaps unnecessary to mention here that
instead of D~~), we can also use the subspaces d~)
or D", defined at the end of the la.st chapter, to
construct the convergent subspaces for the odd
system.

In summary, for a general system in a single
j shell, we can always find a certain subspace of
the physical boson space in which the boson expan-
sloQS can be made convergent. TIle size of this
subspace depends on the value of j.

APPENDIX A.

RECOUPLING IDENTITIES IN A SINGLE j SHELL

Some useful identities are proved in this Appendix. We shall always turn to Edmonds' book" for refer-



ence. First, using Edmonds' (6.4.3), we get

-(J, J~K J2 V~K Z, Z, E
~ ~ ) ~4 ~2 f

in which j is half-integral and all other angular momenta are integral.
Another identity involving the recoupling of 6-j symbols can be obtained by using Edmonds' (6.2.12):

( )J'y+ 12+73+F4+I +rg. ~1 ~8 + ~R ~4 + ~1 ~S» j j j j j j J4J2 I (A2)

where again j is half-integral and all others are integral.
Next, the identity

g 1'(125)F(345) = g r(135)1(245)

for even J;, J„J„and J, can be proved straightforwardly by expanding the left-hand side using the defi-
nition of Y' functions, Eqs. (3.8), and then recoupling by means of Eq. (A2). We shall, however, omit the
details.

Finally with Eq. (Al} we can ge't an expressI'on for the invariant sum

j j J»

J, J, I
APPENDIX B.

INVARIANT FUNCTIONS IN A SINGLE j SHELL

We wiD calculate some matrix elements which can be very useful in the evaluation of boson expansion
coefficients. The first one we eondider is

«[+(~,)A(z, )A(z, )( ~(~4)
~

()&
Af» )0'2 Af3

(Bla)

which can be evaluated by using the commutation relations Eqs. (3.7): We have

G(»'»4) = «I»&,'A2&' I o&+ 6..&oI&.A.' I o& —2Z y'(235)(J.}'"«I&.&'&' I o&

= 5,,6„+6„6„-4g r(235}1(415}

= 5„6„+6„6„4gr(31-5)1 (245),

where we have used Eq. (A3).
Next, utilizing Eq. (A4), one has for the invariant matrix element

v»(e2) g~(v4)-
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which is a very useful identity. We can now calculate the quantity

[S~~&~2)] ' —= (0I [A(~&) x A 2)]( )[A(~~)~ xA(~2)~] „/)I0&

2 (0 I
A(J ~)A(~2)A(~,')tA( 2

1 2
v~{@2) ss~{@2)

=G/(Z, Z2;Z, Z, )

1/2

~»""' = j-+~~ z —4~~~2 (as)

Another application of E(i. (82) is to get an expression for the overlap integral

(IM(J. g ) I IM(g g )) —S (z 8 )S (J'gz4)(0
I
[A(z y) )( A(z2) ]( I) [A(z3)1' )& A(z~)t ](/)

I 0&

= S('~")S('"4)G (12; 34) .
From an obvious generalization of E(l. (82)

(a4)

m',
e{u) war)-

v'e get the formula

G(12; 34) = 5„.G(12; 34),

Nl{N2)
- 1 2 3 4

which shows explicitly that G,(12;34) is in fact related to the reduced matrix element.
The second matrix element we want to calculate is

F(» I 3145) =-(0IA, A.a.A,'A.'
I 0&.

With Eqs. (3.6) and (3.7), this can be reduced to

&(» I
3 I 45) = (-)"(o IANNA. A'a'A'I 0&+ (-)"' - i/2 Z' 1'(463)«l AiA2A'A' I 0&

(a6a)

= (-) ' - ~~/2 Q Y'(563)(0
I A, A, AJA~t

I
0&+ „,g' 1'(643)G(12; 65)

„,g'[ r(653)G(12;46)+ 1.(643)G(12; 65)],

in which P' reminds us that we are summing over even angular momenta only.
Once again we define. the invariant m.atrix element

Substituting E(l. (86b) into the above one, and using E(l. (B5), we have for the first term

(a7)

2 I' I I'
4 6

I+/'
(fl I)&./2. (g I )1/2 5 8 3 5 6 3 G (12.46)
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while the second term can be obtained by interchanging J~ and J, in the above equation and multiplying by
a factor (—)' . With all these we finally get

