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The non-normal-parity states for the five-nucleon system are obtained in the shell-model
with particle-hole interactions. The residual force used is the separable smooth potential
due to Tabakin. Coupling of the shell-model wave functions to deuteron and single-particle
channels is calculated semiquantitatively, and the results are used in an R-matrix calcula-
tion of the cross section for photocapture of deuterons by tritons. A broad peak in the cross
section at about 21-MeV excited energy due to capture through a 3* state is predicted.

I. INTRODUCTION

At present, there are four experimentally known
levels of the five-nucleon system.! The ground
state of He has been identified as a 3 state and
is unbound against the breakup into *He +» by 0.96
MeV. The next state of this nucleus is a broad
resonance which occurs 2.6 MeV higher and has
spin 17. The first even-parity state for this sys-
tem lies 16.7 MeV above the ground state? and is
known to have spin 3*. Further positive-parity
structure has been observed around 20 MeV .3
Since the state at 20 MeV is excited by "Li(p, *He)-
*He but not "Li(p, )°Li, Cerny, Detraz, and Pehl?
argue the state is *D;, J" =3* or 3*. Several
more levels have been tentatively detected in the
region between 20-25 MeV.?

Simple shell-model considerations indicate there
should be a sizable number of even-parity states
beginning near the ¢ +d threshold which should
dominate reactions between tritons and deuterons.
In this paper we calculate the shell-model spec-
trum and E1 transition strength to the 3 state for
these even-parity states. We apply the results to
a study of the reaction

d+t-°He(g.s.)+v, (1)

4

where the final nuclear state is considered as the
ground state of SHe. The particle widths are es-
timated by calculating what are essentially the
one- and two-body fractional-parentage coeffi-
cients and normalizing the widths with the known
deuteron width of the 3* state. The reaction
theory we employ is the R-matrix theory of Lane
and Thomas.® Crone and Werntz” have explicitly
considered the case of many overlapping levels,
such as we have here and given a formula for the
angular correlation of the final ¥ ray with the in-
coming particle.

One might question the usefulness of a shell-
model calculation with oscillator wave functions
when applied to a system with few narrow reso-
nances. From the experimental side, d+¢ scat-
tering might be viewed as a problem similar to
pion-nucleon scattering — one would like to know
the energy dependence of the real and imaginary
parts of the phase shifts. In certain channels it
might be expected that the energy dependence im-
plies the existence of resonances, even though
the internal symmetry of the state is such that no
narrow resonances exist. The energy ordering
of these resonances depends on the nuclear forces
between pairs, and the coupling of the states to
external channels depends on the internal sym-
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2 R. F. WAGNER AND C. WERNTZ 4

metries, here SU(4), of the states. The shell
model with oscillator functions gives this kind of
information just as the quark model does for bary-
on resonances.

It is true that the coupled-channel resonating-
group method® (continuum cluster model) repre-
sents a unified approach to the problem of reac-
tions between pairs of fragments. However, the
numerical solution of the coupled equations is not
trivial; while the general equations have been
known for over nine years,’ solutions for other
than purely central forces have appeared only re-
cently. Heiss and Hackenbroich' have solved the
problem for the collision-matrix parameters of
the 3* partial wave taking into account the coupling
between the 2D, ,, “He +n channel and the °S;, t+d
channel. Even though they obtained results in
semiquantitive agreement with the known proper-
ties of the 3* state, it is still true that the 2D, ,
and ‘D, , t+d channels were omitted. We will show
that a shell-model calculation also yields informa-
tion about the 3* state that agrees with experiment,

and we get estimates of the coupling to the *D,,,
and 2D, ,, channels as well.

