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A variational method of calculating correlated intrinsic wave functions for deformed nuclei
is formulated. The configuration amplitudes and the single-particle orbitals which define
such wave functions obey a system of equations, which is solved self-consistently by an itera-
tive procedure for the doubly even N = Z nuclei in the sd shell. The correlations under study
are of the 2p-2h type. Compared with the independent-particle Hartree-Fock picture, the
present solutions show a greater stability in terms of binding energy and shape symmetry.

I. INTRODUCTION

In many fields of physics most of the many-par-
ticle systems can be described approximately, but
often very successfully, by means of a simple mod-
el known under different names but based on the
same basic idea that each particle moves indepen-
dently of all others in a common field which de-
pends on the average motion of all particles in-
volved. The total wave function is then a simple
product, properly symmetrized or antisymme-
trized, of the individual particle wave functions.
In particular, in the study of deformed atomic nu-
clei such wave functions are customarily taken as
the eigenstates of a nonspherical potential parame-
trized to fit experimental data, ' or to minimize
the total energy. '' Or they can be obtained in a
more fundamental manner from the nuclear Hamil-
tonian along the well-known Hartree-Fock (HF)
variational scheme. ' '

Many HF calculations have been performed and
have been brought to bear on the observed nuclear
properties. ' Because of their apparently deformed
shapes, because of their simple symmetries, and
finally because of the wealth of experimental data
available, the doubly even N =Z nuclei in the sd
shell have been most extensively studied. Perhaps
the most significant result of these calculations is
the existence of an energy gap between the occu-
pied and unoccupied single-particle levels. This
single-particle energy gap determines the degree
of stability of the HF configuration against particle
excitations, and hence the extent to which the in-
dependent-particle picture is valid. In the first
half of the sd shell and more particularly in the' Ne nucleus, the single-particle gap is large for
the most stable solution, and the HF scheme has
known considerable success.

Unfortunately, for many nuclei, the variational
HF procedure yields several solutions, most of
which do not exhibit a large single-particle ener-
gy gap. If these solutions are degenerate or near-

ly degenerate, as is often the case, the minimal-
energy criterion alone can no longer be relied up-
on to choose the correct solution, since the ener-
gy fluctuation and the second-order potential ener-
gy may both be appreciable. Moreover, in the
past few years, several experimental groups''
using techniques of heavy-ion Coulomb excitation,
particle transfer, and inelastic reactions have col-
lected new data, many of which challenge the pre-
dictions of the HF method. These difficulties, not
to mention the complete failure of the HF method
in the second half of the sd shell, clearly point out
the limitations of the independent-particle picture,
and indicate the necessity of including the correla-
tion between the individual motions in the intrinsic
wave function. In this connection pairing correla-
tions immediately come to mind. The importance
of pairing phenomena in heavy nuclei has long been
recognized; and a proper formalism treating the
pairing correlations and the underlying field on the
same basis has been known for some time under
the name of the Hartree-Fock-Bogoliubov (HFB)
method. ' " Recently it has been applied in all its
generality in a numerical study of light deformed
nuclei. ""The results show that while the T = 1

pairing is almost nonexistent, the T =0 pairing af-
fects the nuclear structure in many important
ways, such as by restoring the shape symmetry in
several nuclei.

The HFB method deals with a special class of
correlations. This paper investigates a more gen-
eral method of obtaining correlated intrinsic wave
functions. Dubbed the multiconfigurational self-
consistent (MCSC) field theory, it has been known
and used for some time in atomic and molecular
physics. " It consists of assuming the total wave
function to be a superposition of elementary states
representing specific particle correlations, and
of obtaining the particle orbitals and the configura-
tion-mixing coefficients in a completely self-con-
sistent manner. Although for obvious reasons
some restriction must be placed upon the number
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of configurations actually calculated, there are in
principle no limitations on their nature or their
relative importance. That this approach is also
practical and useful in nuclear physics has been
demonstrated by the recent calculations of Satpathy
and Ho-Kim' and Faessler, Plastino, and Schmid. "

In the following section details on the MCSC
method will be presented. The problem of mini-
mizing the energy of a many-body assembly re-
duces to solving a system of coupled equations
which the particle orbitals and the configuration
amplitudes satisfy. It will be shown that the MCSC
field has the same formal structure as the HF
field, and canbe represented in terms of one-body
and two-body density matrices. In Sec. III we
use the even-even ¹Znuclei in the sd shell to
illustrate the practical aspect of the method. In
particular, the choice of configurations and a com-
putational scheme will be discussed at length. Al-
though the set of configurations actually included
in our calculations might be too restricted to de-
scribe accurately the real physical situation, the
results nevertheless already exhibit many interest-
ing effects. Finally, a theory recently advanced
by Padjen and Ripka, "also aimed at obtaining the
correlation energy, will be discussed and com-
pared with the present method. Section IV con-
tains our conclusions.

