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Calculation of the Separation-Energy Spectrum in the Reaction C(p, 2p)
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The cross section for the ~2C{P, 2p) reaction at an incident kinetic energy of 460 MeV is cal-
culated in the framework of a model which takes account of nucleon-nucleon correlations and
of the coupling to continuum channels of the residual nucleus.

Recently, a method for calculating the separation-
energy spectrum in quasifree scattering and pick-
up reactions has been proposed which takes ac-
count of nucleon-nucleon correlations and of the
decay of the residual nucleus into continuum chan-
nels. ' In the present note, this method is applied
to the reaction '2C(p, 2p)"B.

According to Ref. 1, the (p, 2p) cross section
for symmetric coplanar geometry is given, in the
plane-wave impulse approximation and neglecting
recoil energies, by (for notation cf Ref. 1.}

d'o 4 p" c'p' sin'9'+m'c'
dE'dQ'dE, 'dQ,' (kc) Ap [c (2p'cos8' —p ) +m'c ]'"

do' 2

dQ (2v)'

where der "/dQ is the pp scattering cross section
in the parametrized form used by Tyren et al. ,

'
and cp, = (E,'-m'c')'", cp'= cp'=(E" —m'c')'"
0'= g„with i=0, 1. The spectral function S(p; W}
is the joint probability for finding a proton with
momentum p=p,'+p,' —p, in the target nucleus and
the separation energy ~=-S=E,—E,'- E,'+ypgc' in
the residual nucleus after that proton has been re-
moved. ' It is computed from its shell-model rep-
resentation S,(w), which is assumed to be diagonal:

S,(W) =—Im
I I
v W- Iq- e„-M,(W- Iq)

= g~„.~(w —w„,.)

1 ImM „(W)8(w, —W}
v [W- e„—ReM„(W)]'+[ImM„(W)]' '

lI y

Mv(W) = ~'& [l'I' 'jY , Y

li v

(4)

where M, (w) is the mass operator. The energies
g„are the positions of the real poles of the func-
tion [W —e„-M,(W)] ', and g„.= [1—M,'(W„,)]
are the corresponding residues (spectroscopic
factors). In the variable S -=-W, these real poles
lie to the left of the continuum part of the separa-
tion-energy spectrum which starts at S, -=-4V, and
runs to the right. The mass operator M, (W) is
calculated in second order in the residual interac-
tion (the first order vanishes owing to the self-
consistency assumption):

s(p; w} = Z I y. (p) I's,(w). (2)

Here, the index p refers to the two occupied shell-
model states Is„, and Ip», (ground-state correla-
tions in "C are neglected). The functions p, (p)
are assumed to represent Hartree-Fock wave
functions in momentum space, with the correspond-
ing self-consistent energies denoted by e, . The
spectral function S„(W) is given by

The single-particle states used were computed
in a Woods-Saxon we'. 1 (plus Coulomb potential for
protons); the energies for the discrete single-par-
ticle states (including a few single-particle reso-
nances) are given in Table I. The parameters of
the potential well were adjusted such as to yield
single-particle energies near the Fermi level
equal to the experimental separation energies for
neighboring nuclei. For the deep-lying Is», level,
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TABLE I. Shell-model states of ~2C. The superscript
C refers to continuum states. (5)

Protons Neutrons V =582 MeVfm', p=0.46.

nlj (MeV) nlj (Me V)

d 3/2
C

5/2
c
CS 1/2

1@&/2

1p3/
1S1/2

6.28
1.62

0.42
—1.94

—15.96
-30.86

d 3/2
c

Id g/2

1P3/2

1s»2

3.39
—1.10

—1.86
—4.95

-18.72
-35.10

the same well parameters as for the 2s„, level
were chosen. The discrete 1p-2h states included
in the calculation and their energies are listed in
Table II. In addition, 1p-2h states with the parti-
cle in the sj/„p, ~, p, z, d„2p d5+ f5/2 a d fv/2
continua were taken into account. These give rise
to the continuous part of the separation-energy
spectrum. For the residual interaction we used
the Lemmer-Shakin force'.

In the calculation of the mass operator the integra-
tion over the continuous energies of the intermedi-
ate particle states y is avoided by using the con-
tinuum part of the radial single-particle Green
function for particle y.

Figure 1(a} shows the real part of the mass
operator for the 1p3/2 state as a function of the
separation energy S =-R over the range S = 29 to
51 MeV (Sp =31.92 MeV}. The points of intersec-
tion with the line -(S —

~ e, ~) determine the real
energies of the discrete spectrum (labeled 1 and 2)
and the approximate positions of the resonances
in the continuous spectrum (3 to 8), all correspond-
ing to spin/=2 in the residual nucleus. The real
part of the 1sy/2 mass operator is shown in Fig.
1(b). In the range of energies considered, only
resonances occur (1 to 7), while the corresponding
discrete states with J =-,' lie farther to the left.