II. SHELL-MODEL STATES

We first solve for the five-nucleon spectrum by
means of the shell model with particle-hole exci-
tations. The model space for this calculation will
include configurations which differ from the “He
shell-model ground state (s,,,)*(p;,,) by the excita-
tion of one particle through a single oscillator
spacing of 17w. Two types of such states exist:
the states in which the valence particle is promot-
ed through one oscillator shell, the spp (single-
particle promoted) state, and states in which a
particle from the ground-state core is promoted
through an oscillator shell, the 2p-1h state.

We use the occupation-number (Fock space)
representation to facilitate satisfying the require-
ments of the Pauli principle, and will adopt the
j-j coupling scheme. In this representation our
basis states become

2p-10) 5= 3 (ipmpium Jim)imjy =mpliM) 5 G137 | 1) 73 = 70| TM,)

mpmy TpTy
mamy T Ty

X (<YW 027" (nl ) pa” (0l jmT) alnl jm7)y [0)

N2=1= (=)0, 8y 1 85,0

and

spp) a.s. =a' (nl jm7)[0) .

The core is the filled 1s,,, shell. Here, and in
the following, p refers to particle, v refers to
valence particle, and h refers to hole. For a par-
ticular J, T, the shell-model space is spanned by
all configurations in which p and v can be coupled
to an intermediate j, {, and the result of this
coupled to final J, T, with nonzero norm. For
states with 7'=3 there is the additional spp state
(we will solve for the spectrum for both T=% and
T=3).

We make the usual Tamm-Dancoff approximation
and solve the secular equation

§(<¢k';Hl¢h>_E)\ak'k)A)\kzoy (3)

for the eigenvalues E, and for the states D ,A4,,|d, .

The matrix elements of the Hamiltonian are taken
to be

(Ppr [H ) = 2€,8,1,+{( Dy [V [Dp) (4)

where the A€, are the differences in single-parti-
cle energies, and the Tabakin potential®! is used
for (¢, |V|¢,). The single-particle energies®®

(2)

r

are given below:
1d,,,, 26.25 MeV;
2s,,,, 23.25 MeV;
1d;,,, 21.25 MeV;
10125

11)3/2’
1s,,,,-21.54 MeV.

2.60 MeV;
0.0 MeV;

We approximate the reaction matrix to second
order in the manner in which Barrett!? treated
“He and '®0; i.e., oscillator states two shells
higher in the relative system are taken as the
intermediate states. The angular momentum
coupling and recoupling and the two-body matrix
elements which enter the secular equation have
recently appeared in the literature.®

A final complication is the removal of the spu-
rious center-of-mass motion which has been in-
troduced into our representation by the inclusion
of 3A (A =5) spatial coordinates rather than 34 - 3,
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and our use of experimental particle-hole energies.

We have generated these states by the prescrip-
tion of Baranger and Lee’ and have projected them
out by the Schmidt technique. The result of this
treatment and its relevance to the remainder of
the present paper is that the eigenfunctions X,
have the center-of-mass of the five-nucleon sys-
tem in a relative 1s state with respect to the cen-
ter of the oscillator well.

III. DIPOLE MATRIX ELEMENTS

In the region of excitation that we are primarily
interested in, the long-wavelength limit'® for the
transverse E1 transition amplitude can be applied

(fFITE i) oo = w(1/6m)/2DE (5)

where we define

A
SELVIPIRNS A EENINER
i=1
Since we are in an oscillator basis, it will be a
simplification to write the operator T; in terms of
the oscillator raising and lowering operators
E?‘zf)j*'iMwosch _é -ISJ iMw
J (ZMwosc)l/z ) 7

OSCJ.