II. MCSC METHOD

The MCSC method develops a variational proce-
dure by which the wave function of an N-particle
system can be determined. Let us first introduce
a certain orthonormal complete set of one-particle
wave functions, or orbitals, ordered so that the
first M (M ~N) orbitals may be occupied; all oth-
ers remain unoccupied. The trial wave function
of the system 4 is then chosen to be a linear corn-
bination of antisymmetrized normalized products
4, of N orbitals selected from the set of the first
M orbitals:

There are („") such determinantal functions 4 z,
each represents a configuration of occupied orbit-
als. In particular, we call 4„or 4 „~, the refer-
ence (Op-Oh) configuration, in which the lowest N
single-particle states are filled.

Let the total Hamiltonian of the system have the
standard second -quantized form:

H =+ &a( f(P) a" a8+ —,'Q (oP( V(y5) a asa~az,

(2)
where the two-body matrix element is antisymme-

trized. The expectation value of H in the state 4
may be expressed in two equivalent forms:

(H&= g cy&c, (H(c„&c,. (Sa)

= Z(&~l trl~&+-,'Z &~i I vrl~q&}, (sb}

(ply(a&=&a' as)

(r5(rlup&= z&a' atta~a„& .
(4)

(5)

They are Hermitian and are normalized by their
traces: Try =N and Trr = ,'N(N -1). In-general
the one-body density is not diagonal, though it is
useful to find a representation in which it is, in
which case its diagonal matrix elements may be
interpreted as the occupation numbers of occupied
orbits. The two-body density describes particle
correlations, the nature of which depends on the
configurations chosen; in fact its matrix elements
give complete knowledge of any system governed
by a force of the type (2).

The variational principle states that the energy
of the ground state is the lower bound of (H) for
any arbitrary normalized trial wave function, and
further that all eigenstates of the system obey the
condition

5(H) =0 (6)

under arbitrary infinitesimal changes in the trial
wave function, subject to the orthonormality con-
straint of the eigenstates and the particle orbitals.
Independent variations of the configurations and
orbitals lead to a system of coupled equations:

Q(&4~(H(C~ &-E6~, )C( ——0, ('la)

&&I frl u &+ Z&»l vr(qv& —e,„=o. (7b)
V= 1

The Lagrangian multiplier E assumes the usual
meaning of the energy of the system in some state

The Lagrangian multiplier matrix e, intro-
duced to preserve the orthonormality of the orbit-
als, is Hermitian, ~),„=e„*)„andin general non-
diagonal.

If the coefficients Cl are not explicit functions of
the orbitals, the infinitesimal variations leading
to Eq. (7b) can be generated by a unitary transfor-
mation exp+(z„sa as-z~sasa„), defined in terms
of the arbitrary infinitesimal complex quantities
z„s. The variational condition (6) then becomes

&[H, g(z sa as-z*8asa }]&=0, (8)

where here and throughout this paper the indices
denote occupied single-particle states.

In the last equation the one-body and two-body den-
sity operators have been introduced and are de-
fined by:
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or, since both the real and imaginary parts of z

are arbitrary, more simply:

([a as, H]&=0.

If a=A. , an occupied state, and P=g, an unoccu-
pied state, we obtain

This relation expresses the fact that the 4' result-
ing from an energy minimization of the type (8) is
not directly coupled by H to singly excited states,
at~a~ l4&; i.e. , those formed by promoting a parti-
cle from the space of occupied orbits into the com-
plementary space.

In the standard HF method, a possible form of
the energy-minimization condition is

state 7l in (plh l
X&= 0 stays completely outside the

space under consideration (7) &M). Thus one may

as well solve Eq. (7b) directly for the occupied
orbitals lX&.

III. APPLICATION TO sd SHELL NUCLEI

The MCSC method is in principle quite simple.
Its basic content is summarized in Eqs. (7), which

we now proceed to solve. Two difficulties become
immediately apparent: the size of the system of

equations to be solved, and their nonlinear nature.
We devise a practical iterative scheme of solution
and apply it to a study of the intrinsic structure of
the ground states of even-even N= Z nuclei in the
sd shell.

