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The formation of hypernuclei through the photoproduction of kaons is formulated in the frame-
work of a relativistic distorted wave impulse approximation. The basic production operator is
based on diagrammatic techniques and includes low-lying baryon and meson resonances. Relativis-
tic single-particle wave functions obtained by solving the Dirac equation with scalar and timelike
vector potentials are employed to describe the nucleon and hyperon bound states. The nuclear and
hypernuclear structure is described in a pure single-particle single-hole model. Evaluating the ma-
trix elements in momentum space allows straightforward treatment of Fermi motion and naturally
includes nonlocalities arising from the production operator. Different nonrelativistic limits involv-
ing the upper and lower component of the Dirac wave function and a p /M expansion of the opera-
tor are investigated. The final-state interaction of the weakly absorbed kaon is incorporated via an
optical potential. A variety of angular distributions for p-shell nuclei is presented and the sensitivity
of the hypernuclear cross sections to the elementary operator is shown to be important. Relativistic
effects are found to be important along with effects of nonlocalities for low-spin states while high-
spin states with large cross sections are less affected. Kaon distortion for p-shell nuclei only pro-
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vides a slight reduction in cross section for most transitions.

I. INTRODUCTION

The study of hypernuclei is becoming one of the impor-
tant new fields in nuclear physics.!”> This is due to a

number of theoretical and experimental improvements in-

recent years as well as the growing awareness of the im-
portance of quark and meson degrees of freedom in the
nucleus. If we assume the nucleus to be a system of nu-
cleons and mesons, rather than quarks, it is possible to
implant a lambda into a nucleus in any state that is ener-
getically possible, including the lowest s state, since the
lambda is not blocked by the Pauli principle. As the life-
time of the lambda is long enough to form a stable sys-
tem, a whole new regime of nuclear structure studies
from the lightest systems throughout the periodic table is
opening up.

This investigation focuses on the formation of lambda
hypernuclear states through the photoproduction of
charged kaons. With continuous beam electron linacs on
the horizon with sufficient energy and intensity, this reac-
tion is attracting a great deal of attention.®”° Since it
preferentially excites unnatural parity and high-spin
states, it complements the reactions (K~ ,77) and
(w*,K*) which selectively excite natural parity states
and from which -most of the information on hypernuclei
has been extracted until now.!%!!

The (K 7,7 ") reaction has the advantage that the mass
of the incoming K ~ is much larger than the mass of the
outgoing 7, thus allowing the production of the lambda
with low or zero momentum transfer to the residual nu-
cleus. As a consequence, counting rates are high, but low
momentum transfer does limit the spectrum of excited
states mainly to substitutional and low-spin transitions.
Kaon photoproduction shares its spin and momentum
transfer capabilities with the second, purely hadronic, re-
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action (7+,K *) that has been used to produce hypernu-
clei. Due to the large production of rest mass in these
two reactions, the momentum transfer to the residual nu-
cleus becomes sizable and, therefore, these reactions will
project out high momentum components of the nuclear
wave functions. Since high angular momentum form fac-
tors tend to peak at larger Q values, high-spin states are
preferentially excited. However, (y,K ') excites both
spin-flip and non-spin-flip transitions while (z*,K *) pri-
marily leads to non-spin-flip transitions so that these two
reactions are complementary.

An advantage with photoproduction is that both the
photon and the K *. with its mean free path of about 5-7
fm in the nuclear medium, interact rather weakly with
the nucleus so that the process can occur deep in the nu-
clear interior as compared to K ~ and 7~ which are both
strongly absorbed, thereby confining the reaction to the
nuclear periphery. This penetrating property of the pho-
ton and the K, together with a reasonably well under-
stood production mechanism, offer a unique opportunity
to study, in a ‘“clean” way, nuclear and hypernuclear
wave functions and structure effects.

In the current work we consider the 4 (y,K *),B reac-
tion in a relativistic impulse approximation framework.!?
That is, the incoming photon interacts with a bound nu-
cleon (proton) creating a lambda which goes into a bound
state and a K+ which exits the nucleus. This production
process in the nuclear medium is assumed to be given by
the free process p (y,K 7)A which is described by first-
order Feynman diagrams. We use a representation of
this reaction which includes the Born terms in addition
to low-lying nucleon, meson, and hyperon resonances for
which the coupling constants have been fitted to pho-
toproduction data up to 1.4 GeV.!>!* The distortion of
the outgoing kaon is included via a rather weak optical
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potential, which has been derived from the elementary
KN amplitudes. This approach to kaon photoproduction
from nuclei seems reasonable following the success of a
similar treatment of pion photoproduction from p-shell
nuclei,’> and the recent (7*,K*) results from
Brookhaven!! which find evidence of single-particle A or-
bits for a range of nuclei up to Y.