(2M(.l) osc )1/2 ’

Iy

T B E— 6
r; i(2Mw ) (6)
This simplifies the calculation of the transition
amplitude, since the reduced matrix elements of
the oscillator raising and lowering operators have
been tabulated by Gartenhaus and Schwartz.®

]

2
do . mawyi,

;i-Q_y —(231+1)(232+1) ,',Z;; ;,;,(_i)l "

1,1" sji

X2 2T o) AT A T 1T )[40 (0 )24

It is understood that 2(||7, [} [T, II)* stands for

IV. PHOTOCAPTURE CROSS SECTION

For application to the photocapture of deuterons
by tritons we require an expression for the cross
section for the emission of a ¥ ray with wave vec-
tor Ey and energy w, from an excited nuclear state
of the compound system. The general expression,
where J(Ey) is the Fourier transform of the nu-
clear current and dNy is the density of final states,
is

410 =

do = ZTTTEE[

Wy u; My

(k,)Jz (&) +J_(&,)*(k,)] dN, .

(7)

In the dipole approximation we may identify the
current with the matrix element of Eq. (5)

Jy(k,)=wD5) . (8)

An expression for J, (EY) for the case of photon
absorption has been obtained by Crone and Werntz.®
The approach used is that of Wigner R-matrix
theory® in which the scattering state in the region
of nuclear interaction is expanded in terms of a
complete set of eigenfunctions of the nuclear
Hamiltonian with certain boundary conditions. We
will make the ansatz that the complete set of eigen-
states is approximated by the set of shell-model
solutions of Sec. II. The eigenfunction for a par-
ticular J,; are denoted X,, with corresponding
eigen energy E,. Then if we require that our ini-
tial state be a Coulomb wave in the Ea direction
with unit incoming flux, we obtain, after taking

the squared modulus and performing the spin
sums, an expression for the cross section of Eq.

(7):

—1)FTI TS Z (1§ $) 2T ' 3 4 )P (cos,)

s (TANT oIl T3, BT (9)

[1+ 07 AT DT +ATFe AT D] =[1= (=077 AT DTSl + CAreUATs ]

The particle-y correlation is, of course, the
same for photocapture as for photoabsorption. We
have written the formula explicitly for photocap-
ture by making use of the relation’®

IANT Ty =i (<) g T, gy

The particle and photon angular correlation coef-
ficients, Z and Z, are defined by Ferguson.'” If
we consider only transitions to the 3 ground state

(10)

of *He and restrict the formula to £1 photons, the
possible initial states are J",;=3*, 3*, 3*. For
the ¢+ d channel the channel spin s=%, 3, and for
the type of states we study the orbital angular
momentum in the {+d channel is limited to 1=0, 2.
Then parity and angular momentum rules limit j
to j=0,2 giving

do/dfd, = AP, +A,P,
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for the correlation between the y ray and the in-
coming deuterons. The definition of the phase an-
gles Q,, the physical widths I'{ .,,, and the in-
verse level matrix AY, , follow all the conventions
of Refs. 6 and 7.

V. COUPLING TO PHYSICAL CHANNELS

When we talked about internal symmetry earlier
we had in mind the SU(4) symmetry of the spin and
isospin functions. In an earlier paper®® on “He the
importance of the SU(4) multiplicities of the inter-
nal wave functions and the channel wave functions
was stressed. If a product representation con-
tained in the asymptotic wave is a major compo-
nent of an excited-state wave function, then the
width for decay into these two fragments should
be large. One sees this directly in the expression
from R-matrix theory for the reduced width.

1 >1/2 . 1
YM:‘(ZMCAC fdsc(pcx)\y ( )

where X, is the internal resonance wave function
and ¢, is the asymptotic channel wave function.
The integral is over all coordinates except the
relative separation of the two fragments and, more
importantly, all spins and isospins are summed
over. If ¢, does not contain any SU(4) representa-
tion in X,, then y,. vanishes.

The shell-model states we have used contain rep-
resentations of dimensionality {4}, {20}, and {36}.
The spp states contain only {4} but all three are
contained in the 2p-1h states. Figure 1 illustrates
the group properties of the states. The coupling
of these states to the physical channels can be dis-
cussed from the view point of group theory be-
cause of the fact that one can also make up repre-
sentations of SU(4) from the asymptotic form of
the wave functions for these channels. For the
case of the deuteron or singlet deuteron-plus-
triton channels, in a notation in which the paren-
theses contain the multiplicities (2S+1, 2T +1),
we have for the spin, isospin part of the wave
functions,

[(38,1)+(1,3)]x[(2,2)]=(4,2)+(2,2)+(2,4)+(2,2).