A. Choice of Configurations

where all quantities refer to the HF approxima-
tion, and hp stands for the self-consistent field.
From this equation follows a particularly useful
result: (q, lh, iX/=0, which says that the occu-
pied subspace Ap is completely separated from the

empty subspace gp. These relations have their
counterparts in the MCSC method. Let us substi-
tute the Hamiltonian (2) into Eq. (9) and recall
the definition of the density operators; we then
obtain for any orbitals a, P:

where it is understood that the trace Tr, operates
on the variables of the second particle. The last
equation contains the one- and two-body operators
of the Hamiltonian instead of a self-consistent-
field operator as in Eq. (11). Nevertheless, it is
helpful to introduce here an MCSC field operator,
which we define by

h = Z(&alfr IP&+Z &«ll'I'IP&&)at as (12)

It correctly reduces to the HF field hp in the limit-
ing case M =N. It is Hermitian and, furthermore,
has vanishing matrix elements between occupied
and unoccupied states if the densities y and I
through which it is defined are calculated with the
right wave function 4; i.e. , that for which the en-
ergy is stationary with respect to variations in the
orbitals.

Thus two important properties of the HF theory,
expressed in Eqs. (10) and (11), still stand in the
MCSC theory, but in modified and weakened forms.
In particular, while the HF condition (rI, [h, lX,&=0
suggests a diagonalization of Ap, which then yields
the orbitals, a diagonalization of the MCSC field
h offers no great advantage because in the present
case the entire single-particle space (X &M) is
used to construct the determinants; the occupied

inn'lI'(T ))= (2TO+1} "2+A (nn'TOM, )
Np

xA (ll'To M, ) l
4 0), (14)

The size of the MCSC system of equations de-
pends on both the single-particle space and the
configurations used in the construction of the trial
wave function. Following a well-established cus-
tom of workers in the field, we consider ' Q as an
inert core and define our active single-particle
space as that spanned by the entire sd shell.

Even in this modest space the number of possible
configurations is beyond our practical computation-
al means. It can, however, be reduced further by
taking into account symmetry laws. The HF con-
figuration 4 p is probably, but not necessarily, the
dominant one. For the nuclei under consideration
we may assume it to be symmetric under the ex-
change of protons and neutrons, to have zero iso-
spin, and, moreover, to be time-reversal-invari-
ant. We also assume axial symmetry. Each orbit-
al is then characterized by a quantum number k,
an eigenvalue of the angular momentum component

j„the wave function 4 p is an eigenstate of the to-
tal angular momentum component J, of eigenvalue
K =0. Then with the nuclear Hamiltonian usually
assumed, the excited configurations 4, must be
chosen to have the same symmetry properties as
4p.

Since the lowest-order perturbative correction
to the HF energy comes from the 2p-2h excitations
of 4 p, we assume that the ground-state correla-
tions are mainly produced by such states. We
shall denote each orbital by a = (a, t,}, where the
Latin symbol stands for all quantum numbers ex-
cept the charge t, . Then a 2p-2h configuration of
total isospin zero can be formed from a pair of
particles (vv') and a pair of holes (u. '), each cou-
pled to isospin T,:
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where it is observed that (T,M, T, M-, ~OO)
= (-)r' "'(2T, +1) '", and where the following no-
tation is used:

A (abTM)=e(ab) Q(—,'t, —,'t,
~ TM)a„as,

t tttb

e(ab) = 1

= 1/v 2 a= b, T =0

=0 a=6, T=1.

T 0 T
L a

T

(c)
FIG. 1. 2p-2h configurations. Included in the present

calculations are: (a) configurations formed by time-re-
versed pairs of isospin To= 0, 1; and (b) configurations
formed by nonidentical-particle pairs of To —-0. The
more general 2p-2h configurations of type (c) are not in-
cluded.

If a configuration contains time-reversed pairs,
that is, if n'=n and l'= l, it is taken as in Eq. (14);
otherwise a time-reversal-invariant state is
formed by the combination

v —,
' [ ~

nn'll'(T, ))+
~

nn'l l'(T, })].

Finally we introduce the requirement that no two
configurations be connected through single-particle
excitations. The only reason for this arbitrary
restriction is that it makes the one-body density
operator diagonal, and that it reduces the number
of configurations. The configurations actually in-
cluded in the present calculations are illustrated
in Fig. 1; there are 13, 18, 22, 20, and 13 of
them for "Ne, "Mg, "Si, "S, and "Ar, respec-
tively.

In mixing deformed configurations in the intrin-
sic state, care should be taken to avoid the spuri-
ous effects which result from nonconservation of
angular momentum. These arise, for example,
from a rotation of the Op-Oh wave function; such
a rotated state clearly overlaps with other compo-
nents of the total wave function and produces ex-
traneous energy gains which must not be confused
with the energy gains from particle correlations.

