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mismatch of the zero crossover angles.
The spin-flip probability from "S measured at

15.9 MeV was even larger, showing a peak value
greater than 0.5 (Fig. 12). This is the largest spin-
flip probability reported to date. The same optical-
model parameters, extended in energy, which fit
the data at 17.6 MeV, fall short of reproducing
this large value of the spin-flip probability.

The large peak values of S(g) in "S are not un-

derstood. A similar experiment on "S with deu-
terons' does not show such a large value, but is
not necessarily inconsistent with our results,
since that experiment was done at a very different
energy, and we have already noted the rapid
change in the peak S(P) with energy. Apparently
a collective-model approach such as we have used
here is incapable of showing the detailed features
and behavior of the spin-flip probability.

Even without a spin-orbit interaction term in b, U,

spin-flip inelastic scattering can occur (a = 0), and

this alone can account for a large part of the ef-
fects we observe. Apparently the model is not suf-
ficiently detailed to allow for either the amplitude
we have seen in peak value or the variation with

energy. There have been recent attempts to apply
microscopic models, '" but these have not been
especially promising in solving the present prob-
lem, because they require accurate and detailed
wave functions, and because it is probable that a
full consideration of core-polarization effects will
be required.
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The problem of collective nuclear rotations is discussed in terms of a kinematic transforma-
tion to an intrinsic body-fixed coordinate system. Some results are obtained that are equiva-
lent to the classical case. By use of approximate projection operators, an algorithm for cal-
culating successively higher terms in the expansion of the rotational parameter (2 the inverse
inertial moment) is developed. The first-order term is just the Skyrme formula, with the
proviso that it be evaluated with respect to the "nonrotational" part of the Hamiltonian.

I. KINETIC TRANSFORMATIONS

The picture one has of the collective motion of a
nucleus is that of an ellipsoid slowly rotating with-
in the laboratory reference frame, perhaps exe-
cuting small vibrations. There are various semi-

classical ways of using this picture to approxi-
mate nuclear parameters, e.g., the "moment of
inertia" or inverse spacing between the few lowest-
energy levels. These find their most rigorous ex-
pression in terms of approximations to the projec-
tion of states of good angular momentum J (the
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caret is used throughout to distinguish operators)
from some intrinsic state 4.' The state 4 de-
scribes the oriented ellipsoidal system in terms
of a coordinate system fixed in the nucleus, usu-
ally taken to coincide with the principal axes of
the nuclear inertial moment. This is the same as
regarding the intrinsic state as an oriented density
distribution corresponding roughly to a deformed
potential well; in such a case, the eigenfunctions
of the Hamiltonian of the intrinsic frame would no
longer be eigenfunctions of J, since [J,U] e 0 or
[J, Pj W 0 where P is the operator corresponding to
the density in the intrinsic frame.

Various approximation schemes' are based on
the purported smallness of the angular velocity
parameter co that expresses the rate of rotation of
the deformed system as seen in the laboratory
frame. It is true that the rotational level spacings
(and hence difference in u's) are small in compar-
ison to the angular frequency of a transition be-
tween vibrational levels, or to the frequencies
corresponding to single-particle -hole excitations;
however, it is not obvious that a parameter clas-
sically identified as being related to the angular
momentum by a linear transformation can be var-
ied in a continuous fashion or used as the expan-
sion parameter in presumably rapidly convergent
expansions. ' One of the aims of the present study
is to eliminate this dependence on cu.

Such descriptions of rotation in terms of "small
co" usually assume that the rotation takes place
about an axis perpendicular to the symmetry axis. '
At first sight, this is a strange ad hoc assumption,
since it is evident that the classical rigid ellipsoid
would rarely rotate in such fashion; the justifica-
tion given is that a rotation around the symmetry
axis cannot be discerned externally. But a rigid
ellipsoid (even a symmetric one} could rotate
about any other axis. Classically v need not be
along the direction of J; it is taken to lie along the
instantaneous axis of rotation and usually has non-
vanishing components with respect to space-fixed
and body axes, as does J. For a force-free rigid
body with an axis of symmetry (two principal in-
ertial moments the same) &u precesses about J
with constant angular velocity of precession, so
that the inertial ellipsoid (which could correspond
to a surface with given density value) rolls around
in a circle on the invariable space-fixed plane. In
the general case (no principal inertial moments
the same) the motion is not so regular; it is solv-
able in terms of Jacobi elliptic functions. "

