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A theory of correlated wave functions for finite systems is developed which systematically
neglects the contribution from three-body cluster terms. The approximation made leads to a
derivation of a Bethe-Goldstone equation for finite systems which includes modified occupa-
tion probabilities and self-consistent potentials for occupied states. The absence of poten-
tials in unoccupied states follows from the neglect of three-body cluster terms. It is also
shown that a careful treatment of the Pauli principle and occupation probabilities allows the
application of variational techniques.

Recently, one of us has presented a discussion
of the relation between Jastrow theory and the
Brueckner -Bethe -Goldstone theories. ' Simple
cluster-expansion methods were developed; how-
ever, the results of Ref. 1 were deficient in that
the occupation probabilities were only treated in
low order and the notation was adapted to the dis-
cussion of infinite systems. In this work we reme-
dy these deficiencies by writing the equations of
the theory in a general basis appropriate to the
treatment of finite systems and presenting a more
complete treatment of occupation probabilities.

We consider a Slater determinant,

where
I 0) is the true vacuum state. The letters i,

j, k, . . .will be used to refer to occupied states
and m, n, p, . . .will be used to refer to unoccupied
states. We may introduce a correlated wave func-
tion via the relation

S=s~'~ = —,
' P a„a (nm If I ij) a, a;. (4)

It is now convenient to define the n-particle un-
correlated states,

where in general,

N

s= g s'"'
n=l

and S" is an n-body operator. ' In this work we
investigate the consequences of the approximation,

Further, cluster expansions for the expectation
values of operators in the state I4'& may be written
in terms of the cluster integrals defi. ned as fol-
lows:

&+&; I+'g'&= &&i ff'i'&+ &
g &'g'

=~ i &j~'-&v ~~'+«~. '~

=ti;.5),. +t, , 5;; -ti ~ 5,.;

iz5iJI +(pig iieet (8)

h = &e I afe&g&e fe&

Z 4, k Z i. J~jk, ik Z &, J~jk, gk~kl, il +
i igk i &kg l

j.+ Z&(g O- Z& .~. ~k&k~ ~i+" ~

ij igkl

where in Eq. (8), H is the Hamiltonian of the sys-
tem and t„denotes the kinetic energy operator for
particle n. We note that the specification of the
matrix elements &4';,k I

H fk;, k ) leads to the defi-
nition of three-body cluster integrals h;.k .,- k., etc.

The structure of the cluster expansion may be
indicated diagrammatically. In Fig. 1 we indicate a
diagrammatic representation for some of the clus-
ter integrals defined above and also the matrix
elements of the kinetic energy operator. The
rules for constructing the expectation values of
operators in the correlated states are given in the
work of da Providencia. ' For example, in Fig. 2 we

I

have indicated schematically the cluster expansion
for expectation value of the Hamiltonian. These
diagrams represent the expression

I
ij& = a,'ajt

I 0&, etc

and the unnoxmalized, but correlated states,

(8)

In the representation in which f is diagonal (infi-
nite systems) this expression reduces essentially
to that given in the Appendix of Ref. 1.

One may factor out the matrix elements of the
kinetic energy operator in Eq. (9). Then by mak-
ing a selective summation of diagrams we can re-
place the matrix multiplying ti & by the matrix y, ;
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i j, kL

Fig. 4.
Finally in this approximation we obtain the re-

sult for g indicated in Fig. 5, i.e.,
@=gf;,;r;„+k Z@;,, kirk. ;ri, i+''

ij ijkl

This quantity should now be minimized with re-
spect to variations of f . and f, the matrix y being
given by Eq. (10). In order to perform the mini-
mization it is therefore convenient to subtract
from 8 the quantity [see Eq. (10)]

&&i i= 5&;, i(r, , i+Qiifk, glrgiri ,k) ~.
i i1 gkl

where e; &
is a Lagrange multiplier. We obtain

h -Q e, , =Q (t;, —e, ,) y, , + -,' Q [Ii,, „
—Z( i. g iigi. ki+~i. iiig, ki)lykiyi,

g

i j, kL

FlG. 1. Diagrammatic representation of the matrix
elements of the kinetic energy operator and some two-
body cluster integrals. See Eqs. (7) and (8).

indicated diagrammatically in Fig. 3(a). Figure
3(b) gives an algebraic equation for y,. ~ in our ap-
proximation, 4

ri, i 0ii Z~ik, glyg, i Yi, k
glk

We may also factor the cluster integrals A, ,», in
Eq. (9). The factor multiplying )'g,», is y, , y» in
a similar approximation to that made above. In
making these approximations we neglect terms in
the expectation value of H such as that shown in

Minimizing this quantity with respect to y&, and
with respect to (ij~f ~mn) we obtain, respectively,

k ', J ti'+Z , [~ikjl Z ,(~ f, g~gk, pl + ~k, g~igii) jr i, k,

kl g

(13)

