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The classical a-particle model has been consistently applied to all 4N nuclei in the 2s-1d
shell. The 2°Ne nucleus was found to be a D, distorted tetrahedron in agreement with earlier
investigations. Electron scattering form factors were predicted, but there are at present no
experimental data for comparison. Most interesting results were obtained for 2Mg, where
the experimental matrix elements, energy spectrum, and electron scattering form factors
were found to definitely favor a D,, bitetrahedron over the D, square bipyramid used in oth-
er papers. Recent experiments on 28Si also slightly favor an oblate D3, structure over the
previously considered Dg, pentagonal bipyramid. No definite structures could be established
for %S and 36Ar, because of the large number of o particles involved. However, a unique
structure was found for 4°Ca. It consists of six @ clusters arranged in an octahedron outside

of a tetrahedral 160 core.
I. INTRODUCTION

Any postulated nuclear structure that contains
transient or permanent o clusters may be called
an a-particle model. Because of the different pos-
sibilities, various types of calculations® are based
on such models. The a-particle model has never
enjoyed the success of the shell or collective mod-
els, but much evidence accumulated mainly during
the last 15 years now strongly suggests a cluster-
ing for many light nuclei.?”*! Arguments have
been made for assuming that these a clusters are
quite isolated®® consequently, a few theories
have been developed which deal only with the rela-
tive motions of the o clusters.? In the present pa-
per, we will consider only the simplest of these
theories; it is completely phenomenological and
applies only to light A =4N nuclei. Sometimes re-
ferred to as the classical a-particle (CAP) mod-
el, ® it assumes that the internal o particles are
harmonically bound in a semirigid molecular
structure. The observed properties are then pre-
dicted by methods analogous to those used in mo-
‘lecular mechanics and are found to depend primar-
ily on the symmetry of the assumed structure.

Since it was first formulated in 1937, 2 the CAP
model has yielded reasonably good agreement with
the experimental energy levels, electron scatter-
ing form factors, and reduced matrix elements
for 1p-shell nuclei.®”® Early applications of the
model to 4N nuclei in the 2s-1d shell assumed that
the a clusters were arranged in a bipyramidal
configuration, with all but two of the « particles
forming a regular polygon in the equatorial plane.
These structures were thought to be the most sta-
ble of all possible configurations because they con-

4

tained the greatest number of bonds between adja-
cent a particles.!? However, recent calculations
of the electron scattering form factors using these
bipyramidal shapes have shown that they are in
rather poor agreement with experiment.’** Fur-
thermore, nonbipyramidal forms have been shown
to give better agreement with the observed energy
levels.'®'® Since the time of these calculations,
much additional experimental information has
been obtained; so it was felt that all configura-
tions for the 4N nuclei in the 2s-1d shell should be
reconsidered. This paper presents the results
from such research.

In Sec. II, we describe the necessary theory,
and the results for various nuclei are given in Sec.
III. Some general results concerning the charge
and mass shapes of many light 4N nuclei are then
reported in Sec. IV. Finally, in Sec. V we sum-
marize the most important results, concluding
that the CAP model works well for only the lower
half region of the 2s-1d shell.

II. THEORY
Energy Spectrum

The CAP model considers only collective motion
of the a clusters, so the most general Hamilton-
ian to be considered is that of the semirigid asym-
metric rotor vibrator for »n particles!”:

H=Hr0r+Hvib’ (1)
where

3
HrOI:Z)AijZ
i=1
A, +A A -A
=__L2—2(L2°L32)+_2;2(L+2*L_2) +A3L32,
(2
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and
3n-6

H =25 (ni+ 3w, . (3)
i=1

In Eq. (2), A;=#r%/2I;, I, is the moment of inertia
with respect to the jth-body fixed axis and the L,
are the usual angular momentum operators with
L,=¥VI(L,+iL,). In Eq. (3), hw; is the energy of
the ith normal vibration.

Since H,,, and H,;, are uncoupled, the eigenfunc-
tions of H have the form

. L (2L+1\V2
(R, IL™MN; n) =3 al\ =5~ ) Dl (@)
K

3n-6

x T1 4, (QJ), (4)

where the expansion coefficients a%, must satisfy
certain symmetry relationships because of the in-
variance of H,, under the operations of D,,.!” In
particular, the sum on K is over either even or
odd values of K, |K| <L, while Q refers to the
three Euler angles that specify the instantaneous
orientation of the body-fixed axes with the space-
fixed coordinate system. Also in Eq. (4), H,,i(Q,-)
is the n;th Hermite function in the ith normal co-
ordinate, and N is an ordinal number that distin-
guishes the rotational levels having the same L
value. Parity is attached to the rotational wave
functions of Eq. (4), since we consider point
groups of the full rotation group (rotations plus re-
flections).

For later use, we note that the expansion coeffi-
cients ak, depend upon only one parameter, name-
ly (A, -A4,)/(2A,-A, -A,). This fact may be most
easily seen by rewriting Eq. (2) as

o AirArA) , (2A,-A - A)
3 6

(5)

Any wave function that diagonalizes the square-
bracketed term in Eq. (5) also diagonalizes H.
The wave function of this bracketed term depends
only upon (A, -A,)/(24,-A, - A,), while the factor
#(24,-A, - A,) serves as a scale factor for the en-
ergy spectrum and 3(A, +A, +A,)L? is merely an
additive constant (for fixed L). This fact will be
used later in the calculation of electron scattering
form factors.

For most of our calculations the rotor is that of
a symmetric top, i.e., A,=A,. In this limit, |K|
becomes a good quantum number replacing the or-
dinal label, and the Hamiltonian simplifies to

H=AL(L+1)+K*A,-A)+H,,,. (6)

The eigenfunctions of H in this case are indepen-
dent of the rotational parameters (4;’s), being
usually of the form

1672
x[DYRR) + Dflﬂtx(ﬂ)]‘l’v i (Q;) .
(7

In each configuration studied, the nucleons are
assumed to form persistent o clusters of a defi-
nite point group symmetry. As a consequence, H
is invariant under all operations of this point
group carried out in the body-fixed coordinate sys-

1/2
(2, Q.| L"™MK; n,) =(<2_L_+M)

.tem, and each ¥, and ¥, must form a basis func-

tion for one of the irreducible representations

(IR) of the point group.’ In addition to leaving H
invariant, the operations of this point group will
also merely permute identical bosons (a particles).
Statistics thus allow only those wave functions of
Egs. (4) or (7) to occur which are symmetric un-
der all operations of the group. This symmetry
will exist only if ¥, and ¥_;, belong to the same
IR. If no normal vibration is excited, both ¥,,, and
¥, i, must belong to the completely symmetric IR
of the group.

One can readily find which wave functions belong
to each IR by using standard group theoretical
techniques.'®~2° The rotational wave functions are
classified in Table I for all point groups used in
this paper. Normal modes for each structure can
be found by standard means® and are tabulated
later for each nucleus. The lowest-lying experi-
mental rotational bands of a nucleus presumably
‘are built on the zero-point normal vibrations and
must therefore be correlated with the theoretical
K" bands associated with the completely symmet-
ric IR’s which are given at the top of each column
in Table I. Using this assumption, one can usually
eliminate all but one of the possible structures for
each nucleus. One can then further verify this re-
maining structure by identifying higher observed
states with rotational states built on normal vibra-
tions. Of the seven point groups listed in Table I,
six refer to symmetric-top structures. The only
one that is associated with an asymmetric top is
the D,, point group.

While the symmetry of the assumed structure
dictates the quantum numbers of the allowed states,
the spacing between levels is determined by the ro-
tation and vibration parameters. The Hamiltonian,
Eq. (1) or (6), does not include rotation-vibration
interactions; but these should mainly affect the
level spacing by effectively reducing the rotational
parameters whenever a normal vibration is ex-
cited.'” We attempt to account for these interac-
tions only by changing the rotational parameters
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Unless otherwise stated, all energy levels with L =K are allowed

for each band. Note that parity is conserved within each IR only if the point group includes the inversion operation,

TABLE I, Allowed rotational K™ bands for each IR (denoted T') of various point groups.

K™ bands T K™ bands T K™ bands T K™ bands r K™ bands r K™ bands

r

K™ bands

T

0* @ even),
57, 10, ¢

A

0* (L even),

4*, 8%,

0t L even),
4_, 84" ce e

Ay

0* L even),
3-, 6%, .

’
1

0* (L even),
3+, Bt

Ay

0t (L even),
2%, 4%, .