The intrinsic coordinate system is related to the
laboratory system through an explicitly time-de-
pendent rotational transformation. ~ Such a trans-
formation will be termed kinematic, in contrast to
the transformation of rotation of the system

through a finite angle about some axis; the latter
transformation amounts to a reorientation of the
system and will be termed a static rotation in or-
der to distinguish it from the kinematic case. The
transformation is given as e ' '~', where 5 = 1
here and in what follows. This approach has pre-
viously been used in the treatment of magnetic-
resonance problems. ' Classically J =I ~ co is the
angular momentum, and the energy of rotation is
H = —'&u TPu=-,' ru J. The dyadic There repre-
sents the inertial tensor. ' The quantum-mechan-
ical operator for the rotational energy is H„

so the explicitly time-dependent operator
for the kinematic rotation becomes e ~~'I

which mill enable us to discuss the rotation without
reference to the classical parameter co. An addi-
tional static (time-dependent} rotation would in
general be necessary to orient the coordinate axes
along the principal axes of the density distribution
in the body-fixed frame.

The state function of the system as viewed from
the laboratory frame is then /~= e "&'Q~ where
Q~ is the state function in the rotating frame. If
[Hs, JJ= 0, then Pz must be an eigenfunction of J,
since (t)~ is.

Let us examine the problem of the excitations of
the system as viewed from the intrinsic frame.
First we note

HP~ =i f~ = 2H~e ' 'Q +i e &'Q~ = He

so

(e""&'He '2"&' —2Hs)gz =if' =(H' —2Hs)gz

is the eigenvalue problem in the rotating frame;
this is essentially the same as the classical re-
sult. 4 Note that the Hamiltonian for the system
(H' —2') is no longer to be identified as the total
energy of the system, i.e., it is not the "energy in
the intrinsic frame. " The main assumption that
has been made thus far is the existence of a nu-
clear Hamiltonian 8„ that describes collective
rotations. In what follows, we shall have in mind
the description of states of even-even nuclei, so
that J will be an integer and usually an even inte-
ger.

We have now eliminated the dependence of the
rotation on ~ and obtained the Hamiltonian eigen-
value problem for the rotating frame. In Sec. II,
we give a method for finding the coefficients of
the series expansion of the rotational energy E»,
based upon an ansatz for the expansion of the pro-
jection operator in terms of powers of J. Some
useful properties of these operators and their re-
lation to previously used projection techniques
are discussed. An algorithm is developed to gen-
erate these operators to any order. In Sec. III,
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the identification of ER~ as an expansion in powers
of J(J+1) allows us to develop a compact self-con-
sistent method for evaluating the rotational spec-
trum. In this approximation the eigenvalues of
H' —2Hs are degenerate (independent of J); the
Hamiltonian of the intrinsic frame, rather than
that of the lab frame should then be used in the
variational procedure if the variational wave func-
tion is to represent the wave function of the intrin-
sic state.

II. APPROXIMATE PROJECTION OPERATORS

We assume that the intrinsic state is 4

=g~,u~Q~. The true projection operator giv-
en by 0~4 =n~Q~ has the following properties:

(4 IO, I4) =a,&4 I4,&=nyo, ,

(4 lo,'14» = ~,&4 Io, l y, & =o,&4 I4, &
= o,*o, ,

(@ I o&'ozl@) = +z'(@z'I 4'z&os= 4z'ozoz
&4 lgo, l4& =p l~, l'=1.

cases. The normalization requirement could be
used to find

I
o., I'.