J

That is, this case yields the {20} and {4} repre-
sentations. For the case of the physical channel
consisting of *He +7» we have for the spin, isospin
part of the wave function

[(1,1)x(2,2)]=(2,2).

This case yields only the {4} representation. At
this point it is explicit how a particular shell-
model state can be coupled to both single-particle
and deuteron channels. Furthermore, we can
make some qualitative remarks about the coupling
even at this point. For example, if the {4} com-
ponent in the shell function is small, then that
state will be only weakly coupled to the *He +n
channel. Also, the {36} component can couple
only to a channel in which two nucleons are emit-
ted in a relative p state. Since the p-state inter-
action is small, this channel is suppressed. Then
if we have a low-lying shell-model state with a
large {36} component, it can have little coupling
to the remaining physical channels, and so can
have only a relatively narrow total width. It also
follows that the small reduced width for *D, ,
‘He +n of the 3* state implies a small {4} compo-
nent in the wave function. A recent calculation of
the five-body spectrum using an SU(4) basis has
yielded just this result.*®

It remains to write down the wave functions
which ocecur in Eq. (11) so that the indicated con-
traction can be performed to obtain a quantitative
measure of the coupling. Neglecting all but the
(1s)?, (1s)3, and (1s)* configurations in 2H, °He,
and “He, the surface wave function is decomposed
as follows:

b= (il/ac)Ylm(Qc)‘I’cluster‘b ’ (12)

where ¥ ... contains the internal spatial struc-
ture of the fragments, q_ is the channel radius,
and & is the spin and isospin function formed from
the fragments. The angular momentum couplings
are in the order (3, x3,)X1, where s, is the spin
of the target particle. Explicitly, the following
spin-isospin functions occur in our available chan-
nels, viz., five nucleons clustered into two nu-
cleons plus three nucleons, or into four nucleons
plus one nucleon:

@(H +d)=§(%m'1m—m’Ism)"/‘%[xlm-m’(45)snoo(45)A][X§m'((12)A’ 304~ 3((12)s, 3) = X3 n((12)5, 3)my - 1((12) 4, 3)],

” 1
®("He +n) =73 [xL(12) 4, (34) In((12)s, (34)) - Xl (12)g, (34)9In((12),, (34),)] X3 §(5)n*-§(5) "

1 1
‘I’(t+ (}‘ll))) =ﬁ[x§m((12)A1 3’"}-&((12)S, 3)" xim((lz)Ss 3)"%— ;((12)‘4; 3)][)(00(45),47710(45)8] ’

3 1 1
®(°He +(nn)) =73 [Xgm((lz)m 3)r]% ;((12)5’ 3) - Xgm((lz)s, 3)775 5((12)47 ][ 00(45)41,-,(45)s], (13)
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where (np),, and '(nn),, represent the singlet deu-
teron (two nucleons coupled to spin zero, isospin
one). In these expressions x,,((12)s, 3) and
X1,2((12),, 3) are mixed symmetry three-nucleon
spin functions with S=3% and are either symmetric
or antisymmetric in nucleons 1 and 2. The two-
nucleon spinors x,(45)s, x,(45)4 with S=1 or 0,
respectively, are paired to form the four-nucleon
spinors x((12),, (34),), x((12)g, (34)s) which have
total spin zero. The isospin functions are similar-
ly defined. The complete product expressions are
antisymmetrized by writing down & = (N,)~1/2
X3 (=)’P&, where Ny is the number of independent
permutations P not already contained implicitly
in the expressions.