The single-particle bound-state wave functions are tak-
en to be solutions of the time-independent Dirac equation
with real scalar and timelike vector potentials which
represent a local Lorentz covariant interaction of the sin-
gle nucleon or lambda with the remaining (4 —1) nu-
cleons. The Dirac approach, giving credence to relativis-
tic nuclear dynamics, not only provides improved
descriptions of proton-nucleus elastic scattering,'® but is
able to naturally explain the spin-orbit splitting in the nu-
clear shell model.'” Calculations involving Dirac-Hartree
and Dirac-Hartree-Fock methods have been performed!®
and provide nuclear densities in good agreement with
electron scattering data. Since the scalar and vector po-
tentials are of the order of the nucleon mass and the kaon
photoproduction  reaction requires large three-
momentum transfer to the nucleus, the conventional
reduction of the free production operator to an effective
nonrelativistic nuclear operator may omit important
effects.!” Following the work of Tiator and Wright on
pion photoproduction,'® the analysis is carried out in
momentum space, rather than in coordinate space, in or-
der to straightforwardly include all the nonlocalities in
the production operator arising from the propagation of
various baryons and mesons. In other theoretical
work,%”? nonlocal effects have been ignored by using the
frozen nucleon approximation in the production operator
or in more recent work® have been included in an approx-
imate way. Since no data are as yet available for kaon
photoproduction from nuclei, rough estimates of expect-
ed counting rates, neglecting nonlocalities or including
them in an approximate way was certainly justified.
However, previous work on pion photoproduction has

' shown that complete neglect of nonlocalities is not a good
approximation except for special cases, and in some cases
they need to be included quite precisely.

In Sec. IT we discuss our parameters for the Dirac and
Schrodinger equations, and in Sec. IIT we briefly describe
the kaon optical potential. The general formalism for
calculating relativistic matrix elements in momentum
space is presented in Sec. IV. In Sec. V we examine non-
relativistic reductions concerning the nature of the small
and large component of the Dirac wave function and the
reduction of the operator itself. Commonly used plane
wave and local approximations are introduced in Sec. VI.
We apply our formalism to various reactions in the p
shell in Sec. VII and present angular distributions for a
variety of beam energies to document significance of rela-
tivistic effects, nonlocalities and kaon distortion. Finally,
we summarize our findings in Sec. VIIL.

II. DIRAC AND SCHRODINGER BOUND STATE
WAVE FUNCTIONS

To obtain relativistic single-particle wave functions we
solve the time-independent Dirac equation

[p—m—S(r)—y°V(r g (r)=0, (1

where S (r) and V(r) are real scalar and timelike vector
potentials that can be thought of as generated by o and @
exchange in the mean-field approximation.?® The solu-
tion to Eq. (1) can be written as

FadPIXE®,s)

ig,, (P)X* (T,5)

Phlr)= , (2)

where the spin-angle functions y* are given by

XiR,)= 3

mg,m;

Cl(l/Z)jYImI(/l\.)gin/sz (3)

mym

and the angular momentum labels j and / are given in
terms of the Dirac quantum number « by j =|«|—1 and

1= |K+-;—| —1. The label # is the usual quantum number

counting the radial nodes.

Usually nonrelativistic shell model analyses make use
of a harmonic oscillator potential without a spin-orbit
term, and, therefore, the wave functions are only charac-
terized by a range parameter b even though a potential
with a Woods-Saxon shape

h(r)= 1

) 4)
1+exp r—R

where R =ry A'”? and a are the radius and diffuseness
parameters is known to furnish a better description for
high momentum transfer processes. To generate realistic
nonrelativistic wave functions we insert a central and
spin-orbit potential of the following form into the
Schrodinger equation:
V.
©j.gldh 6

m127 rdr'

V(r)=V ,h(r)+

The potentials S (#) and ¥ (r) in the Dirac equation are
also written in terms of the Woods-Saxon shape A (r) with
strengths S, and ¥V, which are of order 400 MeV, but of
opposite sign (Sy <0, ¥y >0). The depths of the relativis-
tic potentials Sy and ¥V, as well as the central and spin-
orbit potentials V., and V, were adjusted to fit s- and
p-shell binding energies and spin-orbit splittings, while
the geometry parameters were chosen for each case to
yield the correct rms radius. Note that the geometry pa-
rameters differ for the Schrédinger and Dirac potentials,
but we did constrain the scalar and vector potential to
have the same radius and diffuseness parameters. As an
example, Table I gives the parameters for the 4 =16 sys-

TABLE I. Potential depths (MeV) and geometry parameters
(fm) for the 4 =16 system.