The approach used here is patterned after that
of Hu"; a similar approach is developed indepen-
dently by Das Gupta and Van Ginneken. " Define
the operator P~ =O~'/In~I' Then (4 IP~]4) =1 for
all J. We would like to have (4 IPr P~I4& =0 for
K4 J. We intend to approximate

( I
(H' —2H ) I )

(@I os(H' —2H„)ozl@)
(4)4J R 4z (4 lo 2I4)

by (4
I
(H' —2H„)P~I4&. In general [(H' —2Hs), O~]

= 0 only if the angular momentum projection is to
eigenstates of the Hamiltonian involved, so P~ is
being used to simulate the effect of a commuting
O~'. From this point forward, we understand that
all expectation values (represented by the angular
brackets) are to be taken with respect to 4 unless
otherwise stated.

Hu" claims that the operator

The operator 0~ has the following explicit repre-
sentation':

o, = IIQj' H(H+I}]/-[j(j+I) sc(H+ I)])-,

which clearly annihilates all eigenfunctions with
K4 J.

Perhaps the most popular representation of O~
(actually 0») is that used by Peierls and Yoccoz, '
who write it in the form of a Hill-Wheeler-Griffin
integral. ' Discussions of this method as applied
to the projection of angular momenta after Har-
tree-Fock (HF) variation are well covered in the
lectures of Ripka" and Villars"; Faessler and
Plastino" use it to derive a scheme for HF varia-
tion after angular momentum projection. These
methods essentially average the HF single-parti-
cle functions over the total solid angle, using the
rotation matrix S~, (0) as a weighting function.
They also require a prohibitive number (Ref. 12,
p. 77} of matrix or determinant calculations. Since
our approach here is to be formal and approximate,
and the formal aspects of the projection integral
have been well described elsewhere, "we shall not
use this method.

For calculations restricted to a finite basis, the
ladder calculation scheme of Kelson and Levin-
son, '~ Ripka, ' and Li5wdin' based on the properties
of continued products of J J, should provide suf-
ficient accuracy. " Actually the solution of the set
of linear equations

N

(4 I
J'"I4) = g j"(j+I)"~yo, , (8)J~

might prove to be a convenient approach in certain

Suppose that one writes

P~ =1+QAnB„.
n=1

(7)

Since (Pz& = 1, (A„P& =0. If we choose the normal-
ization on the operator A„such that (J'"A„)= 1,
then

J2n (J2n)
n (J4n) (J2n)2 (8)

appears to be the simplest such operator. The co-
efficients B„are then chosen to yield approximate-
ly the correct eigenvalues of functions of J' and
still keep the error at any stage of the calculation
relatively [to J(J+1)—(J')] small. Set

Bi=j(j I) —+(J ),
B, =J (J+1) —(J ) —(J Ai)Bi,
B~ =J (J+1) —(J ) —(J'A~)B, —(j'A,)B2,
B„=j"(j+1)"—(j'") —(J'"Q Aq B)) .

It is important for subsequent steps that B„be of

with the properties (4
I P~ I4) = 1 and (4

I
J'P~

I
4&

= J(j+ 1) projects out eigenstates of the Hamilton-
ian H with eigenvalue E r+ j( j+ )I(/24 )rfor the
case where the z' component of the angular mo-
mentum is K in the intrinsic frame. Leaving
aside the question of normalization, such an oper-
ator cannot be a true projection operator, because
it is not idempotent:

&(P")(P")) = 1+[j(j+1)—(j'&][j'(j'+1) —(j') ] .

(6)
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this form, with a small remainder. Then

(J"P,&
=

& J"&+g (J"A„&B„
n=1

(c IH, P, lc» =&c l(H, -A«'& -" ) Ic»

+AJ(J+1)+ ~ ~

=&c I(a, -a, )lc».E„,. (17)
=(J' ) +J'(J+1)' —(J")—(J"Q A;B, )

+g(J' A)B)}+ Q (J A„)B„. (10)
n =4+ 1

Our present choice of approximate projection oper-
ator yields

g&c IH, A„B„lc»

For systems such that (J'")/(J')"-0 as n-~ (al-
though (J ")&&J " 2}) one has

then

(4 I
F(J )P~I c» = a'+ b'J(J+ 1)+ c'J (J+ I) +

(12)

(13)

where a=a'+5a and 5a«a, , etc.