We meet this difficulty by explicitly constructing
and eliminating the state J'~ 40), which is the main
component of the rotated state of 4, on the 2p-2h
configurations. Other possible spurious admix-
tures, such as J'~4, ), are ignored. The validity
of this approximate treatment has been discussed
in Ref. 16. When components such as J ~4,) are
removed the coefficients C, for It 0 become de-
pendent in effect on ~4'„) and hence on the orbitals
which go into it. Then Eqs. (7) and (12) are not quite
valid. If C, for It0 are small compared with C„
the error introduced will be correspondingly small,
which we assume.

B. Numerical Procedure

~
z)=Q ~jm)c~, (15)

where m = k~ to conform to axial symmetry. We
use the Condon-Shortley phase convention; it fol-
lows from the assumed time-reversal and parity
invariance that the coefficients c are real. We

keep 1s and 1p shells closed, and parametrize
the single-particle operator of the Hamiltonian in
the form

8 =c +Q( (j ~1'S~j)+o(21

Two sets of parameters will be used: The first is
identical to the one used in Ref. 5, with e, = -4.2,
n„= -2.8, and a, 2 = 0 MeV; the second fits experi-
mental single-particle energies (in the "Si region),
with e, = -3.88, o.„=-2.12, and a,2=0.12 MeV.
The two-body potential is taken to be the Yale po-
tential. " This potential has been determined by
an accurate fitting to the nucleon-nucleon scatter-
ing data. Since it has a hard core, it is to be re-
placed by a nonsingular reaction matrix. We use
the reaction matrix elements for the oscillator pa-
rameter b = (b/m~)'" = 1.76 F, calculated and tabu-
lated by Shakin, Waghmare, and Hull. "

We propose to solve the system of Eqs. (7) by
iteration. Once the matrix elements of the Hamil-
tonian H are known, Eq. {7a) is a secular equation
in CI and can easily be dealt with. In contrast,
Eq. (7b) is nonlinear in the unknown c, , and some
calculational scheme has to be devised. Adopting
a technique of the HF method, we seek to linear-
ize our MCSC equation. One way to do it is to use
the shell-model expansion {15)and rewrite Eq.
(7b) as follows:

Q (j ( h [j') c,".=Q e „c,', (17)

Calculations are performed in a shell-model ba-
sis. The orbitals are expanded in terms of the
eigenstates 2szg2 163/2 and 1d„, of a spherical har-
monic oscillator:
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where

&j lh I
j') = &jl ty Ij'&+2 (j~ I «li '~& (18)

Assuming (jlh I
j'& and e~„are known from previ-

ously calculated values of CI and c;, one can con-
sider the above equation as linear in c and seek
its solutions accordingly. However, when the en-
ergy operators are expressed in the shell-model
representation and the density operators in the
orbital representation, as is necessary for com-
putational purposes, the matrix elements (j Ih I

j'&

depend on a product of 4 c's. Consequently, an
iterative scheme based on Eq. (17) is bound to be

at best slowly convergent.
Another possible approach starts with the obser-

vation that I' can be split into two parts: I'=P+6,
where P is diagonal and b nondiagonal in the space
of the configurations, and that the two parts are
not equally important in the buildup of the binding

energy. The situation is fairly clear if isospin
coupling is ignored, and it will temporarily be so
assumed. The matrix elements of P mill then ex-
hibit the following structure:

(5y II'I ~P& =2 Cr'&~r I za'.at'ra,

anal

~ r&,
I

= z(5 s5s), —5„),58')Q Cr'P (I)PS(I),
I

(19)

pression in parentheses on the left-hand side, de-
pends only quadratically on the coefficient c, . Use
of the correct wave functions (14}would leave the

form of Eq. (21) unchanged, although of course P
and hence U„would contain sums over isospin
quantum numbers, which can, however, be re-
duced by invoking charge symmetry. Finally, to
transform the above relation into a vector equa-
tion for a given I p, &, and further to ensure the re-
quirement e»=c„*~=a», we replace c» for A. 4 p,

by
1

&~g= a(~~p+~p~}. (22)

Q(ilM„li'&c~ =-W,". , (23)

where

M~= t~+ 0~ —Ep', (24)

&ili„li'&= &il tli'&y„—2Z 2 &j I tIi'&(y„+y~)c,'c,',
X&p

(25a)

&ilv„li'&=(II v„li'& 'ZZ -&j-l U„+U Ii'&c c,'
j X&jf

(25b)

Using Eq. (21), along with the orthonormality of
the vectors

I p, &, we calculate e~„, then e~„, which
is fed back into (21) to give

with W", = W", ——,'Q Q (W,"c,'+W,'c,". )c,". ,
j X&p

(25c)