Ag

0* (L even),
2=, 4%, ...

Ay

0~ (L even),
5%, 107,

Y

0~ L even),
4=, 87, v

By 0~ (L even), 1u
4+, 87, .-

L even),

0"
3+, 67,

Y

0~ (L even),

3-, 6_,...

1u

0~ L even),
27,47, - -

0~ L even), A,

2+, 4_, cee

1

cen

0* (L odd),
57, 10%, +--

’
2

0* (L odd),

A
4+’ 8t, «v-

0* (L odd),
4=, 8%, + .-

4,

0* (L odd),
37, 6, «-o

Ap

0* € odd),
3t 6, ..

0* € odd),
2+, 4%,

0* @ odd), By,

27, 4%, vee

Ay

HAUGE, WILLIAMS,

0~ (L odd),
5*, 107, -
17, 4%, 6%,

AR

0~ L odd),

4=, 87, «en
2%, 6%, 10%, - -

AZu

07 (L odd),

4%, 8=+
1*,387,57, -

B,

0~ € odd),
3, 67, e

Ay

0~ € odd), w 0 @ odd),
.. 37,67, ce

0- € odd), By,
27,4-, -

2, 4=, .

2

1,47, 67, -
2+, 87,77, «--
2=, 3%, T, ..

’
1
"
1
v

2
"
2

.o
.

27,67,107, -
2+, 6%, 10%, -«
27,67,107, -

By
Blu
Boyg
BZu

.
.

- ot g+

17, 3%, 5%, <«

2f, 4% 6t .

Ey
E,
E;

1, 2+’ 4+,
1Y,27,47, «.-

E'
E”

1+, 2%, 4%, <.
1-,27,47, -

E,
Eu

By 1%, 3%, 5%, ..
By, 17,37, 57, -

B, 1*,3%, 5%, ...
By, 17,37,57, -

E 1% 3% 5% ...

1*, 3+, 5%, « -

E,

1_, 3_, 5"’ oo

Eu

AND DUFFEY 4

somewhat for each normal vibration. It should be
emphasized that it is possible to obtain good agree-
ment with experiment by using one set of average
rotational parameters for all vibrations as has
been done in previous papers.® !> However, by
allowing some variation in these parameters, we
can obtain better agreement with experiment and
also study the variation of the effective rotational
parameters with changing normal vibrations.

Electron Scattering Form Factors

The charge distribution of the nucleus for the
CAP model is given by

p(Fyﬁi):zegpo(lf_ﬁil)y (8)
iz

where p,(r) is the charge density of each o parti-
cle normalized to unity, » is the number of
clusters, and ﬁ'- is the position of the ith o parti-
cle. A derivation of the differential electron scat-
tering cross section using Eq. (8) and the Born ap-
proximation is sketched in Ref. 13. In our nota-
tion, the formula for scattering from the 0"
ground state to an excited L} state is

() (%) ir
a Joy \ AR ) oy i

where (do/d) ., is the well-known Mott scatter-
ing formula, ! and the form factor F[y is given by

9)

n PN
F{N:m%é)a#KZEjL(qRi)YLK(R,). (10)
iz
In Eq. (10) ¢q is the momentum transfer of the scat-
tered electron and F is the form factor for each
a cluster. In the next section, explicit form fac-
tors are calculated for several symmetric-top
structures. Since IKI is then a good quantum num-
ber, the form factor of Eq. (10) will be denoted by
Fle.

Most of the calculations in this paper will in-
volve small momentum transfer (¢<3 fm~!). In
this limit p(r) can be approximated as a Gaussian
function, and F, becomes

F :e-azazle, (11)

where a is the rms radius of each a cluster. The
interactions between @ clusters may cause their
rms radii to be slightly larger than the 1.63 fm
valid for the *He nucleus.?? Indeed, in our calcu-
lations, the parameter a was found to lie between
1.7 and 2.0 fm.

o

Electric Transition Matrix Elements

Intrinsic electric multipole moments are calcu-
lated in the long-wavelength approximation by the
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formula

4 1/2 .
Bin=(51q) [ 7o), (12)

where p(r) is the nuclear charge density defined
by Eq. (8). Since this formula is obtained by con-
sidering only the fields outside the nucleus, we
can picture the charge of each spherical a parti-
cle as being concentrated at its center of mass.
The integration thus yields

) 47 1/2 n . N
Elm=2€(2l+l) QR'.Y‘M(R’.)’ (13)

an expression independent of the rms radius of
each a cluster.

The reduced transition probabilities are the
same as for the collective model and are given
by21
1

B[E(l); L'N’—~ LN]= 311

[<LNIEDI LN |2,

(14)

where from the Wigner-Eckart theorem?® one ob-
tains

(L'N'IEDI LN)
[(21+1)/4n VX L'N'M'| 33 D', (R)E, .| LNM)
- 7L 1L
(=)* M(-M' m M)

_[(ZL' +1)(27+1)(2L + 1) ]“2
B 4m

gt L' 1l L
L'+K' L
X%I(_) aN'K’aI;(KElm’(_K, m' K). (15)

In Eq. (15), the multipole moments are assumed
to be given in the adiabatic approximation. Since

we shall only consider transitions between states
with the same vibrational mode, this should be a
reasonably good approximation.

All configurations used in this paper will be
either symmetric or slightly asymetric tops (i.e.,
A,~A,). With this assumption, one can readily
find the approximate quadrupole shapes of these
nuclei. The second and third columns of Table II
give experimental matrix elements, each of which
can be used to calculate a theoretical intrinsic
quadrupole moment (given in columns 4 and 5).
The necessary relationship follows from Eq. (15)
using aky = 64,. The result is

~ 167 1z
Q0= 2B+ "( 5L + 1)(2L + 1))

L’2L>

000 (16)

(L' E@)II L) (
Also shown, in column 6, is the experimental ra-
tio B(E2,4% - 2*)/B(E2, 2" - 0"). Discrepancies
between these values and the theoretical ratio of
10/17 (for the symmetric top) indicate that collec-
tive vibrations or single-particle effects are of
some importance in these low-lying states and
help explain the slightly different answers obtained
in columns 4 and 5. Nevertheless, the results def-
initely show that **Ne, 2*Mg, and %S are highly
prolate, while *Si is oblate. This information is
of great help in formulating structures for these
nuclei.

III. RESULTS FOR VARIOUS NUCLEI (REF. 24)
2Ne
The experimental spectrum of *°Ne shows a def-

inite K"=2" band beginning at 4.97 MeV. As has
been noted previously, '® the only rigid o structure

TABLE II. Values for the intrinsic quadrupole moment of various nuclei as calculated from two different reduced
matrix elements,

Experimental reduced
matrix elements (e fm?)

Corresponding intrinsic quadrupole

Experimental

B(E2, 4*—2%)

moments, @y, (fm?)

Nucleus 2llE@)]]|2) <ol E@)]|2)| (From column 2) (From column 3) B(E2, 2t —0%)
20Ne -32+432 19.7+1.02 +84 £11 +62.5+3.2 0.8+0.2b
Mg -33+5%4d 24.6+2.7¢ +87+12 +78.0 +8.6 0.7+0.3b
Bgi +21+5f-h 19.1:0.5¢ —54 +14 +60.6+1.6 0.9+0.3b
2g -26+8f 14.6+0.9¢ +70 21 +46.,3+2.6 2.6+0,71

2 K. Nakai, F. 8. Stephens, and R. M. Diamond, Nucl. Phys. A150, 114 (1970).
b J. H. Anderson and R. C, Ritter, Nucl. Phys. A128, 305 (1969).
€0. Hiusser, B. W, Hooton, D. Pelte, T. K. Alexander, and H. C. Evans, Phys. Rev. Letters 22, 359 (1969).
da. Bamberger, P. G. Bizzeti, and B. Povh, Phys. Rev. Letters 21, 1599 (1968). -

€ Reference 30.

fK. Nakai, J. L. Québert, F.S. Stephens, and R. M. Diamond, Phys. Rev. Letters 24, 903 (1970).

8 D. Pelte, O. Hiusser, T. K. Alexander, B. W. Hooton, and H. C. Evans, Phys. Letters 29B, 660 (1969).
ho, Hiusser, T. K. Alexander, D. Pelte, B. W. Hooton, and H. C. Evans, Phys. Rev. Letters 23, 320 (1969).