III. APPLICATIONS TO HF THEORY

Let

for b& n because this goes essentially as &J'~&/
(J'") for large enough n. Because the accuracy of
estimates made with the series depends sensitively
on (J'"), no general guarantee can be given as to
the rate of convergence. While it would be con-
venient for the purposes of a calculation if the se-
ries converged in a few terms for well-chosen 4,
for the purpose of formal manipulation it is suffi-
cient to identify the first-order coefficient with
"reasonable" accuracy. That is, one is given an
operator F(J') such that if

(AzlF(J )I A~& =a+b J(J+1)+cJ (J+1) +

+ higher-order terms,

where the coefficient A is given by the term in

curly brackets. It corresponds to the Skyrme for-
mula" for the rotation operator, except that the
"non-rotational" Hamiltonian is used in place of
the full Hamiltonian B.

From our identification of corresponding terms
in E„z and (HOP~& we have

&c l(a'-2H. )P, I~& =&c I(a'-». ) I~&

=P I o, l'&@,I
(H'-». ) I 4,&

= (&~I (H' —2H„) I P~& (19)

for all J, or one might say that the eigenvalues of
(H' —2Hn) are degenerate in this approximation.

It is then clear that the best variational approxi-
mation to this equation then solves the problem:
Minimization of (C I

(H' —2Hn) I4} determines a C

such that E» can be calculated from A, B, etc.
This implies that what should be minimized in the
usual HF approach to the rotational problem is
H' —2H„ instead of H.

In using the Skyrme method, one assumes rough-
ly the following: Let Hn =AaJ2, E» =A, J(J+1).
If this is true, calculation of A~ from the formula
using the full Hamiltonian results in

En, =&4,la, l 4,& =AJ(J+I)+BJ'(J+1)'+
((a, +A,J') J'& —((a, +A, J')&(J'&

(J'& —«'&'
(20)

H =Ho+H~,

so that

H' —2Hz Ho

(15)

+ B[J'(J+ 1)' —(J') ] +

we can make the identification

If we replace the Hamiltonian matrix for the in-
trinsic frame by its projected approximation,

&y~l(H. Hn)IC~&=&c la~z—lc» —E .,

and if P~ is such that the expansion is of the form

(c I a, P, l c) = &c I a, I e&+A [J(J+I) - &J'&]

( ') ( ')' '&&'&-(&'&' '

As there is no reason why the numerator of the
first term should vanish, this would indicate that
such a procedure is inconsistent if one assumes 4
is the variational approximation to the eigenfunc-
tion of the Hamiltonian of the intrinsic frame. But
this is not what the authors of Ref. 17 set out to do;
their variation minimizes (H —Hn) with respect to
projected wave functions, such that the deviation
from the pure J(J+ 1) spectrum is minimized in a
particular way. Their method is similar in func-
tion to projection of angular moments followed by
variation.

On the other hand, if Eq. (19}is an exact eigen-
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value equation, (H, —H„) ~C) =Z,
~ C), and Hs =AS',

then

(H J') —(Hg g ') = ((E + H„)Z ') —((E + H ))g '),
(21)

so that

which is obviously self-consistent.
The state which is obtained by minimizing the

Hamiltonian in the lab frame without requiring a
sharp angular momentum cannot be considered a
truly intrinsic state; it should not, for example,
be considered to have a particular shape, because
it consists of a superposition of densities rotating
with differing angular momenta and rotational en-
ergies. The method of variation after angular mo-
mentum projection serves to obtain an antisymmet-
ric variational wave function which is also an an-

gular momentum eigenfunction referred to the lab
frame. The reason this method seems to work
better than the usual HF variation followed by pro-
jection may be because the Hamiltoniand is not
the correct one to use in the intrinsic frame.

The projection of angular momenta from a prop-
erly antisymmetrized wave function that has mini-
mized an operator related additively to the Ham-
iltonian of the system in question may in fact be a
reasonable approximation for calculating various
parameters of interest for such a system. The
author feels that the minimization of the correct
Hamiltonian for the system might yield a better
approximation (numerical studies are underway to
check this) and should surely provide more physi-
cal understanding of the nature of nuclear collec-
tive excitations. Discussion concerning the proper
Hamiltonian H, to be used and a detailed variation-
al calculation are left to a future publication.
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