Dirac
Proton So=—395 V=295 ro=0.9 a=0.7
Lambda So=—116 V,=84 ro=1.1 a=0.7
Schrédinger
Proton Veen =60 V=16 ro=1.2 a=0.6
Lambda Veen =28 V=1 ro=1.2 a=0.6
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TABLE II. Single-particle s- and p-shell separation energies
for the lambda and the proton in }*N and '°0 (in MeV).

State Dirac Schrédinger Experiment
Proton 0sy .2 —43.6 —33.2 —44
0pi,n —17.8 —18.4 —184
0p12 —12.1 —12.9 —12.1
Lambda Osy —13.2 —13.0 —13
0pi,n —2.5 —3.1 —1
0p,,2 —2.0 —2.8 —1

tem, while Table II compares the experimental and
theoretical separation energies for '°0 and \*N. The re-
sulting scalar and vector potentials are similar to what
one obtains with a Hartree calculation using the 0 —w
model, but lack the slight bump near the origin.

In the relativistic shell model it is mostly the combina-
tion S(r)+ ¥V (r) that controls the location of the single-
particle energy levels and, thus, behaves like a central
term, whereas S(r)— ¥V (r) roughly determines the rela-
tive size of the spin-oribt splitting. This will be examined
further in Sec. V where these combinations of S(r) and
V (r) are shown to be the leading terms in a nonrelativis-
tic reduction of the Dirac equation.

Since we evaluate our matrix elements in momentum
space we proceed to Fourier transform the Dirac wave
functions using standard techniques

__ 1 o
\P’;(p)—mfd3re PTYH(r)
Fp)xk(®,s)

=L (-
oy —8.8:(P)X* (P>s)

where we have used (—i)'*!'=(—i)'S, with S,=«/l«|,
I(k)=1(—«k) and we have dropped the radial quantum
number n. The “radial” components in momentum space
are given by

, (6)
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FIG. 1. “Radial” momentum space wave function of a p;,,
proton showing the upper (solid curve) and lower (dashed curve)
of the Dirac shell model spinor, and the equivalent Schrédinger
wave function (dash-dotted curve).

fdp)= [ rrdr jpnf o
gcp)= [ “r2dr jiiprg.(r) , (7)

where, for simplicity, we denote the wave functions with
f and g in coordinate as well as in momentum space.
Figure 1 shows the p,;,, proton wave functions in
momentum space for %0. Note that for large momenta,
the “small” and ‘“large” relativistic components become
comparable.

III. THE KAON OPTICAL POTENTIAL

In sharp contrast to the situation for pions, the average
interactions of K ¥ and K ~ with nucleons, and hence also
with nuclei, are very different in character,’ particularly
in the low- and intermediate-energy region (p,, <1
GeV/c). This difference is due to strangeness, a con-
served quantum number for strong interactions which is
+1forK* and —1for K ~.

The Kt N interaction is rather weak on the hadronic
scale, corresponding to a mean free path in nuclear
matter of roughly 5-7 fm, which is a typical nuclear size.
This implies that low-energy K *’s are capable of
penetrating the nuclear interior, unlike the K~ and medi-
um energy pions. Because of strangeness conservation,
Y*’s are not available as resonant or bound states of the
Kt N system, nor are there any inelastic channels with
the obvious exception of (K *,K° charge exchange on
neutrons. Consequently, the low-energy K *N interac-
tion can be understood by a rather simple background
scattering, resulting in a smooth energy dependence of
the cross sections. The large medium effects due to an-
nihilation (#NN—NN) and A resonance propagation,
which enliven the w-nucleus system, are totally absent
from the K *-nucleus interaction.

In order to reduce the K *-nucleus many-body problem
to an equivalent potential scattering problem, an optical
potential is constructed which has a less complicated
structure than the pion nucleus optical potential.?! For
the interpretation of K * nuclear data, reliable analyses of
the K *N amplitudes are essential; they have been per-
formed extensively, involving phase-shift analyses,??
meson exchange models, and dispersion relations,’ draw-
ing from a large amount of experimental data.

Elastic scattering phase shifts, total cross sections, and
distorted wave functions for reaction calculations are ob-
tained by solving the Klein-Gordon equation

[—V2+u?—(E —V,)2]¥(r)=—2EV(r)¥(1) , (8)

where p is the Kt reduced mass, E is the total energy,
and V, is the Coulomb potential. Since phase-shift analy-
ses indicate that s- and p-waves are most important in the
energy regime p,,, <1 GeV/c, ¥V (r) can be approximated
by a potential of the Kisslinger type,

—2EV (r)=byp(r)—b,Vp(r)V 9

to first order in the nuclear densities.
The parameters are related to the average amplitude by
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bo=—T (kfL ) »
P]ab

_4r
plabk2

where p,,, and k are the laboratory and c.m. K 7 momen-
ta, respectively, and

favz%(fK+p+fK+")7 (11)