! Reference 34.
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FIG. 1. (a)—(c) Some of the possible configurations
for 2Ne,

that can predict this band is the D,; distorted tetra-
hedron [ Fig. 1(a)]. But in this model, the upper
and lower dumbbell structures are separated by a
relatively large distance, so they can rotate about
the z axis in opposite directions. The amount of
such motion would depend upon the height and
width of the potential barrier opposing free inter-
nal rotation. So, besides reviewing the results of
the D,, distorted tetrahedron, we will account for
this “tunneling” effect® ?® by considering the more
realistic nonrigid structure of Fig. 1(b). The
most popular o structure for *Ne has been the D,
trigonal bipyramid®> ! 18 2% 28 of Fig, 1(c). Since
this structure incorrectly predicts a low-lying K™
=37 band (c.f., TableI), it will not be considered
further.

Figure 2 compares the predicted levels of the
D,, distorted tetrahedron with experiment. Since
this structure is that of a symmetric top, the ex-
act formulas for the rotational energies may be
taken from Eq. (6). The symmetries of the nine
intrinsic normal vibrations are given in Table III
along with the calculated energies and rotational
parameters for the vibrations believed to be ob-
served in the experimental spectrum. In some
cases, only a lower limit is given for A,. The pa-
rameter A; must be at least this large in order to
push certain theoretical levels that are not experi-
mentally observed above 10 MeV.

HAUGE, WILLIAMS,

AND DUFFEY 4_
" 32 20
(§) S . +
10.0F 25! Ay — — . _ - o 40 10.0
. 4'/ ~-~: _________ iy
+ 22 4"
bt %0 1
T TT5 49 .

9.0} 3_4'_ 20 190
L .
80} 480

.O\=_=——r
70fYa——— " @3 % hos |76
o+— R S
6.0 3.::__:____ ______ o fws 4 6.0
. Y |
5.0 r - S~ \\-—25 7'012 50
40} 3| gy, {40
30} by 430
20, . {20
— 2}
Lo} ’ 410
+
ool o % Joo
EXP. THEORY-Dpq  MeV

FIG. 2. Comparison of experimental levels of 2'Ne
with theoretical levels predicted from the D,; structure.
The levels built on the zero-point vibrational mode can
be better predicted if different values of A are assigned
for the K =0 and K =2 bands. Note that the scale is
changed at 7 MeV for clarity.

Nearly all levels below 10 MeV are well explain-
ed as rotational states built on the allowed normal
vibrations. The explicit K" bands have long been
known; indeed, our level assignments are similar
to those arising from other collective models.?’
The third K =0" band beginning at approximately
8.7 MeV is built on a double vibration of w,. This
interpretation is supported by the high reduced a

TABLE III. Possible normal vibrations for the D,, distorted tetrahedron structure of 20Ne. The symmetry of the
double vibration is found by taking the direct product B,® B,.

Frequency LR wy Wy
Irreducible Ay Ay Aq
representation
Observed energy 0 6.7 7.2
of excitation
(MeV)
Rotational
parameters
(MeV)
A=A, 0.20 0.12 0.11
A, 1.0 =(0.76 =0.64

w3

By

wy wg wg wyq wg = 2w,
B, B, E E A;=B,®B,
5.5 84 =9.0 on ~8.5

0.15 0.17  --- .o 0.07

0.93 =0,32 -
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widths (~1300 keV) observed for levels of this
band.?® The excitation energy of this vibration
should be somewhat less than 2rw, because of an-
harmonic terms in the potential. The lowest lev-
els observed but not predicted are 17 and 3~ lev-
els around 9 MeV. These levels might be accoun-
ted for if we assume that they belonged to the
doubly degenerate E vibrational mode. But one
would then have several other states in this region
which are apparently not observed. Naturally, the
2%, T=1 level at 10.27 MeV cannot be explained,
since the CAP model predicts only states with iso-
spin zero.

Besides the two doubly degenerate E vibrations,
the only normal mode not observed is the B,
“twisting” vibration which describes the possible
oscillations of the two dumbbells about the z axis.
This mode is denoted w, in Table III, and is char-
acterized by a low-lying rotational spectrum of
Lg=05,25,45,... . One can understand why this
vibration is not observed by considering the hin-
dered internal rotor of Fig. 1(b). If no potential
barrier exists between the two dumbbells, the ro-
tational Hamiltonian and wave function can be writ-
ten as'™?

Hrot:Al[L(L+1)—K2]+2A3m12+2A3m22) (17

}n3:|

»Nnz=0

30

Vo /A3

FIG. 3. The part of the energy that depends on the in-
ternal rotation, &, is plotted as a function of V /A ,.
The correlation between torsional oscillation and free
rotation is explicitly shown. The quantities A3 and V,
can be uniquely determined from the experimental posi-
tions of the first K =2 bands. Bose statistics allow only
certain K" bands to be built on each level,

and
( (Pod’ﬁbzl LM;mm,) = emq’dZI((g)eimlwleimzw2 .

(18)
In these equations m, and m, are the angular mo-
menta of each dumbbell about the body-fixed z
axis, while the 24, of Eq. (17) comes from the
fact that the moment of inertia about the z axis of
each dumbbell is i that of the total structure. By
defining

=5, +¥,), K=m,+m,,

a=9, =9, o=3my-m,, (19)
one can rewrite Eqs. (17) and (18) as
H. . =AL(L+1)+K*A,~A))+44,0°, (20)
and
( @8y; a| LMK; 0) = e**?dl, (6)e'*¥e'°® = DL¥ (Q)eto
(21)

where o denotes the internal angle between the
two dumbbells. Statistics now require the wave
function to be invariant under ¢, - ¥, + 7 and ¢,
-, +7m. This forces m, and m, to be even inte-
gers or, equivalently, K to be even, and ¢ to be
integral.

In analogy to molecular calculations, ** we now
introduce a suitable interaction between the two
dumbbells and rewrite Eq. (20) as

dz
H,.=A,L(L+1)+K%A, -Al)—M3W+V0cos2a .
(22)

The last term has minima at @ =+90° and repre-
sents the potential barrier that each dumbbell
must tunnel through in order for the structure to
go from a right- to a left-handed system. The
wave functions are now of the form

(2 al LMK; &) ~ D (M (a) . (23)

The M (a)’s are Mathieu functions with the follow-
ing limiting properties:

lim M ¢(a) - e*'°?,
VO -0

hmMg(Q)"Hns(Qs) ’ (24)

[}

where @, represents the “twisting” mode previ-
ously considered. The energies are easily found
by diagonalizing the Hamiltonian in Eq. (22) among
the free-rotor wave functions of Eq. (21). The re-
sultant energy can be written as

Epge=A,L(L+1)+K*(A,-A)) +A3é»’z<%: ), (25)

where the last term is plotted in Fig. 3.
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1Fol?

107

10-2

1074

107°

L.
q(fm )

FIG. 4. Theoretical cross sections for 2'Ne: (a) elas-
tic scattering form factors, (b) inelastic scattering form

factors for the 2* (1.63 MeV) and the 4* (4.25 MeV) states.

Solid line represents a,=1.9 fm, a=1.7 fm, R; =2.65 fm.
From similar calculations on 28Si, we expect centripetal
distortion to alter the parameters somewhat for the ex-
cited states. The dashed line represents the same para-
meters except R;=3.0 fm and should give a better fit to
the L™ =2" state. In Fig. 4(b) 6 is taken to be 30°.

From this figure, one sees that this tunneling
effect alters only the K" bands of w,, pulling the
K™=2* band far below the 0~ band for reasonable
values of V,. The value of V, could be estimated
from the experimental separation energy of the

=27 and K"=2" bands. Since no L"=3" states
are observed under 10 MeV, the K"=2"* band can-
not start lower than the L™=2"* state at 9.5 MeV
(c.f., Fig. 2), and this fact implies a separation
energy of at least 4.5 MeV. By careful examina-
tion of Fig. 3, we can then conclude that V,>10
MeV and 0.7 MeV s A, <1.0 MeV. It should be
noted that only two or three of the 20 states ob-

served at present below 10 MeV are of unnatural
parity. Thus it is conceivable that an L™= 3" state
at approximately 8 MeV may be unobserved. If
this were true, it would definitely lower our value
for V,.