X=Z &~t « -W" (20}

where

w~=g (ivl vE I p, v&,

(p'j'IPI pj&=Z&p'~'II'I p~&c,"c,
and observe that it reduces to an even simpler
form if y is diagonal in the orbital representation
and if isospin coupling is again ignored:

Q((i I tI i'&y„+ (i I U„l i'&)c,",=ger, „c, W", , (2—1)
«I

where

&i I II~I i''&= 2 &ijl 1'Ii'j'&g cr c,"PCr'p„(l)p, (I) .
v I

The main advantage of this equation over Eq. (17)
is that the "large" contribution, given by the ex-

p (I)=(4 la a IC

This shows that P contains statistical correlations
of the system. Dynamical correlations are in h.
Consider then the equation

g(&ilili &y„,„+g&ijIVlij &&u j IPlpf&)c~'
p i

e„=Q (i
I i y„+ II„Ii ') c", et++ W", c",

i i' i
(25d}

Thus the equation to be solved for c; is nonhomo-
geneous, R'WO, and its resolvent operator M„de-
pends on the vector

I p, & to be found.
In summary, our computational scheme is based

on Eqs. (7a) and (23)-(25). The starting solutions
are taken to be the HF (or Nilsson-type) orbitals
having appropriate symmetry properties, together
with the coefficients C, = 1 and CI = 0 for Ic0. Each
iterative cycle includes the following successive
steps:
(i) The matrix elements of H are calculated in the
configuration space purified of its spurious com-
ponents, and Eq. (7a) is solved by diagonalization.
The solution of lowest eigen energy gives the
ground-state vector (Crj.
(ii) For each orbital

I p. & the matrix elements
(i IM„I i') and the vector components W," are cal-
culated using the definitions (24) and (25), together
with the presently available values of CI and ci
(iii) The components c"; of each vector

I p& are
found from the linear equation (23) by inverting the
matrix M„.
(iv) All vectors

I p& thus obtained are normalized
and orthogonalized by the Schmidt method.
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TABLE I. Orbit wave functions for the lowest axially symmetric deformed solutions in the even-even N =Z nuclei
in the sd shell. For each entry the upper line refers to the HF approximation, the lower to the MCSC approximation.
For each nucleus, the particle strengths in the spherical-basis states are first given, then the occupation density y~
and the single-particle vector components c» are shown. Finally we list the binding energy {in MeV), the quadrupole
and hexadecapole moments Q2 and Q4 {in units of b = 1.76 F), and the Op-Oh probability. The single-particle energies
used for Si are: e, = —3.88, ed =0.0, ed =-5.30 MeV; and for other nuclei: e, = —4.20, ed =0.0, eds i/2 ~ ' d 3/2

~ ' d 5/2 ~ ' s i/2
t d 3/2

~ d 5/2= —7.0 MeV.

s i/2

Ne

0.1564
0.1536

d 3/2

0.1192
0.1203

d 5/2

0.7244
0.7260

S i/2

32S

0.9951
0.9783

d 3/2

0.3261
0.4098

dk'