In order to evaluate Eq. (11) we first transform
our jj basis states to an LS basis (see Appendix)

Xﬁ%:Axk%(jj) = kZ'Aqu(LSXXj(LS) a7 -

(14a)
Then,

')’)\c=ZAkac,j<Xj(LS)|¢‘k(jj)> s (14b)
R, J

1 1/2
Ve <2MCAC> J

The antisymmetrized channel wave function is ob-
tained directly from the ¢ previously defined. In
evaluating Eq. (14b) care must be taken with re-
spect to the ordering of the angular momentum
coupling. From Eq. (2) we see that in the jj cou-
pling scheme our angular momenta in the two-
particle—one-hole states are coupled in the order
(I, xs,)X(l, x s,)xsy. The LS basis is defined by
[(spX s,)X% sy]x[(L, X 1,)] and the transformation
coefficient (x;(LS)|¢,(jj) is derived in the Appen-
dix. On the other hand, the angular momenta in
the external channels occur in the order [S, x(s,
xs)]x(l,x1,). By the same token, sign problems
can occur even in the spp states because the usual
shell-model coupling order, IXs, is opposite to

(4} {20} {36}

L=0,2 L=0,2 L=1

FIG. 1. Young tableaus for spin, isospin parts of shell-
model wave functions for the five-nucleon problem.

the R-matrix convention, s XI[.

For each LS basis wave function the reduced
widths were evaluated. The antisymmetrized five-
nucleon wave functions were explicitly written
down and the space variables for each individual
nucleon were replaced by relative coordinates
appropriate to the external channel clusters and
the center-of-mass coordinate. The spin and iso-
spin sums were easily expressed in terms of Wig-
ner 6j and 95 coefficients. Then the widths are all
expressible in the form
-pala2/262)

- N 1 a} 1 R
Yast,e=MNost ke A a® (ma,)'?

X J-dp*ldﬁzd@‘l”glusterq’caussian .
(15)

Here a=1/(mw ,.)""?, m is the nucleon mass, i,
=M,/m. N=u""%(%)**, and 7, , is a positive or
negative coefficient. The values of these coeffi-
cients are listed in the Appendix. It is noteworthy
that two-particle—one -hole states can have signifi-
cant single-nucleon width and that spp states have
significant two-nucleon cluster widths. The func-
tion ¥ ,,551an in Eq. (15) is a normalized function of
the three relative coordinates that arise from the
exponential part of the five -body oscillator func-
tions.

Because of the use of the oscillator wave func-
tion we have an unrealistic Gaussian function of a
a. appearing in Eq. (15). This term was ignored
and the over-all normalization of all widths was
fixed by the S-wave deuteron reduced width of the
3* state which was taken to be y*=2.0 MeV, with
a.=5.0 fm. The integral in Eq. (15) was evaluated
with Gaussian wave functions which yielded the
proper rms radii for d, ¢, and He and we found a
ratio of 0.84 for the {+d clusters with respect to
the “He +7 in evaluating the integral. This meant
the single-nucleon widths were effectively multi-
plied by (0.84)!. An oscillator energy of 22.4 MeV
was used for the five -body wave function. In this

TABLE I. The 10 lowest even-parity levels of *He as
calculated and used in this work,

Energy Energy

(MeV) Spin Isospin (MeV) Spin  Isospin
17.7 2 1 26.0 $ i
19.6 $ 1 26.2 3 1
20.8 3 i 27.1 1 1
21.9 ¥ $ 28.6 i i
22.8 i + 28.8 3 $
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way a complete table of values fory ,; , was speci-
fied with only one experimental quantity being in-
troduced.

The threshold or @ values for break-up into the
various allowed channels are required for the cal-
culation of the shift functions and penetration fac-
tors and were taken from experiment.! We fol-
lowed the rather arbitrary scheme of Werntz and
Meyerhof'® for choosing the boundary conditions
in each channel. The energy shift A(E) was made
to vanish for the lowest level

A (E) = 237 37wl Se(E L) = B
-0. (16)

For all higher resonances we set the boundary
condition B, for each channel equal to the shift
function S (E,) evaluated at the first resonance and
used the shell-model energies as the E,.