Unfortunately, no detailed electron scattering
experiments have been performed for **Ne. Such
experiments would help determine the exact
charge shape of the nucleus. For the D,, configu-
ration, simple forms for the form factors (de-
noted F],) may be found from Eqs. (10) and (11)
and Fig. 1(a). These expressions for scattering
to the lowest three levels are

Foo=$F,[1+4j(¢R))],
20= #V5 FoPy(coso)i,(qR)),
and
Fiy=%F P (cos0)j,(qR)) . (26)

These same equations also hold for the hindered
internal rotor of Fig. 1(b). In Fig. 1(a), R, and 6
are defined. In analogy with ?%Si, for which the
form factors have been measured, we expect the
four outer a clusters to increase the radius of the
inner one slightly. If this effect is included in our
calculations, only the elastic form factor is
changed, becoming

Flo= +[em70/% 1 40-°4/8} (4R )], (27)

where a, is the rms radius of the center a parti-
cle. The theoretical absolute squares of the form
factors are plotted in Fig. 4. From results on
88i (which will be considered shortly), we choose
R,, a,, and a to be 2.65, 1.9, and 1.7 fm, respec-

TABLE IV, Comparison of theoretical and experimental values for certain transitions in °Ne. The values for the
two parameters are |Q,g| =58.3 fm? and | Ey,|=27.3 fm?.

Initial state Final state

Transition rate |[M?|

energy energy Type of (in Weisskopf units)
L™ (MeV) L™ (MeV) transition Experiment Theory
2+ 1,63 0* 0.0 E2 24,2+2,52 21.0
4* 425 2+ 1,63 E2 16.2+2.82 30.0
6* 8.79 4* 425 E2 28.0+6.02 33.0
8+t 11.99 6+ 8.79 E2 34.6
27 4.97 0* 0.0 M2 0.002P
2+ 1,63 E1l 7.4t 3% 1076 ¢ 0.0
M2 0.017 b
E3 5.8t3.10b 12.5
3~ 5.63 0* 0.0 E3 7‘:3" 5.0
2* 1.63 El 4.73:3x 1078 ¢ 0.0
M2 o cee
E3 <3.0°P 0.0
47 7,02 2+ 1.63 M2 =0.14" .
E3 =6.0P 6.7

2 K. Nakai, F.S. Stephens, and R. M. Diamond, Nucl. Phys. A150, 114 (1970).

be, Broude A. E. Litherland, R. W. Ollerhead and T. K. Alexander Can. J. Phys. 45, 3837 (1967).
°H. C. Evans, M. A, Eswaran, H. W. Gove, and A. E. Litherland, Can. J. Phys. 43, 82 (1967).
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tively, for elastic scattering; but we expect R, to
increase to 3.0 fm for inelastic scattering because
of centripetal distortion. We assume a reasonable
value for 8 of 30°. Of particular interest is the
form factor for the 4 level which is very sensi-
tive to the choice of 6. Indeed, the theoretical
cross section | Fj,|? increases by a factor of 10?

if 6 is changed by +5° [since P,(cos6) goes through
one of its zeros at 6=30.6°]. With R,=2.65 fm and
#=30° the intrinsic electric moments are calcu-
lated to be @,,="70.2 fm? and |E,,| = | E, _,| =44.2
fm?3, With 6=25° the results change to @,,=81.9
fm? and |Eg,| = | E; _,| =32.9 fm®. The quadrupole
moments compare favorably with Table II.

Table IV compares experimental transitions of
low-lying states with those predicted by the struc-
ture. The values for the two parameters are
taken to be |Q,,| =58.3 fm? and |E,,| = |E, _,l
=27.83 fm® which aré fairly close to those indicated
in the previous paragraph.

24 Mg

The o structure usually assumed for ?*Mg is the
D,, square bipyramid shown in Fig. 5(a). All low-
lying levels can be accounted for if one assumes
the K™=2" band beginning at 4.23 MeV is built on a
normal vibration belonging to the B,, IR of D,,
(c.f., Table I). However, a low-lying K"=0* band
is predicted but not observed at around 4 MeV.!®
Also this configuration gives a poor fit to the elec-
tron scattering data and predicts a negative intrin-
sic quadrupole moment' contrary to the results
given in Table II.

Reviewing the other possible configurations, we
find that a structure with D,, symmetry, which
has not been considered before, will also account
for the same energy levels, and further with one
less parameter. Also, the K"=2"* band is not then
built on a vibration, and one can give explicit ex-
pressions for the electron scattering form factors
of these states as was not done in the D,, case.
There are two possible nonplanar structures with
this symmetry [ Fig. 5(b, c)]. Although both struc-

(a) Dgy SQUARE
BIPYRAMID

(b) D), RHOMBIC
BIPYRAMID

(c) Dy BITETRAHEDRON

FIG. 5. (a)—(c) Some of the possible structures for
2Mg along with the parameters that can be varied to fit
experimental data.

tures predict the same energy spectrum, the bi-
tetrahedron [ Fig. 5(c)] is found to be in better
agreement with the experimental electron scatter-
ing form factors and so should be the correct
structure. Other possible configurations have
been eliminated previously.!® The calculation of
the energy levels for this structure is like that for
the asymmetric rotor of Davydov and Fillipov, !
since both models have the same spatial symmetry
(D,;). Infact, the existence of this particular «
structure might explain why the asymmetric rotor
works well in Mg, but not for **Ne or 2%Si.

Table I lists the rotational quantum numbers for
each IR of D,,. Since a D,, structure constitutes
an asymmetric rotor, the energies must be found
by diagonalizing the Hamiltonian in Eq. (2) among
all rotational wave functions of the same L and
same D,, symmetry. For the pure rotational spec-
trum, it proved more convenient to vary three
new parameters uniquely determined by the A;.
These parameters are the rotational energies of
the first two L"=2" states (denoted E, and E,,) and
a parameter y which determines the wave func-
tions of these two states in the form

(@2'm) =<8i772)1/2{cosyD§,’;(Q)
+VT sin DY) + DY (D1}
(28)
(el2r'm) = (g%)uz{- sinyD35(Q)
+V 3 cosy[ D5 @)+ DY ()]}

The relations between these three parameters and
the three rotational parameters are

A +A,+A;=(E,+E,),
2A,-A,-A,=}cos2y(E, -E,), (29)

V3(A,-A)) = Lsin2y(E,, - E,) .

Figure 6 is a graph of the rotational energies
built on the zero-point vibrational state. Both E,
and E,, are fixed by experiment, and y is allowed
to vary between +90°. The periodicity of the lev-
els in y shows that these energies are symmetric
under the six permutations of the A;. Only those
experimental levels of **Mg associated with the
zero-point vibrational mode are shown. Good re-
sults are obtained only for the redundant values
y=0, $60°% consequently **Mg is very nearly a
prolate symmetric top as assumed in Table II.
Figure 5(c) is drawn with A;>A,~A,; so we limit
the asymmetry parameter to |y| <10°

The rotation-vibration interactions were found
to affect the energy levels just enough to make it
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virtually impossible to determine y more accu-
rately than already given. Thus, for simplicity,
we set y=0° and calculate the energy levels of
2*Mg using the symmetric-top formula of Eq. (6).
Figure 73%3! shows the best correlation of theoreti-
cal levels with experiment. The 12 possible normal
vibrations allowed by the structure are given in
Table V. Again, the lower limits assigned to
some of the rotational parameters cause the per-
tinent excited states to lie above 10 MeV. An ex-
citation of a normal vibration may cause the rotor
to become highly asymmetric, making the band
structure of the states between 7 and 10 MeV less
apparent than in **Ne. The only observed state
below 9 MeV that is uncorrelated with theory is an
L™=3" level at 7.62 MeV.