2.6787
2.6113

i
2

1.0000 -0.3955 -0.34 53 0.8 511
0.9949 —0.3911 —0.3448 0.8533

1.0000
0.9877

0.0
0.0

—0.1805
-0.1695

0.9836
0.9855

0.0
0.0003

0.0
0.0

-0.1358
—0.1514

0.9907
0.9885

1.0000
0.9918

0.0831
0.1638

0.5319
0.5005

0.8427
0.8501

0.0
0.0008

0.0
0.0

0.0
0.0

1.0000
1.0000

i
2

1.0000
0.9871

0.9941 —0.1031 —0.0330
0.9818 —0.1670 -0.0908

i
2

0.0
0.0017

0.7777
0.8596

0.3671
0.1943

0.5103
0.4726

1.0000
0.9201

0.0
0.0

0.0
0.0

1.0000
1.0000

i
2

0.0 —0.4887
0.0016 -0.3288

0.8637
0.9183

0.1233
0.2204

0.0
0.0967

0.0
0.0

0.9836
0.9855

0.1805
0.1695

0.0
0.0005

0.0
0.0

0.9907
0.9885

0.1358
0.1514

0.0
0.0161

0.0694
0.0965

0.8405 -0.5373
0.8495 —0.5187

-E = 40.842 Q2 ——5.602 Q4
——4 346

I CPI = 1.0000
40.976 5.555 4.348 0.9898

E=222.965 Qg = ——0.546 Q4 = —1.440 I COI = 1.0000
225.265 —Q.547 —1.523 0.7744

24Mg

0.1966
0.2034

0.1684
0.2538

1.6351
1.5427

24Mg

0.0
0.0193

0.3222
0.3072

1.6778
1.6734

i
2 1.0000 -0.4434 -0.3207 0.8370

0.9953 '-0.4414 —0.3090 0.8424
1.0000
0.9864

0.0
0.0

0.0
0.0

1.0000
1.0000

1.0000
0.8598

0.0
0.0

—0.2561
-0.2567

0.9667
0.9665

3
2 1.0000

0.9026
0.0
0.0

0.5676
0.5657

0.8233
0.8246

i
2

0.0
0.1362

0.3753
0.2598

0.7816
0.8546

0.4983
0.4496

0.0
0.0823

0.5352 —0.0676
0.4444 —0.0 748

0.8420
0.8927

0.0
0.0055

0.0
0.0

0.0
0.0

1.0000
1.0000

0.0
0.0209

0.0
0.0

0.8233 -0.5676
0.8246 -0.5657

2
0.0
0.0005

0.8140
0.8589

-0.5350 0.2262
-0.4173 0.2970

0.0
0.0061

0.7161 -0.4925 -0.4946
0.6281 -0.6846 -0.3700

0.0
0.0027

Q.Q
Q.o

0.9667
0.9665

0.2561
0.2567

1
2 0.0

0.0015
0.4481
0.6388

0.8677 -0.2151
0.7251 -0.2572

E=91 994 Qp=6 346 -Q4=-4 207 ICOI =1.0000
94.442 6.451 —2.811 0,7103

E=88.888 Qp=-—4.360 @4=-3.100 I COI~=1.0000
90.394 -4.345 -2.225 0.7781



MUL TICONFIGURA TIONAL SELF -CONSIS TEN T CALC ULATION. . .

TABLE I (Continued)