Figure 1(c) shows the calculated "C(p, 2p) cross
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FIG. 1. (a) Real part of the 1p3/2 mass operator, (b) real part of the 1s&/2 mass operator, and (c) cross section for
the C(p, 2p) B react&on as a function of the separation energy S =-W. The numbers identify the points of intersection
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TABLE II. One-particle —two-hole states included in the calculation of the mass operator. (a) Coupling to 1p3/2,
(b) coupling to 1s f/2 hole. The superscript C refers to continuum states.

(a)
S

(MeV)
S

{MeV)

1P3/2(p)
P3/2(P)

ls„,(p)

1P3/2(n)

1P3/2(p)

1pf/2(n)
1pf/2(p )
S f/2(P)

29.73
29.88
47.24

1P3/2{p)
1p 3/2(p)
1p 3/2(p)

1P3/2 (p) S f/2 (p)

P3/2( ) sf/2{n)
P3/2(p) dC)/2(p)

32.34
32.82
33.54

»f/2(P)

1P3/2(P )
1P3/2 (p )
s f/2(P )

1P3/2(n)

1P3/2(p )

1p3/2 (n)

1s f/2(n)
1s f/2 (n)
p„,(n

(n)
d 5/2(p)
1d 5/2{n)

2s f/2(n )

1d5/2 (n )

d3/2(n)

47.72
48.44
48.48

49.20
49.96
52.97

1p 3/2 (p )
1p 3/2 (p)

1s,/2(p)
1s f/2(p)
1P 3/2{p)

1p3/2(n) 1d5/2(n)
1p 3/2(n) d3/2 {n)

P3/2{p) d3/2{P)

1p3/2 (n) pi/2

1p3/2 {p) 1p, /2 (p)
1s f/2(n) 1pf/2 {n)

33.58
38.07
38.20

44.63
44.88
46.13

10
11
12

1sf/2(p )

1p3/2(p )
1s f/2{p )

1p3/2(p )

1s„,(n)
1s f/2(n)

d 3/2 (p)
d3/2 (n )

1p„,(n)

53.10
54.45
61.01

10
11

1s f/2(p )

1s f/2(p )

1s f/2 (p) s f/2 (p)
1s f/2(n) 2sf/2 (n)

62.34
64.10

section for a fixed primary kinetic energy of 460
MeV and angle 9'=45' of either proton relative to
the incident beam (coplanar symmetric geometry)
This case has been chosen in conformity with the
data of Ref. 2. It is seen that the cross section
(1), via the energy-momentum spectral function

S(p; W), is composed of incoherent contributions
from the energy and momentum distributions of
the shell-model states v [cf. formula (2)j. The
calculated cross section, or separation-energy
spectrum, shown in Fig. 1(c) exhibits a number
of fairly isolated resonances. It appears that the
strength of the pure 1p3/2 and 1sf/, hole states is
distributed over a wide range of 1p-2h excitations.
It is interesting to note that the peak s4 lies at an
energy (S= 35 MeV) where the maximum of the

sy/2 strength is found experimentally. ' However,
much of the strength of the 1p3/2 and Is„, spectral
functions lies in the discrete states at lower val-
ues of S (not shown in the figure).

This calculation of the (p, 2p) cross section
takes account of nucleon-nucleon correlations and
continuum coupling in the simplest way: (i) Only
single-nucleon continua have been included, thus
omitting possibly important o, channels, etc. (ii)
Ground-state correlations in "C have been neglect-
ed; that is, in the mass operator (4) we have omit-
ted graphs where the external lines y correspond
to states above the Fermi level ("particle states"),
and where the intermediate states are 2p-1h states.
The ground-state correlations affect most serious-
ly the separation-energy spectrum near the Fermi
level of "C (S = 15.96 MeV). Accordingly, we do

not attach much significance to the positions (and
spectroscopic factors) of the discrete states ob-
tained in our calculation [e.g. , the dashed lines
pl, p2 in Fig. 1(c)]. The inclusion of the ground-
state correlations in the mass operator is purely
a numerical problem. (iii) The mass operator (4)
has been computed only in second order in the
residual interaction. Introducing interactions be-
tween the particle-hole states, i.e., coupling vi-
brations to the single-hole states, may have im-
portant effects. (iv) We have used a very simple
energy-independent residual interaction. (v) We
have identified the single-particle energies near
the Fermi level with experimental separation en-
ergies. Actually, the former should be identified
with the "centroid energies. "' (vi) Finally, we
have neglected initial- and final-state interactions.