2 &mn I
~+ t, + t. I +»)r. iyi& ,

—Z, &mnl+gk)
gkkl

&&(ek;5,;+ k, , ski)yg kyk, =0.
(14)

The matrix e;, is the Brueckner-Hartree-Fock
matrix with occupation probabilities for occupied
states, and Eq. (14) is essentially the Bethe-Gold-
stone equation. '

If e, &
and y, &

are diagonal (for instance, in in-
finite matter), we have, instead of Eqs. (13) and
(14),

Cr&&& 2
g

~[ j + i ]i

j

&j

k

FEG. 2. Diagrammatic representation of the energy in a cluster expansion which neglects three-body (and higher) clus-
ter terms. L,See Eq. (10).]
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«++ [A««» «»»
—(E» + E»»)K«»» ««»]y»«»

&mnl v+ t«+ tales&) —(m««l»1»««& (&«+ &«} =o ' (14')

The last equation leads to

)
(mn~ v(@„&

tm+ t —&k —&r

because, for infinite matter, t is diagonal. We
recover, therefore, the Bethe-Goldstone equation
without a self-consistent potential in unoccupied
states,

) ~„& g ~mn&(mn~v~e„&
t +t„—&k —q,

If we use Eq. (14) we can simplify our expres-
sions for 8 and for e; j We have

8=pe«, +g(t«« —c. «)y«+2& (fj I vl+««&y«, , «y«, «
i ij ijkl

(16)

Equations (16) and (17) may be rewritten, using
the definition

(18)
k, l

h =gt;;+gU;, (5;«-y, «)+ 2 g (fj ~ vl+««)y», ;y«,
i ij ijkl

(16')

e, j =ti j+U, j. (17')

Equations (10), (14), (17), and (16') provide a
generalization of Brandow's results for infinite
systems. 4'

The work reported here is rather closely re-
lated to that of Coester and Kummel, ' however it
differs in our application of the cluster-expansion
methods. Thus we are able to study the role of
occupation factors and make somewhat closer con-
tact with the conventional Brueckner-Bethe -Gold-
stone theory.

APPENDIX

~;, ;=&«, , +g(+«elva I&y«a. (17) In this Appendix we wish to discuss the proper-
ties of the matrix c, j For this purpose and in

k + pgg lg +

J

{a)

i4 [
J

{b)

FIG. 3. (a) The quantity y& j given in terms of cluster integrals, neglecting three-body cluster terms. Indices other
than i and j are to be summed over. (b) Diagrammatic representation of an equation for yi j Indices other than i and j
are to be summed over. [See Eq. (10).]



CLUSTER EXPANSIONS FOR CORRELATED. . . 1563

a+v r +

FIG. 4. Two examples of terms neglected in the clus-
ter expansion used here. These terms have the values

D ps'—( ggKgg
.

g) and ash~, ;& ~;», , and are relatively
small.

y =I~ —tr, Kj.2y,y. ,

1 fl + r2~@12 ( 1 + s2) 12) r2 1

(A1)

(A2)

where tr, means that we perform the trace opera-
tion with respect to particle 2.

From Eq. (Al) it follows that

so that

-1
1 2 12y2 y 1 (A3)

Since K is Hermitian it follows that y is also Her-

order to avoid a cumbersome notation, it is con-
venient to represent the matrices e; „ t, ~, y; &,

y2, I2 when we wish the matrices to refer to a defi-
nite particle (1 or 2). In the same manner we will
denote the matrices h;», and K;,. » by h and K or
ky2 and Kj2 The usual rules for matrix multiplica-
tion will be employed. With these conventions we
can rewrite Eqs. (10) and (13) in the form

FIG. 5. Diagrammatic representation of the energy of
the system [Eq.(12)] (three-body clusters are neglected).
The heavy lines represent factors of y as in Fig. 3,

mitian. Now, from Eqs. (A2) and (A3) we obtain

sl(f1+tr2s12Y2) slY1

= t, + tr, h»y2 —tr2f2K, 2y2.

Taking the Hermitian adjoint we obtain

I
Yl 1 1 2Y2 12 2(Y2 12 s )

which may be rewritten in the form

h I 1 Yl) Yl 1+ r2h12Y2 2(Y2 s2 Y2) 12Y2 '

Since y 'e y satisfies the same equation as e we
see that

The matrix e is not Hermitian, but ye is:
(A4)

This property of e insures that the equation for
~@~,), obtained by minimizing 8 with respect to
(ij

~ f ~
mn), is the Hermitian adjoint of the equation

obtained by minimizing h with respect to (mn~ f ~ij),
as it should be. Also, trc is real:

try=try 'e y=tre
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