~ i/2
k

28si

0.4652
0.4508

d 3/2

0.8146
0.8151

d 5/2
k

1.7203
1.7340

kS i/2

28Si

0.6349
0.6185

3/2

0.6506
0.6075

d 5/2
k

1.7147
1.7740

1.0000
0.9992

—0.5514
—0.5414

-0.1300
—0.1345

0.8241
0,8299

1.0000
0.9968

0.0
0.0

0.0
0.0

1.0000
1.0000

1.0000
0.9978

0.0
0.0

-0.3431
-0.3408

0.9393
0.9402

1.0000 0.7968 —0.2 784
0.9978 0.7868 -0.2694

0.5363
0.5553

1.0000
0.9880

0,4014
0.3978

0.8246
0.8286

0.3986
0.3938

1.0000
0.9923

0.0
0.0

0.7570
0.7300

0.6535
0.6835

5
2 0.0

0.0098
0.0
0.0

0.0
0.0

1.0000
1.0000

3
2

0.0
0.0076

0.0
0.0

—0.6535
—0.6835

0.7570
0.7300

i
2

0.0
0.0029

-0.7313
-0.7407

0.5506 -0.4026
0.5434 —0.3951

1
2

0.0 -0.3913
0.0034 —0.1651

0.4385
0.7751

0.8091
0.6099

3
2

0.0
0.0023

0.0
0.0

0.9393
0.9402

0.3431
0.3408

i
2 0.0

0.0019
0.4604
0.5947

0.8 545
0.5715

—0.2405
—0.5654

—E = 141.149 Q2
——7.589 Q4 ——-2.912

I Cpl = 1.0000
141.485 7.554 —2.860 0.9700

E=1 4.8707—Q~= —7 870 /4=0. 882 Ical'=1.0000
144.199 —7.714 0.639 0.9740

1.0000
0.9976

"Ar

0.9999
0.9896

—0.3517
—0.3506

1,0321
1.0903

—0.0556
-0.0552

2.9680
2.9172

0,9344
0.9349

1.0000
0.9992

36Ar

0.8443
0.8391

0.0
0.0

1.3217
1.3260

0.0
0.0

2.8341
2.8347

1.0000
1.0000

1.0000
0.9935

0.0
0.0

-0.1789
—0.1758

0.9839
0.9844

1.0000
0.9985

0.0
0.0

0.1832
0.1857

0.9831
0.9826

1.0000
0.9561

0.0
0.0

0.0
0.0

1.0000
1.0000

1.0000
0.9991

0.5818
0.5784

0.1193
0.1151

0.8046
0.8076

i
2 1.0000

0.9880
0.9156
0.9161

0.1871
0.1872

0,3558
0,3546

1.0000 0.7112 -0.5545
0.9970 —0.7102 0.5581

—0.4321
0.4291

1.0000
0.997%

—0.1946
—0.1946

0.9808 —0.0149
0.9808 -0.0151

1.0000
0.9937

0.0
0.0

0.9831
0.9826

—0.1832
—0.1857

0.0
0.0648

0.0
O.Q

0.9839
0.9844

0.1789
0.1758

0.0
0.0123

0.3946
0.4013

0.8236
0.8217

—0.4074
—0.4046

E = 306,771 Q2 = 2,684 Q4 = 0 287 l Cpl = 1 0000
308.322 2.692 0.164 0.8697

E =308.654 Q2 = -3.839 Q4 = 0.996 I Cpl = 1.0000
308.843 —3.782 —0.964 0.9754
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C. Results and Discussion

Table I summarizes the main results of this
study. Besides the energies, orbitals, and config-
uration coefficients, we also calculated the
strengths of the spherical single-particle levels,
usually measured in stripping or pickup reactions.
They are given for each basis state j by the one-
body density matrix elements in the basis repre-
sentation:

y~ =Z&j&lr I
j&&. (26)

Also shown in Table I are the occupation probabil-
ities of the MCSC orbitals, y~, for occupied orbit-
als. The shape of an intrinsic state is character-
ized by its quadrupole and hexadecapole moments,
Q, and Q4, defined by the dimensionless matrix
elements

(27)

21.+ 1 AA
(28)

where

or alternatively by the distortion parameters P,
and P4, which, for axially symmetric deformations,
are defined by

seen in the dispersion of the occupation probabili-
ties y„across the Fermi surface, and also in the
redistribution of the single-particle strengths y,.
in the spherical-basis states. These effects are
largest in ' Mg and "S, and almost imperceptible
in "Ne (Table l and Fig. 2). The amount of dis-
persion of the occupation density depends on the
correlations allowed to the system, which in turn
are determined by the HF single-particle energy
gap. In "Ar, for example, the HF calculations
predict a stable oblate solution which is lower
than the prolate solution by 3 MeV in energy and
has a single-particle energy gap twice as large as
the gap in the prolate spectrum. For this reason
the former solution should be preferred. However,
with the introduction of the correlations, the pro-
late solution gives a larger energy gain than the
oblate solution, bringing the two states together
in energy.

Two competing effects contribute to the net en-
ergy gain: the dispersion of particles to levels of
lower binding energies, and the rearrangement of
particles for a more stable configuration. The en-
ergy gain from the latter effect, however, more
than compensates for the loss from the former.
A notable feature of our results is that, with the
introduction of the correlations, the prolate states

0.50-

The effects of the correlations are most clearly 0.25- 0 0

P2 0-
-0.25-

r
0

Ch

(Pa
50-

O
CL

O

O

g 25-

-0.50-

0.25-

P4 0-
-0.25-

-0.50-

EXPT

0 HF8

~ MC

I

20
Ne

24
Mg

I

28
I

32
I

36
Ar

0-20 - l5
0

-IO

HF Single — Particle Energies ( Me Y)

FIG. 2. Occupation density of the single-particle orbits
of 4Mg in the HF approximation (dot-dash curve) and the
MCSC approximation (solid curve).

FIG. 3. The distortion parameters P &
and P4 as calcu-

lated in the MCSC and HFB (Ref.12) methods, and as ob-
tained from experimental data (Ref. 19). The HF values
are very close to the corresponding MCSC values. For
P2. 0.634, 0.359, -0.297, —0.002, and 0.061; for P4..
0.079, -0.39, 0.006, -0.006, and 0.001 for Ne, Mg, Si,
S, and Ar, respectively.
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TABLE II. Correlation energies in MeV for the most
stable solutions as given by method A of Ref. 16 and by
the MCSC method.

Ne Ar

Method A 0.130 2.254 0.417 2.186 0.192
MCSC 0.134 2.448 0.430 2.300 0.189

record a larger energy gain than the correspond-
ing oblate states and thus become relatively more
stable. For example, the respective energy gains
for prolate and oblate states are 2.4 and 1.5 MeV
in ' Mg, and 1.6 and 0.2 MeV in ' Ar. This tenden-
cy toward a higher symmetry is a mell-established
feature of the pairing correlations in heavy as well
as in light deformed nuclei. Bar- Touv et al."have
shown that the isospin pairing restored axial sym-
metry to '4Mg, thus making the wave function more
consistent with experimental data.