P (12I 3I45) ( )I+/ (Ijg)1/2 ~ 5 8 3 {jI )1/2 5 6»
II (J )I/2 ~ ~ ~ ~

6 8

xa(12 46)+(-)' ' ' ' (ii)'/' ' ' ' C (12 56)4 6 I I J I

A relation similar to Eq. (85}is

2 4 5

For the odd system, we define the function

g(1, 2) =-(ola„a,ata'„. Io)

=(ol~,(~„.-a'„.a.)~,'lo&

=v...t., -(ol[x&;~&,a.. j[a.,a",~"] Io)

5 ,5 2 j j Jl j j J2
m' gag~-I' M~ ping M2-m M2

aQd the Invariant function

(alo)

which satisfies the identity

j J, k /12) j Z» k (12)
2

We also need to evaluate the function

f(ll2I» =- «la.~,~.~."t I»

=(-)"»«Ia.x,x,'a'aL lo)+ (-)"2 „,Qr(342)(0 la.a,&ta'. . Io)

(0 la„A,A3ta~. ,„ lo) +,~ Q' 1'(432)g(1, 4)

4

g(l, 3)+—g' 1'(432}g(1,4);
42Q es' M2 ng'+M2 ' J2 4

and the invariant function defined as

f,(ll2I3}-=g

)/+» +J» 3 2»1//2
"

J~ k O' J3

' (-)'- f(ll2I3)
M, q' q-q'M,

(1 3) 2( )/+»Q 2» 4 (g I)1/2 2 8 4 (1 4)

(B14)

f(ll2I3)=(-)" ', ' f»»(112I3}.mM, q m'M q' qI M A'k'

~(x~) m'(vs)-
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Effect of the 7.12-MeV Level in 0 on the Alpha Spectrum from N P Decay
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Taking into account the final-state density of the leptons, a single resonance model for the
C+o; 1 scattering amplitude predicts a markedly asymmetric peak in the o spectrum follow-

ing ~6N P decay into continuum states of ~60. The observed peak is nearly symmetric and it is
shown that this symmetry can arise from destructive interference from the subthreshold 1
state (7.12 MeV) and/or a background from states of -17-MeV excitation in O. It is shown
that the e width of the 7.12-MeV state must be an order of magnitude smaller than that of the
1 state (9.58 MeV).

I. INTRODUCTION

The a spectrum from the P decay of "N to con-
tinuum states of "O has been carefully investigat-
ed" because of the possibility of observing parity
violation in the decay of the 2 (8.88 MeV) into the
"C+a channel. The a spectrum displays a single
peak due to transitions to the broad 1 state at
9.58 MeV. The peak occurs about 150 keV lower
because the density of final states for the leptons
rises rapidly as the excitation energy is lowered
from its maximum allowed value of 10.41 MeV.

The exact shape of the spectrum is of only mod-
erate interest to the parity-violation investigations
but is of paramount interest in the present work
because of the prospect of obtaining information
about the u width of the subthreshold 1 (7.12-MeV)
state. From the standpoint of nuclear-structure
theory, the a widths of the low-lying states in "0
are quantities to be explained by cluster models
of these states." The o width of the 1 (7.12-MeV)
state is also an important parameter in fixing the
rate of the reaction '2C(o. ,y)MO that synthesizes

"O in stellar interiors. ' The small value of the
photocapture cross section (-50 nb at peak) ha.s so
far frustrated attempts to get the width directly
from the y experiment. "

Most of the early measurements' "of the shape
of the z spectrum following "N decay resulted in
an asymmetric peak that fell off more slowly on
the low-energy side. Such a shape can be fit quite
well by a single-level expression which includes
the lepton phase space. The curve marked "single
level" in Fig. 1 represents a good fit to most of
the data. However, even in 1961 Kaufmann and
Wmffler" found that the peak was nearly symmetric
and the experiments of the past two years ' '

have tended in this direction. The solid lines in
Fig. 1 summarize these data.

It is plain that destructive interference with the
9.58-MeV state is occurring. This interference
can arise from the effects of the 7.12-MeV states,
as well as from all 1 states of higher energy.
(3 states can also contribute, but the effect should
be small because of the higher centripetal barrier
and the absence of a 3 state in the 7-10-MeV