V1. CALCULATION

The shell-model part of this problem was solved
on the NASA IBM 360/91 at Greenbelt, Maryland
with programs written for the general 2p-1h prob-
lem. The programs were checked against the
work of Easlea®® on !°C for the eigenvalue prob-
lem and dipole-strength calculation, and against
the work of Barrett'? and Clement and Baranger?!
for the two-body matrix elements with the Tabakin
potential. The agreement was excellent.

The R-matrix part of this work was carried out
using a package of programs which constructs the
complex inverse level matrix A from the levels,
channel thresholds, and reduced-width amplitudes.

DIPOLE STRENGTH (D) (ARB'Y UNIT)
TABAKIN POTENTIAL

L

] T=1/2
T=3/2

\
N

8 20 22 24 26 28 30 32 34 36 38 40
EXCITATION ENERGY (MeV)

FIG. 2. Histogram of dipole strengths (D?) carried by
shell-model states for He. States were given an arbi-
trary width of 2 MeV.

VII. RESULTS

Our results for the energy spectrum of the five-
nucleon system are given in Table I. The dipole
strengths associated with these states are given
by the histogram of Fig. 2 in which each state was
arbitrarily assigned a width of 2 MeV. States with
T=3 are shown shaded and were not made to ac-
cumulate with the T =1 states since there is no
way to excite such states.

Our lowest eigenvalue comes at 17.7 MeV and
has J", T=%*, } which is in good agreement with
the experimental energy of 16.7 for the first reso-
nance of He. This level has been identified as a
3* state. This level could have been brought lower
by increasing the well size; we used parameters
appropriate to “He for this calculation. Figure 3
shows how the lowest levels are affected by the
choice of the oscillator parameter. Recently a
particle-hole calculation on the five -nucleon sys-
tem has been used to investigate the dependence of
the spectrum on this parameter more fully.*®

This result may be compared with the work of
Spicer and Fraser?® on the five -nucleon system.
Their calculation was performed with the Soper
mixture for the 6-function potential. However,
instead of placing the s-d shell in the region of
25-MeV excitation where it should occur naturally,
they raised it to 45 MeV. This was done because
the work of Hoop and Barschall®® indicated that
there is no significant single-particle s-wave
phase shift below 24 MeV in 7 +“He scattering.

SHe
27 \ 172t
5/2%
26 3/2%
25}
24
+
23| 7/2

/ 3/2+
22

5/2%
2f —

SHe EXCITATION ENERGY (MeV)

20}
172t
or 3/2+
18} /
1 1
T %23 20.2

OSCILLATOR SPACING (MeV)

FIG. 3. Dependence of even-parity states of "He on
oscillator spacing fiw.
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Raising the s-d shell to 45 MeV was necessary to
keep the single -particle shell-model component
weak in their eigenfunctions below 24 MeV. How-
ever, as our calculation of the reduced widths in-
dicates, the single-particle shell-model state is
not to be identified with the physical single-parti-
cle channel. We repeated the 6-function calcula-
tion with the s-d shell in a more natural position
and found that this brings a level with J"=4* an
MeV lower than the lowest J" =3* level found with
the elevated s-d shell. The tensor force seems to
be necessary for the correct ordering of levels.
We note that the first T=3 state occurs at ~28 MeV
indicating °H is unbound by about 8 MeV against
3H + (nn) decay.

In Table II we have listed the calculated reduced
widths for the lowest four states. Since all the
states are of the order of at least 17 MeV above
the “He +n threshold, for a state to be narrow it
must have essentially zero reduced width for this
channel. It is seen that only the lowest 3* state
satisfies this requirement. However, the ' state
(23 MeV) can only have ¢ +d cluster structure and
consists entirely of ‘D, ,,, so it is tempting to iden-
tify this state with the anomaly seen by Cerny,
Detraz, and Pehl.* The second 3* state (21.8 MeV)
is, of course, another candidate for this structure.