From Egs. (14), (15), and (28), one can relate
the intrinsic electric quadrupole moments to cer-
tain observed quantities. The pertinent relations
are

V2 Q,, sin2y — Q,, cos2y = 2/14n( 2*|| E(2)| 2*)

=-8T7T+12 fm?,

ﬁsz siny + @y, cosy =2V 27 0" I E(2)]l 2*)
=+78+9 fm?,

VZ Q,, cos2y + @, sin2y = 2VIdn ( 27| E(2)]| 2 ")
=319+ 3 fm?,

- GdB q- P 4~ dv L2

AW v AW v Aw v AW

d9 23 g3 8 3 g8 93

8 M 8 & 8 2% 8

LEVELS

EXPERIMENTAL

d—
-—

l
\

T
5* T
9.0 T
SR
7.0 4 r
6.0 3 ;

o s \ AN
S SANTANNG v

ENERGY(MeV)

2.0+ 2* 2*
1.of T
.
o) | | | L. 0']
-90° -60° -30° o° 30° 60° 90°
Y (DEGREES)

FIG. 6. Variation of theoretical energy levels of the
asymmetric rotor as a function of the asymmetry param-
eter y. Note that good agreement with the experimen-
tal spectrum is obtained only for y=0, + 60°. Inclusion
of centripetal distortion would lower theoretical levels
of high spin, and would give even better agreement with
experiment,

AND DUFFEY

| >

V2 Q,, cosy — @y siny = 2V E7( 0| E(2)]| 2'%)
=115+ 3 fm?,
and
V2 @y, cosy — @ siny = 3V21 (37| E(2)[| 27)
=+2373 fm?, (30)

where the experimental values are taken from
Table II and Ref. 32. A careful examination of
these equations together with |y| <10° shows that

Qu=+T75+ 10 fm?,
and
| Q,,] <15 fm?, (31)
22

With y=0° the electron scattering form factors
for ?*Mg are found from Egs. (10), (11), and Fig.
5(c). These equations are

Foo=3Flo(aR,) + 2o(4R,)],
Fuo=5V5Fo[-j,(qR,) + 4P,(cos6)j,(qR,)],
Fi,=F [ 3js(aR,) + 2P (cos6)j,(aR,)],
F,=3VI Fo[j,(qR)) - 25in°67,(4R,)],
Fp,=0,

o
63 ., .—2
——%2 5% 3 2
AN Y
10.0 it 4100
4;146"
Pz o R =
3 e
9.0} ZJ-—
(11,2°3%
F )
S 8.0}
(3]
z
~ L
(&3
&
W 7ot
w
60}
5.0
40t
3.0t
20t 120
A - 2
|.o[ -0 {10
*
ool ow__________ % loo
EXP. THEORY - D2p

FIG. 7. Comparison of experimental levels of 2/Mg
with the theoretical levels predicted from the D,, bite-
trahedron. The energy scale is again changed at 7 MeV.
Experimental levels are taken from Refs. 30 and 31.

The bitetrahedron can also be viewed as a D,, rectangu-
lar bipyramid with the rectangle in the plane of the paper.
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TABLE V. Possible normal vibrations for the D,, bitetrahedron structure of *Mg.
Frequency wq 229 2 Wy wg wg wq wg wg Wy Wy Wiy
Irreducible A, A, A, A, A, By, By, By, B,, B,, By, By By,
representation
Observed energy 0.0 6.5 se EEERRE 7.6 7.3 8.2 ~9.2 ~8.6 .. .
of excitation
(MeV)
Rotational
parameters
(MeV)
A=A, 0.18 0.10 0.10 0.10 0.10 ~0.10 ~0,10 .-~
Ag 0.90 0.55 cee =0.55 =0.63 =0.40 ~0.50 ~0.50 .-
and curve for the 2* state at 1.37 MeV. The best value
. . ) is 6=30° which yields the solid line in Fig. 8(b).
1 F 2 25 _ 1S
Fi==3/5Faljs(aR1) + 2 sin*0 (7 cos6 - 1)jy(aR,)], Theoretical curves for the cross sections of the
(32) two higher states [solid lines in Figs. 8(c) and

where R,, R,, and 0 are defined in Fig. 5(c).

We first vary R,, R,, and a to agree with the
elastic scattering data. The best fit is R,=1.7 fm
R,=2.7 fm, and a=1.9 fm as shown in Fig. 8(a).
These parameters are identical to the previous
D,, ones™ since the two structures have the same
theoretical elastic form factor. Other sets of pa-
rameters were also found which gave nearly as
good results. We now vary 4 to fit the inelastic

|F|2 ' (b)
2*-1.37 Mev
L .
G2 4
g3 .
IFI2 T
(d)
r 4*-4.12 Mev T 4*-6.01 MeVv ]
152+ and 2*-4.23 Mev | -

0.0
RECOIL MOMENTUM q(fm~')

FIG. 8. Experimental and theoretical form factors for
the D,, bitetrahedron of *Mg: (a) elastic scattering form
factor; (b)-(d) various inelastic scattering form factors.
Centripetal distortion, which has the effect of compress-
ing the theoretical curves towards the ordinate axis (as
shown in Figs. 4 and 11), was not considered because of
the number of parameters already used. Inclusion of this
effect would definitely give better results for Figs. 8(c)
and 8(d).

8(d)] are not entirely reproduced by this set of pa-
rameters. Unfortunately, the 4 (4.12 MeV) and
2% (4.23 MeV) states appear as an experimental
unresolved doublet, so the theoretical cross sec-
tions of these two levels must be added. As ex-
pected, scattering to the 3 state at 5.22 MeV was
not experimentally observed.

The results can be improved somewhat if we
also vary the asymmetry parameter y. Since we
now have an asymmetric rotor, the cross sections
cannot be found in simple forms, but are still com-

10.0

9.0

8.0

7.0

6.0

ENERGY(MeV)

5.0

4.0

3.0
20}

2.0

1.0} — 1 1.0

0.0L

0.0
THEORY D44

FIG. 9. Comparison of the experimental levels of 28Si
with the theoretical levels predicted from the oblate Dy,
structure. The energy scale is again changed at 7 MeV,
and experimental levels are taken from Refs. 30 and 33.
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(@ o

34 (b) D3y OBLATE
BITETRAHEDRON

STRUCTURE

(C) D3 OBLATE
STRUCTURE

(d) Dsp, PENTAGONAL
BIPYRAMID

FIG. 10. (a)—(d) Some of the possible configurations
for 28si,

puted from Eqgs. (10) and (11). Here is where we
make use of the fact that the a%; depend upon only
one parameter, which in this case is y. Like 6,
this parameter has no effect on the elastic scatter-
ing cross section of Fig. 8(a). The dashed lines in
Figs. 8(c) and 8(d) represent the same parameters
as before, except that the asymmetry parameter
is now y=+10°. The form factor for the 2* (1.37
MeV) level is only slightly altered by this change
in ¥ and is not shown in Fig. 8(b). Since R,, R,,

6, and y have now been determined, we can calcu-
late the intrinsic quadrupole moments, which are
@50 =61.2 fm? and Q,,=-3.7 fm?, close to the val-
ues given in Eq. 31. Reasonable values of the five
parameters (R,, R,, @, 0, and y) have thus led to
four good cross-section curves. In addition,

these same parameters correctly predict several
reduced matrix elements.

28gi

Looking at the experimental spectrum of 28Si
(Fig. 93> %), Wefind that the lowest three levels in-
dicate some form of collective rotation. However,
these levels do not follow the L(L +1) rule as well
as the corresponding levels in *Ne and **Mg.
There also appear to be K"=3" and K"= 3~ bands
starting at 6.27 and 6.88 MeV, respectively. The
D,, bitetrahedron [(Fig. 10(a)], which was con-
sidered to be the best structure in a previous pa-

HAUGE, WILLIAMS, AND DUFFEY
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per,'® can account for both bands if one allows for
the possibility of internal rotation between the two
triangular clusters. The calculations are very
similar to those already done for the D,; hindered
rotor in ®Ne, the small energy separation between
the two K =3 bands implying that this structure has
nearly free internal rotation. Unfortunately, re-
cent experiments that measure the static quadru-
pole moment of the 2* (1.78 MeV) state show that
Si is oblate, a fact definitely eliminating Fig.
10(a) as a possible structure. An oblate D,, struc-
ture as shown in Fig. 10(b) leads to only the K = 3*
band. Similarly, the oblate D,, structure of Fig.
10(c) predicts only the K™=3" band. The D;, bipyr-
amid [Fig. 10(d)], which is the usual configuration
considered for *Si, predicts only K"=1*, 2* or 5~
bands in this region (c.f., Table I). A planar D,
hexagon with one a cluster in the center can ac-
count for both K =3 bands by assuming they are
built on separate normal vibrations. However,

this structure is unlikely; it leads to a negative in-
trinsic quadrupole moment twice as large as ex-
periment. Other configurations besides those al-
ready mentioned were considered in Ref. 15 and
discarded.

Of the configurations that have the proper quad-
rupole moment, the one that predicts the most
low-lying energy levels is the oblate D,; structure
of Fig. 10(b). The K™ bands allowed for each IR of
D,, are given in Table I, and the possible normal
vibrations are listed in Table VI along with values
for the excitation energies of observed normal vi-
brations. Again, in order to push certain states
above 10 MeV, lower limits are given to several
of the rotational parameters. The results are not
as good as for the previous two nuclei. A low-
lying L"=2" state is predicted at approximately
6.2 MeV which is not observed (Fig. 9). However,
this state would also be predicted by all other
symmetric-top configurations. As in **Mg, the
lowest state observed but not predicted is a 3~
state at 6.88 MeV.