In Fig. 3 we compare our calculated values of the
distortion parameters P, and P4 with the values ob-
tained from an analysis of inelastic scattering da-
ta." Also shown in this figure are the results of
Bar- Touv et al. 's calculation. "

All parameters discussed so far, with the excep-
tion of the energy, depend on single-particle oper-
ators and are rather insensitive to the correla-
tions under study. A more stringent test of the
wave functions obtained in this work would involve
the calculations of the physical nuclear states and
the rates of electromagnetic transition between
these states.

Recently Padjen and Ripka" proposed two meth-
ods of estimating the effects of correlations on the
ground-state energy. In their method A, one would
diagonalize the Hamiltonian 0 in the space of the
excited configurations; the eigensolutions would
subsequently be used to calculate the energy shift
of the ground state. Method B is a fully self-con-
sistent scheme for calculating the correlation en-
ergy defined in terms of excitations of the nucle-
ons; it bypasses the construction of an intrinsic
wave function. The authors reported that the two
methods actually yielded very similar results.

Using our parameters and configurations we have
carried out a calculation according to method A.
The results are listed in Table II, and show that
again the simpler method A is close to the MCSC
method, at least under the assumptions made in
this paper.

In fact our MCSC calculations (Table I}yield
smaller energy gains than those reported in Ref.
16; this disagreement may stem from the choice
of a different Hamiltonian, but a more probable
reason may lie in the different choice of configura-
tions. Our set includes mostly configurations con-
taining time-reversed pairs, and hence is more
restrictive. For this same reason our results are
close to the HFB results, as is apparent, for ex-
ample, in Fig. 3.

IV. CONCLUSION

%'e have formulated a variational method of ob-
taining correlated intrinsic wave functions. %e
have investigated general features of the resulting
field in light deformed nuclei assuming, in this
first attempt, 2p-2h correlations and a truncated-
basis space. As generally expected, the "Ne nu-
cleus is well described by the HF static field; all
other nuclei considered are more or less affected
by the dynamical correlations, leading to a greater
stability both in terms of the binding energy and
the shape symmetry.

The formalism presented here offers a versatile
and powerful method for the study of deformed nu-
clei. Many questions, however, remain open. The
immediate task is to investigate the importance of
other types of correlations; however, a full-blown
MCSC calculation would be an extravagance; a pre-
liminary perturbative calculation could decide
which configurations to retain. The excited intrin-
sic states given by the higher-energy solutions of
Eq. (7a) should also deserve a more careful study.
And, finally, the value of the MCSC method can be
fully appreciated only when an angular momentum
projection is performed on the calculated wave
function, and properties of the resulting physical
states compared with experimental data.
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Excitation functions for the reactions N( He, e) N and N( He, p)'"0 have been measured
in the energy range 3.75 to 10.75 MeV and 5,5 to 10.5 MeV, respectively. These data have
been compared with those for the ~60(P,P') 0 and the O(P, Q. ) N reactions which also pro-
ceed through the same F intermediate system. The results of this comparison support the
hypothesis of 0 -like cluster resonances in the outgoing reaction channel.

1. INTRODUCTION

Resonances in composite-particle outgoing re-
action channels have been postulated by Wilder-
muth and Carovillano in 1961.' In their picture,
starting from the capture of the bombarding parti-
cle, the compound nuclear system passes through
different cluster structures. The lifetime of these
clusters can be of sufficient duration for a giant-
resonance structure to occur in the energy depen-
dence of certain partial-decay cross sections.
This is the case of the outgoing channels in o. -par-
ticle scattering or (p, a) reactions; in effect Wild-
ermuth discusses just the '~Q(p, a)'~N, reaction,
predicting resonance widths of the order of a few
hundred keV.

Recent work of Gillet' has stressed the impor-
tance of quartet structures in the interpretation
of nuclear excited states. One again expects res-
onances in the n channel at compound-system en-

ergies corresponding to these states. Whitehead
and Foster' and Maxon4 have reported the exis-
tence of resonances with widths of 1-2 MeV in the
' Q(P, a)"N, reaction for proton energies in the
range from 6 to 20 MeV. Recent measurements
performed at the Milan cyclotron' on the same re-
action show resonance structures in the excitation
functions also at higher proton energies. It
seemed, therefore, interesting to investigate ex-
perimentally to what extent the origin of these
resonances is associated with the outgoing channel.

To this end we compare the "Q(p, a)"N excita-
tion function with that of the proton inelastic scat-
tering on the same target~ and with those of the
"N('He, a)"N and "N('He, p)"Q reactions which
also proceed via the same fluorine-17 intermedi-
ate system. The helium-3 data used in this com-
parison have been taken as part of this investiga-
tion and are reported in Sec. 3. If the resonances
in the (p, a) excitation function are characteristic