Finally, we have calculated the excitation func-
tion and angular correlation for #(d,y)°He g.s.
using Eq. (9). The results for the 90°cross sec-
tion are shown in Fig. 4 and compared with a
curve supplied to us by Meyerhof** of Stanford
which represents preliminary results of an *He -
(d,vYLi(g.s.) experiment. The low-energy por-
tion represents a composite of earlier work?5-28
with an attempt at removing y rays going to the
3~ first excited state. When the y, transitions are
isolated a definite broad peak is seen which we
associate with transitions occuring chiefly through

TABLE II. Calculated reduced widths for the lowest
four levels of ’He. Normalized such that y,2=2.0 for the
4S4/9, t +d width,

Reduced widths (MeV)

Channel 5251" %" 421" ¥

2
‘He +n 25 o oe 1.44 e e
D 0.067  +-- 1.33  0.64
t+d %S 0.24
s 2.0 0.58
p 0.48 0.52  0.46
‘D 0.86 0.19 0.25 0.32
3H+(pp)028 0.21
p 0.06 0.08 0.01
SHe +(np)y %S 0.42
D 0.12 cee 0.15 0.02

the $* state at ~20.8 MeV. The lower curve gives
our prediction for 4,/A, as a function of energy.
Due to the interference between the 3* and 3*
states the ratio changes sign at about 20-MeV ex-
citation. This feature is apparently observed in
the experimental angular distribution but at low
energies we do not get good agreement, because
our 3* (16.7-MeV) state has essentially no dipole
strength instead of ~1/300 of the dipole sum.

VIII. CONCLUSION

There are several conclusions we can draw.
(1) For very light nuclei center-of-mass effects
are so large that estimates of channel widths can
only be made after transforming to appropriate
relative and center-of-mass coordinates. Upon
doing this, the simple connection between the
ssp and single-neutron channels etc. disappears.
Internal symmetry becomes the dominant factor.
(2) The largest dipole strength in the low-energy
region is in the 3* and 3* states which also have
large single-particle widths. The peak seen in
*He(d, v)°Li(g.s.) is the result of the interference
of at least two states, since the observed angular
distribution, A,/A,=-0.1+0.03, is not consistent
with the limits obtained from Eq. (9) for a pure
3* state. (These are A,/A,>-0.4, lower limit
entirely 2D, and A,/A,< -0.143, entirely *D.) (3)
We cannot explain the additional relatively narrow
peaks seen by Baker ef al.>?° in the "Li(d, *He)°He
and °Li(°*He, “He)°Li reactions. (4) More generally,
it is not necessary to do continuum calculations
to derive semiquantitative information about nu-

g_fz (90°) ( ub/sr)

— "

ol + bt ———————— + +
17 8 19 20 2 22 23 24 25 26 27 28

Exc. Energy (MeV)
o So . ‘A

g —\ aa “Rof * AR
<0

-5 L

FIG. 4. Energy and angular dependence of deuteron-
triton photocapture cross section. The upper curve com-
pares the calculated 90° cross section to the observed
(do/as ) (90°) for the *He(d,v)’Li(g.s.). The open points
are those of Meyerhof et al. (see Ref. 24), and represent
the most systematic attempt to separate Y, transitions
from the y;. The points around the 3* resonance are se-
lected from Refs. 25—28. The lower curve gives the com-
puted ratio A,/A; and compares it with the measured an-
gular distribution (see Ref. 24).
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clear reactions from nuclear forces in the reso-
nance region of nuclei.
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APPENDIX