TABLE VI. Possible normal vibrations for the oblate D,, structure of %si.

Frequency eee wy Wy wg
Irreducible Ay Agg Age Ay,
representation
Observed energy 0 5.0 6.7
of excitation
(MeV)
Rotational
parameters
(MeV)
A=A, 0.20 0.20 0.15
Aj 0.55 =0.49 =0.32

Ws We Wy wg Wy W10
A2u E: Eg Eu Eu Eu
~8.0 6.7 ~8.2
=0.17 0.12 0,12 «-.
s 0.60 ~0.6 -
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Fol? IFI2 7
(b)
o' 102+
102+ |o'3F
103k 0-4
10-4 08

1.0

q(fm™)
FIG. 11. Experimental and theoretical form factors

for 283i: (a) elastic scattering form factors, (b) inelastic

scattering form factors for the 1.78-MeV 2* state (@),
and the 4.61-MeV 4" state (A).

The theoretical form factors for the low-lying
K™=0" states of this structure are:

Fgo= "lTFcz[l +6jo(qR1)] )
F} =%J5F,P,(cosh)j,(gR,),
Fio=2F P, (cos0)j,(qR,) . (33)

Comparing these equations with experiments
taken from Ref. 14, one finds that the elastic scat-
tering form factor can only be well predicted if
one assumes that the central o particle is slightly
larger than the other six. In this case, only the
elastic form factor changes, becoming

Foo=4[e=70% 1 6j,(qR )e=+*""]. (34)

Since these formulas are independent of the azi-
muthal angle of the a clusters, they also apply to
the oblate D,, structure of Fig. 10(c).

The experimental elastic scattering curve can
now be reproduced very well with several differ-
ent sets of parameters [Fig. 11(a)]. However, all
of them predict the parameter a, to be about 0.2
fm larger than a. The angle 6 can then be varied
to fit the 2* (1.78 MeV) curve. The solid line in
Fig. 11 represents the best fit with ¢,=1.9 fm, «
=1.7fm, R, =2.65fm, and 6=63°. The theoretical
form factor for the 2 state can be improved if one

allows for centripetal distortion by increasing R,.
This improvement is shown in Fig. 11(b) by the
dashed curve which is drawn for ¢,=1.9 fm, «a
=1.7 fm, R,=3.0 fm, and 6=64°. Naturally, one
expects these new parameters to give a poorer fit
for the elastic curve. UsingR,=3.0 fm and 6=64°
the intrinsic quadrupole moment is found to be Q,,
=-45.8 fm? which compares favorably with the val-
ue obtained from the measured 2* static quadru-
pole moment of Table II, as well as with the mo-
ment determined from various transitions (Table
VII).

A similar calculation' of the form factors has
been done for ?*Si with the D, pentagonal bipyra-
mid of Fig. 10(d). As in the D,, case, new values
for the parameters were needed to fit the inelastic
scattering curves. Although the resultant theoreti-
cal curves are equally as good as those given in
Fig. 11, the parameters for inelastic scattering
needed to be changed in the opposite direction from
that which one would expect for centripetal distor-
tion. Since the D,; structure also predicts most of
the observed low-lying levels, it should be prefer-
red over the D, bipyramid.

328 and °Ar

It is interesting to note that the energy spectra
of both **S and %*Ar (Figs. 12 and 13) have 0%, 2%,
4%, and 3~ levels at approximately twice the ener-
gy of the first 2% state in good agreement with the
collective vibrator model. Moreover, no definite
K™ bands other than possibly the ground-state 0*
band are observed in either nuclei. Also, from
the last column of Table II, it appears that the low-
lying states of *S are not of the same character as
those of *°Ne, **Mg, and **Si. As a consequence,
one does not expect the CAP model to work as well
here as for the nuclei previously considered.

Most of the possible structures for *S appear in
Ref. 15, where it was concluded that this nucleus
most likely had D,, or D,, symmetry. Reviewing

TABLE VII. Comparison of theoretical and experimental values for certain transitions in 28Si using the D4, struc-
ture. The single parameter is taken to be |Q,|=50.2 fm?,

Initial-state Final-state

Transition rate |M?

energy energy Type of (in Weisskopf units)

L™ (MeV) L™ (MeV) transition Experiment Theory
2t 1,78~ 0* 0.0 E2 14.7+1.62 10.0
4* 461 2+ 1,78 E2 9.5+2.22 14.3
6* 8.54 4* 461 E2 9.4+3.,02 15.7
3* 6.27 2+ 1,78 E2 0.001b 0.0
4* 6.89 2+ 1.78 E2 1.1:0.2° 0.0
3~ 6.88 0* 0.0 E3 18.0+13.0"

2 Reference 33.
M. M. Aleonard, D. Castera, P. Hubert, F. Leccia, P. Mennrath, and J. P. Thibaud, Nucl. Phys. A146 90 (1970).
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the calculations with more recent and extensive
experimental data, we find that D,, and D,, struc-
tures (Fig. 14) give reasonable fits, with a D,,
structure not completely ruled out. Results for
the D,, and D,, structures are plotted in Fig. 12,
together with the experimental data.’®3* Unlike
our calculations for the previous nuclei, the same
set of rotational parameters is used over all nor-
mal vibrations. Again, for both structures, the
first level observed but not predicted is of spin L
=3 at around 5 MeV. Structures of higher symme-
try [such as the D, hexagonal bipyramid, Fig.
14(b), the D,, body-centered planar heptagon, etc.]
can account for all low-lying levels if one intro-
duces five or six normal vibrations. However,
these structures predict an oblate shape contrary
to experiment, and introduce too many parameters
to be really meaningful.

The nucleus *Ar is similar to **Ne and *Si in
that it contains an odd number of o clusters.
Since both *Ne and ?®Si were found to have an «
particle in the center, one of the most likely can-
didates for *®Ar is the D,, body-centered square
antiprism of Fig. 14(c). Another possibility is the
Dy, planar pentagon, where four of the a clusters
form an O core [ Fig. 14(d)]. Both of these struc-

35
70+ -~ — 22— { 7.0
- TSl e - - 37
2 . =)= Iy
— e T T —
6.0 5 160
" 32—, O
e e e —
-y 33— 3-
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50t —_ ——3—— » 45.0
* Y e ML
2 T et
= 2y —— 2t
< 4 ‘4o
> 40} -1-- OX \ -q-- 14,0
© ] ig_______oo__ . N
E N el % (::3
z fw,y (%)
L 8
30r  (Bady,, hw, | {30
(8,g) (")
fw, . b,
(Ag) == (al)
20Ff \ ! 420
2%/ )
L2
1.0 4 1.0
+ +
ool _|L 4.4 %% o % % 4 4 Joo
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FIG. 12. Comparison of experimental levels of 32S with
theory predicted from two different structures. Also
shown are the IR’s for the observed normal modes. The
parameters used (in MeV) are: (a) D,, structure: A,
=A,=0.25, A3=0.90, fiw,;=3.8, Fw,=4.0, and iw;=4.4;
(b) Dy, structure: A;=A,=0.20, A3=0.50, fiw; =3.5,
fiwy,=4.0, and iw;=5.4,

tures give fair agreement with experiment® as is
shown in Fig. 13. The first level observed but not
predicted is an L =3~ level at 4.18 MeV. Again,
configurations of higher symmetry can account for
all levels if enough parameters are introduced,
but such agreement is not very satisfying.

It should be noted that both structures given for
¥Ar have double vibrations [denoted %#w, in Figs.
13(a) and 13(b)] which occur at relatively low ener-
gy. Unlike the corresponding w, double vibration
of ®®Ne, both of these modes contain two quanta of
a doubly degenerate vibration. The allowed IR’s
for these modes are thus found by taking the appro-
priate symmetric direct product.® All antisym-
metric wave functions of the direct product will
identically vanish.