For these reasons it would be premature to
make a detailed comparison between our present
results and the experimental data, the more so
since the experimentally resolved widths seem to
be much larger than the natural widths of the peaks
in the continuum, so that an energy average of the
calculated cross sections should be taken first.
Such a comparison will become more meaningful
as more and better experimental data become
available and as the above-mentioned defects of
the calculation are removed. It should be interest-
ing to see whether the large splitting of the single-
hole states and the relatively small natural widths
(~200 keV) obtained by us are confirmed by im-
proved calculations or more accurate experimen-
tal data.



CALCULATION OF THE SEPARATION- ENERGY SPECTRUM. . .

~D. H. E, Gross and R. Lipperheide, Nucl. Phys. A150,
449 (1970).

2H. Tyrhn, S. Kullander, O. Szndberg, R. Ramachan-
dran, P. Isacsson, and T. Berggren, Nucl. Phys. 79, 321
(1966).

3R. H. Lemmer and C. M. Shakin, Ann. Phys. (N.Y.) 27,

13 (1964).
4G. Landaud, J. Yonnet, S. Kullander, F. Lemeilleur,

P. U. Renberg, B. Fagerstrom, A. Johansson, and G. Ti-
bell, to be published.

M. Baranger, Nucl. Phys. A149, 225 (1970).

PHYSICAL REVIE W C VOLUME 4, NUMBER 4 OC TOBE R 1971

Nuclear-Structure Calculations in F
M. R. Gunye

Tata Institute of Fundamental Research, Bombay 5, India

S. B. Khadkikar
Physical Research Laboratory, Ahmedabad 9, India

(Received 17 March 1971)

The two intrinsic Hartree-Fock (HF) states, one characterized by isospin T= T, = 2(N -Z)
and the other containing an admixture of T = T, and T = T, + 1, lie energetically very close in
the case of light odd-Z —odd-N nuclei. As a result, the low-lying T= T, states of these nuclei
have substantial "band mixing. " The HF projection formalism is employed to investigate the
effect of band mixing on the properties of nuclear states in F by explicitly treating all the
nucleons. The results of our calculations are in fair agreement with the experimental data.

1. INTRODUCTION

There are many shell-model calculations avail-
able in the literature' for simple odd-Z-odd-N nu-
clei such as SF and '~N. With 6O as a core, these
nuclei provide the simplest system of a neutron-
proton pair of particles or holes. The recent
trend has been to employ, in these shell-model
calculations, effective model interactions derived
from the realistic nucleon-nucleon (NN) interac-
tions. ' The simplicity of these calculations is
more than compensated for by difficulties anduncer-
tainties involved in the derivation' of the model
interaction. The first successful attempt to ex-
plain the two-nucleon (outside the "0 core) energy

pectra of xsO and ~SF by employing the model in
teraction derived from the free NN interaction was
by Kuo and Brown. ' However, there were some
errors' in calculating the contributions from the
second-order tensor interaction and the core-
polarization effects. When these are properly rec-
tified in rather involved calculations, the comput-
ed energy spectrum of "Fdoes not agree well with
the experimental spectrum: The lowest state is
predicted to have J= 3, T = 0 in contrast to the ac-
tual J=1, T =0 for the ground state. It is quite
obvious4 that the calculation of core-polarization
effects is very laborious and it involves some ap-
proximations to take the core excitations into ac-

count. In view of this state of affairs in comput-
ing the renormalized effective NN interaction to
incorporate the effect of core polarization, one
cannot use the electromagnetic properties of the
nuclear states to test the shell-model wave func-
tions; rather one has to introduce an arbitrary
"effective charge" for the "valence" nucleons.
These undesirable features can be removed in the
framework of Hartree-Fock (HF) projection for-
malism by explicitly treating all the nucleons in
the system in a sufficiently large configuration
space. The two intrinsic HF states, one charac-
terized by T= T, and the other containing an ad-
mixture of T = T, and T = T, +1, lie very close in
energy in the case of light odd-g-odd-N nuclei.
This necessitates a band-mixing calculation'
which is rather involved. From the calculations
reported in this paper, we find that the proper-
ties of the low-lying positive-parity levels of "F
are quite sensitively dependent on the band-mixing
matrix element between the good J and T states
projected from the two intrinsic HF states.

2. METHOD OF CALCULATION

The HF method of solving for self-consistent
single-particle wave functions and energies is
well known and can be found, for example, in
Ref. 6. The projection method for obtaining states