To calculate the jj -LS coupling transformation coefficients®® for our basis states |2p-1h), 5. of Eq. (2),
this equation is first rewritten with the isospin coupling suppressed for the moment, and the coupling of
lP with s to form j, and similarly for j, written explicitly. Since the core for He® has orbital angular mo-
mentum zero, we can write sy for j,. Then Eq. (2) becomes

|¢> = Z; ij-l(lpmps pMis ijmj)(lvmvsvms,Ijvmj’)(jpmjjvmjl[jm)(jmsh— mh|JM)(’1)sh-mha; az ah|0> .
m s

(A1)

A basis for the same space of antisymmetric functions with total angular momentum J and projection M

can be written in an L-S representation in the form

TABLE III. Values of 7 for J™=4*,

D -wave entry should be multiplied by (%-)1/ 2,

LS basis states (L stS)

Channel 001} 0104 2103 %1/
‘He +n 2§ —% —%— see —{34-
t+d %S +§) - 43174 /9174
t+d ‘D ol (g1
t+ 1(np) ZS _(%_)1/2(%_)1/4 (%_)1/2(%_)3/4 +(%)1/231/4/27/4
3He +1(nn) ZS +(§_)1/2(_§_)1/4 _(%_)1/2(_3_)3/4 cee _(%)1/231/4/27/4

TABLE IV. Values of 5, , for J"=$. D-wave entries should be multiplied by (%)!/2.

LS basis state (LstS)

3
Channel 0104 2014 2104 210% ldy,
‘He +n D -1 -1 X -1
t+d ZD +(%)3/4 _(%)1/4 +31/4/27/4
t+d s (i
4
t+d °D e cos +1_51(§_)1/4
t +1(np) D —(hrr g +h)2 +(%)1/z31/4/27/2
3He +1(nn) 4D cee +(_§_)1/2(,§_)1/4 _(_31)1/2(_21)3/4 _(%)1/231/4/27/2
TABLE V. Values of 7, , for J"=3". All entries should be multiplied by (%)!/2.
LS basis state L stS)
Channel 2014 2104 2104 U,
‘He+n %D -+ -1 +3
t+d ZD +(.21)3/4 _(.31)1/4 _31/4/27/4
t+d ‘D g
1 2
t+i(np) D _(%)1/2(%)1/4 +(%_)1/2(%)3/4 _(*)1/231/4/27/4

SHe +1(nn) °D +HE)2 (g

_(%)1/2 (8_)1/4 +(§_)1/231/4/27/4
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[x)= Z; Ny~ loml,m{|LM)(s
ms

oS ym L [sm)(sms =my |[SM ) (SM LM, M) (=17 h"™halalay [0) . (A2)

In taking the inner product (X |¢) the six fermion operators contribute

’
ﬁpplévvlﬁhh’ - 6Py/évp th, ’

where p refers to all the quantum numbers of p, etc. The result of taking the m sums for the direct term is

lp L, L]

<X|¢>=J'A]?.,J?n§§z(—1)”s+q‘+sNLs_lej'l Sp Sy S

\jp jv ]

YSh J
| LS s}

I (A3)

When the analogous factors for isospin space are included and the exchange term calculated the result is

(x |¢) =[right-hand side of Eq. (A3)]

X[1=(=DF*=*t], (A4)

where { is the intermediate isospin to which p and v are coupled. N is always 1/V2, since both p and v

are in p orbits. N;; was given earlier in Eq. (2).

We list below in Tables III-V the parameters 7., , that describe the coupling between LS basis states
and the physical channels. Factors of i’ for each single-particle state have been included as well as an i~
for external channels. The two-particle—one-hole states are characterized by L, s, ¢, and S, where s and
¢ are the intermediate spin and isospin of the two particles. The factor (2/5)'/2 that occurs for D-wave
states is, in some sense, a quirk of the oscillator wave function. If one takes the overlap of a cluster
wave function with the shell-model states, the clusters also being in an oscillator state relative to one
another, the numerical values are identical for S and D waves. For this reason the (2/5)!/2 factor was
dropped. The effect of this is to make the sum of the reduced widths for the 3* and 3* states about equal.
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