40Ca

Unlike all other nuclei considered in this paper,
%°Ca does not have L"=2" for its first excited
state [c.f., Fig. 15(a)]. Consequently, *°Ca has no
permanent quadrupole deformation in its ground
state and the momental ellipsoid of any « struc-
ture for this nucleus must be that of a spherical
top (i.e., A;=A,=A,). The only reasonable config-
uration satisfying these conditions is the structure

ENERGY (MeV)

ool % o* % Jo.o

(Q) THEORY-Dgd EXPERIMENT

(b) THEORY-Ds),

FIG. 13. Comparison of experimental levels of 36Ar
with theory predicted by two different structures. The
IR’s for observed normal modes are also shown. In both
structures, the vibration that contains two quanta of iw,
occurs at relatively low energy and is denoted 7w;. The
parameters used (in MeV) are: (a) D,y structure: A,
=A,=0.20, A3=0.32, fic(=4.0, fw,=3.0, and Aiw;=5.4
S2Aw,. (b) Ds4 structure: A;=A4,=0.20, A;=0.17, 7w,
=4.0, Biwy=3.1, and fwy=5.4% 20w,.
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shown in Fig. 15(b). It consists of six o clusters
arranged in an octahedron outside of four others
which form a tetrahedral 'O core. The similar-
ity of this structure with the corresponding shell-
model description is especially appealing.

The low-lying excited states of this structure
should be very complicated because one now has
10 particles to contend with, and also because
Coriolis forces are known to be extremely impor-
tant in spherical-top configurations.® Indeed,
there is even reason to believe that some of the
excited states, such as the first excited 0%, 2%,
and 4" levels, may be built on permanently de-
formed rotational bands. A similar situation is
known to exist in ¥0.?® As a first approximation,
one could assume that the *O core does not con-
tribute to the over-all rotation of the nucleus.

The structure would then have 0, symmetry, and
the first three negative-parity states could be qual-
itatively explained as rotational states built on a
normal vibration of the F, IR, which contains lev-
els of spin L"™=3", 47, 57, 67,....% Because of
the complexity of the problem, no attempt was
made to calculate the level spectrum explicitly.

From recent experiments, *: 37 the absolute form
factor (| Fg,|) for elastic electron scattering on
*°Ca is known very well, and is shown as the dot-
ted curve in Fig. 15(c). This curve was obtained
indirectly in Refs. 36 and 37 by first fitting a phe-
nomological charge distribution of six parameters
to experimental differential cross sections, using
partial-wave analysis, and then calculating | Fj,|
by taking the Fourier transform of this charge dis-
tribution. Because of the method used, no error
bars were drawn for this curve, but they should be
quite small except for possibly ¢=>3 fm~!. All
present experiments give points between 0.7 fm~!
<¢<3.2 fm™!,

The theoretical form factor factor is obtained di-
rectly from Eqgs. (10), (11), and Fig. 15(b) as

| Fool = g5e= /[ 4jo(qR ) + 6jo(aR,)], (35)

where R, and R, are the radial distances to the o
clusters in the tetrahedron and octahedron, re-
spectively. The best over-all fit is with a=1.7 fm,

(@) Dap (D) Dgn HEXAGONAL  (C) Dgg SQUARE
CONFIGURATION BIPYRAMID ANTIPRISM

(d) Dsy PLANAR
PENTAGON

FIG. 14. Two possible configurations each for 328
[Figs. (a) and (b)], and *Ar [Figs. (c) and (d)].

R,=2.2 fm, and R,=3.9 fm. If one changes R, and
R, to 2.1 and 3.6 fm, the first two maxima are bet-
ter reproduced, but the fit above 2.0 fm~! is de-
stroyed. The agreement between theory and ex-
periment is also improved if one introduces a
fourth parameter by allowing the rms radii of the
inner and outer a clusters to differ. It is interest-
ing to note that the second minimum of the theoret-
ical curve does not go to 0. This fact leads to
some interesting results that will be examined
more closely in the next section.

IV. MASS SHAPES AND CHARGE DISTRIBUTIONS

As a result of the calculations in the preceding
section, the CAP model can now predict the posi-
tion and rms radius of each internal a cluster for
all nuclei listed in the first column of Table VIII.
Thus it is possible to calculate classically the
“rigid” moments of inertia for these nuclei and
compare them to the “effective” moments that are
needed to reproduce their energy spectra. Table
VIII compares the “effective” and “rigid” rotation-
al parameters which vary as the reciprocal of the
moments. From this table, one sees that the
“rigid” moments are usually twice as large as the
“effective” moments for rotations about the x or y
axis, and three to four times as large for rota-
tions about the symmetry axis. This is not unex-
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ool _o* |10 . AN
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FIG. 15. (a) Energy levels of ¥Ca (in MeV). (b) The
most realistic @ structure for “°Ca is an octahedron out-
side of a tetrahedral %0 core. (c) Comparison of exper-
imental elastic electron form factor with that predicted
by the structure in (b).
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pected since a similar situation occurs for de-
formed nuclei in the regions 150<A <190 and
A>220.

Finally, we calculate the effective radial charge
distribution for several different nuclei by aver-
aging the charge distribution of Eq. (8) over all
possible orientations. This is accomplished by
taking the inverse Fourier transform of the elas-
tic scattering form factor. From Egs. (10) and
(11), we find

e-qzazls

Fl =4
00 n

n

22Jo(aR;), (36)

i=1

and a straightforward integration yields
26 3 1/2 _n 1

p(r)= (—) dowe

ar\ 87° R;
i=1

—a(r2+R. 2)/242 . L SR 7
3(r2+R; 2)/20% g 1 {12‘ ,

(37)

where p(r) is the radial charge distribution of the
nucleus normalized to the proton charge, 2ne.
Figure 16(a), taken from Ref. 8, shows the ra-
dial charge distributions for a-particle configura-
tions of *C and 0. The D,, curve in Fig. 16(c) is
computed from parameters given in Ref. 14; this
distribution also fits the experimental | Fy,|? for
gi [given in Fig. 11(a)|. The phenomenological
fit to *°Ca in Fig. 16(d) is taken from Ref. 37. All
other curves are calculated from parameters giv-
en in the present paper. The two charge distribu-
tions for 2%Si have essentially the same absolute
elastic form factor up to 1.8 fm~!, but they can be
shown to vary considerably above this value. In
particular, the third maximum of | Fg,|? for the
D, structure is calculated to be 100 times as
large as that of the D;, case. Future experiments
on the elastic scattering form factors of 288i at
higher energies will thus favor one distribution

HAUGE, WILLIAMS, AND DUFFEY

| >

T T T T T T T 1 T T

(a) ~ (b)
0.10F ~l2c_py, ]
0,08 7N\—"%0- Ty
0.06
0.04

0.02
0.00 ———F =t St

(d)
T--40Ca - PHENOMENAL
1+ -40Ca_(0p +Ty) -

0.12
0.10

CHARGE DENSITY (e/fm3)

0.08 |-
0.06
0.04

0.02
0.00

N
| I U D B b

0 | R T B
0.0 1.0 2.0 3.0 40 50 0.0 1.0 20 30 40 50

RADIUS (fm)

FIG. 16. (a)—-(d) Radial charge distributions of various
light A =4N nuclei predicted by the CAP model. The as-
sumed structure of each nucleus is also given.

over the other. On the other hand, the absolute
form-factor curve for *°Ca is known well up to 3.2
fm~! and both distributions of Fig. 16(d) give ap-
proximately the same | Fy,| through the fourth
maximum. The large difference in the two distri-
butions is thus probably due to the fact that the
phenomenological fit assumes the form factor
changes sign at the second minimum (as shown in
Ref. 36), whereas the form factor for the a struc-
ture does not [c.f., Fig. 15(c)]. Although the abso-
lute values of the form factors of the two distribu-
tions are nearly the same, the actual form factors
are quite different above 2.0 fm~!. In fact, by
slightly altering the present charge distribution,

TABLE VIII. Comparison of “rigid”’ and “effective” rotational parameters for several light nuclei. The spatial pa-

rameters needed to calculate the “rigid” Aj’s were found by applying the CAP model to electron scattering data. In-
formation needed for 1p -shell nuclei was obtained from previous papers (Ref. 8). In order to make the calculations
more realistic, the center o clusters of 2'Ne and Si were assumed not to contribute to the “rigid” moments of inertia.

Levels used in
calculating “effective”

Calculated rotational parameters (MeV)

rotational parameters “Effective” “Rigid”
Assumed « structure (MeV) A=A, A, A=A, A,
Be D, dumbbell with neutron 3,243 0.48 0.51

2¢ D, equilateral triangle 2+, 443 0.74 0.82 0.51 0.35
37, 9.64

8o T, tetrahedron 37, 6.13 0.51 0.51 0.28 0.28

20Ne D,, distorted tetrahedron 2+, 1.63 0.27 1.10 0.14 0.32
27, 4.97

Mg D,, bitetrahedron 2+, 1.37 0.23 0.94 0.12 0.19
2+, 4.23

Bsi Oblate D, structure 2+, 1.78 0.30 0.60 0.12 0.14

3*, 6.27
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which is somewhat hollow in the center, one
should be able to calculate differential cross-sec-
tion curves just as good as those obtained for the
previous phenomenological distribution. Since the
Born approximation can no longer be used for
such an exact calculation, no attempt is made at
present to validate this assumption.

V. COMPARISON WITH OTHER MODELS
AND CONCLUSIONS

From the preceding discussion, it appears that
the model works very well at the beginning of the
2s-1d shell, but has only moderate success for
nuclei above **Mg. All observed K " bands of *°Ne
under 9 MeV can be predicted with the D,, dis-
torted tetrahedron, while **Mg is well described
by a D,, bitetrahedron. The results for *®Si are
not as conclusive as for the previous two nuclei,
though present data favor an oblate D,, structure
over the more familiar Dy, pentagonal bipyramid.
The structures assumed for >*Mg and *Si both
give good agreement with the experimental elec-
tron scattering form factors. Several structures
do a fair job in predicting the energy levels of *S
and ®¥*Ar. However, in both of these nuclei, low-
lying levels are observed that are not well predic-
ted. The nucleus *°Ca is found to have an a struc-
ture of 0, symmetry. Although the energy spec-
trum is only qualitatively discussed, the experi-
mental elastic form factor for electron scattering
is well described. The first energy level ob-
served but not predicted is usually a 3~ state.
These levels may have a large contribution from
an octopole vibration which is not part of the CAP
model.

In recent years deformed Hartree-Fock
(DHF), *%* sy,, *»*! intermediate-coupling, ** and
unified collective models*® have all been applied
to many nuclei in the 2s-1d shell. The DHF cal-
culations usually allow the nucleus to have only
axial or ellipsoidal (i.e., D,, symmetry) deforma-
tions. However, even with these restricted defor-
mations, some interesting comparisons with the
CAP model can be made. The ground-state DHF
structures for 2°Ne and **Mg are definitely prolate,
but an oblate structure is found to be slightly fa-
vored in Si. These results are in good agree-
ment with experiment (c.f., Table II) as well as
with our structures. In addition, **Mg appears to
prefer an ellipsoidal rather than an axially sym-
metric shape; this qualitatively agrees with our
D,, bitetrahedron [ Fig. 5(c)]. Ripka (Ref. 38) has
plotted some very informative density distribution
curves for his axially symmetric DHF solutions of
12C, 2°Ne, and 2®Si. The irregularities in the equi-
density surface show good evidence for four-body
correlations in all three nuclei. For example,

12C js shown to be oblate and hollow in the center
(i.e., toroidal shaped), which is in close agree-
ment with the triangular a structure assumed by
the CAP model. The density plot of *®Ne seems to
differ from our results as it favors the D;, bipyra-
mid [ Fig. 1(c)] over the D,, distorted tetrahedron
[Fig. 1(a)]. One possible explanation for this dis-
crepancy is that D,; distortions were not allowed
in the DHF calculations. Unfortunately no density
plot was given for **Mg.

The present paper shows how the CAP model
gives an especially simple explanation for the op-
posite parities of the K =2 bands in *Ne and **Mg.
As noted before, other collective models, espe-
cially the asymmetric rotor, can account for the
K™=2" band in **Mg, but the negative-parity bands
in *Ne are usually explained by promoting the 1p-
shell nucleon to the 2s-1d shell. In the unified
Nilsson model, this promotion results in several
different bands, ** and it is difficult to tell which
ones are lowest in energy. This difficulty is re-
moved in the SU, model because one assumes that
the lowest states are those of maximum orbital
symmetry. Thus the negative-parity states of
2Ne are presumed to be built on the (Au)=(82) or
(90) irreducible representation of SU,; the former
is a five-particle—one-hole state, while the latter
is obtained on promoting a 2s-1d-shell nucleon to
the next higher shell. Using Elliott’s projection
scheme, one finds that the (82) space yields K™
=27 and K"=0"(L even) bands, while the (90)
space has only a K"=0" (L odd) band. The first
and third bands are observed experimentally (Fig.
2), but they are also explained by the CAP in a
quite different manner. The SU, model can also
explain the K"™=0" and K"=2" bands of **Mg as be-
longing to the (Ap)=(84) irreducible representa-
tion. Harvey (Ref. 40) has plotted the particle
probability density distribution for the intrinsic
part of this particular state; the contour lines
again show correlation and seem to favor the D,,
bitetrahedron of Fig. 5(c).

Finally, we compare our a structures with
those of Brink and co-workers® who have recently
applied HF calculations to many-particle a-clus-
ter wave functions for all 4N nuclei between '2C
and ®Si. They find the most stable configurations
to be the D,, trigonal bipyramid for *Ne, the D,,
square bipyramid for #*Mg, and a prolate D,,
structure for ?®Si; the first two are shown in Figs.
1(c) and 5(a), respectively. None of these struc-
tures is in agreement with the results of the pres-
ent paper; however, it is not known if our struc-
tures for **Ne and *Mg were actually considered
in their calculations. A number of authors have
also searched for a correlations by relaxing the
restrictions of the DHF calculations.***5 Instead
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of axial or ellipsoidal deformations, they allow
for deformations of less symmetry which do not
inhibit cluster formations. One of these papers*®
imposed trigonal symmetries on *C, %0, and
20Ne, and found a correlations in all three nuclei
when a Volkov force was used with a sufficiently
strong Majorana exchange term (M =0.75). So far
as we are aware, no DHF calculation has been
performed on *°Ne with D,, symmetry.

The results of this paper also give a qualitative
estimate of the stability of these internal a clus-
ters. If the clusters were long-lived compared
with their relative motions, one would expect the
short-range interactions between these clusters to
favor those structures having the greatest number
of bonds. The present work shows that this is not
always the case, since nonbipyramid shapes were
found for **Ne, **Mg, and ?®Si. This result im-
plies that the clusters may be quite transient but

still permanent enough to impress some over-all
point group symmetry on the single-particle shell-
model states. One would expect that the symme-
try relations of the CAP model still hold for this
more realistic situation. Indeed, Herzenberg*
and Brink® have each shown that these symmetry
conditions still apply for two different types of mi-
croscopic cluster models. In fact, the frequent in-
terchange of nucleons between a clusters should
make them more cohesive and add to the total ri-
gidity of the a structure.

In summary the phenomenological CAP model
seems to give a good basic description of the low-
lying levels of several light 4N nuclei, and it also
indicates which symmetries are important for
each nucleus. These symmetries should in turn
dictate how one can best proceed with more realis-
tic calculations.

*Work performed in part in the Ames Laboratory of the
U. S. Atomic Energy Commission. Contribution No. 2954.
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The total cross section of protons for neutrons of mean energy 2535 keV was measured
to be 2536+4 mb. This measurement is the average of determinations with five different
hydrocarbon samples. Special care was taken to measure neutron energy accurately
throughout the experiment and to keep corrections for background and inscattering very
small. The singlet effective range deduced from this measurement is 2.78+0.07 fm and
is consistent with values deduced from proton-proton scattering under the assumption of

charge independence of nuclear forces.

I. INTRODUCTION

The importance of an accurate knowledge of the
hydrogen cross section for MeV neutrons has been
discussed by Breit! and others. This cross sec-
tion is used in most neutron-flux determinations,?
and it yields information about the nucleon-nucleon
interaction. The charge dependence of the nucleon-
nucleon interaction is often studied by comparing
the n-p and p-p singlet effective range.® The cal-
culated singlet effective range 7,, is very sensi-
tive to the fast-neutron cross section: An error in
the neutron cross section is multiplied about ten-
fold in the calculation of 7,,.

In addition to the measured fast-neutron cross
section, three other measurements are used in

determining the parameters in the shape-indepen -
dent approximation: the binding energy of the deu-
teron €, the slow-neutron total cross section, and
the coherent scattering length a,. The energy € is
known* very accurately and introduces negligible
uncertainty in the parameters, the slow-neutron
cross section has quite recently been remeasured®
with an accuracy of 0.1%, and a, is believed to be
known® with comparable accuracy. No precision
measurement of the cross section for MeV neu-
trons has been published since 1963, although in
recent years there has been much progress in ex-
perimental techniques that should permit improved
accuracy in the measurements.

During the last twenty years four groups have
performed precision measurements of the hydro-