To include possible loss of kaon flux due to inelastic dis-
tortion such as multiple pion production, kaon plus delta
excitation, etc., these parameters acquire imaginary
parts; therefore, Imb, and Imb, represent the annihila-
tion of s- and p-wave kaons in the nuclear medium. We
note that we have neglected an additional charge ex-
change contribution b..[p,(r)—p,(r)] to Eq. (9),> where
b is given by

21

Piav

(10)

b= (kf oy Dem. »

bee=— k(fL30 (12)

n—K% )c.m.

and probes isospin differences in the target nucleus. The
|

do — 1 qcm m;m; ch
dQg™  16m kT W2 22J;+1) 5

where we average over the initial spin projection M, as
well as the photon polarization A and sum over the final
spin projection M,. The four-momenta of the photon
and kaon are denoted by (E,,k) and (Eg,q); the total
spins and isospins are J;,J, and T;,T,, respectively,
along with their projections M;, M, and N;,N - The usu-
al correction factor compensating for the lack of transla-
tional invariance of the shell model is given by
F,_,=exp[bXk—q)?>/2 4], b being the harmonic oscilla-
tor parameter for the nucleus under study and A4 the nu-
clear mass number. The masses of the initial- and final-
state nuclei are m; and m,, and W is the total energy in
the cm system. In Fig. 3 the kinematic situation is
presented in the laboratory frame, where the momentum
transfer to the final-state nucleus is defined to be
Q=k—q.

The nuclear kaon production amplitude is taken to be
a one-body operator in the baryon space, partly because
it is the conventional starting point for calculations in-
voking the impulse approximation and because one hopes
that two-step processes and meson exchange currents are
small and can be incorporated in the future.

The basic matrix element is then given by

= 3 (J,M,,T,N,|CL.C,l7;M,,T,N,)
a,a

x{a';K " |tlasy ) , (14)
where C Z and C,, can be written as

C,=0(e,—€p)a,+0ez—€,)SbT | (15)

a

parameters by and b, are displayed in Figs. 2(a) and 2(b)
as a function of the K+ laboratory momentum p,,,. We
employ the phase shifts of Martin for the K * N system,?
since they have been more successful in reproducing
K T-nucleus elastic scattering data than other parametriz-
ations. The strength b, is seen to be weakly energy
dependent, while there is more variation for b,, the pa-
rameter of the p-wave potential.

Since we perform our calculations in momentum space
we need the Fourier transformation of the distorted kaon
wave function. We do not repeat this computation here
but refer to Ref. 15 which has formally derived the trans-
formation of the distorted meson wave function into
momentum space.

IV. MATRIX ELEMENTS IN THE RELATIVISTIC
IMPULSE APPROXIMATION

Following the conventions of Bjorken and Drell,? the
differential Cross section for the reaction
y+ A—K*+,B in the center of momentum (cm) frame
can be written as

> |(Jfo,Tfo;K+|T|J,-M,~,T,-N,»;’)/)|2 ’ (13)
A

1.20 T T T T
(a)

.00 Im b 1

0.60 J

0.20f 1

bo(fm)

-o0.20f 1

-0.60F 4

.00} b

0.80 1.00 1.20 1.40 1.60 1.80
Prias (Gev/c )

FIG. 2. The complex optical potential parameters by(a) and
b,(b) as a function of the kaon laboratory momentum.
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FIG. 3. Kinematics of 4 (y,K *),B in the laboratory frame.

where a,, is the particle annihilation operator for energies
€, above the Fermi energy € and b_, is the hole
creation operator for energies below € (excluding the
Dirac sea). Here a denotes a set of quantum numbers for
a single particle a={am;tm,} with a={n«}.
]

) T .
(JMTpN|CoColJ;M;T,N; )

= (=) AR m M AT NG 0
J,
7N
X|-M, M; M||-N;, N, N||-m' m

where 7, =0 for the A.

Nonrelativistic RDME can either be obtained through
shell model calculations, such as those of Cohen and
Kurath for nuclei®® and Ref. 26 for hypernuclei, or by us-
ing phenomenological methods constraining the nuclear
matrix elements by experimental information.?’ Since
nuclear structure calculations employing a Dirac single-
particle basis are still in their beginning stages?® we have
adopted an extreme single-particle single-hole model,
where a nucleon in a pure state a is transformed into a
hyperon in a pure orbital a’. For a closed shell target nu-
cleus in an extreme particle-hole basis, the RDME simply
reduce to

W, r(a',a) =88,y - (18)

All the dynamics of the photoproduction process is
contained in the single-particle matrix element
(a’;K T |t|la;y ) which in general involves a nonlocal and
fully relativistic operator. In momentum space this ma-
trix element has the form

('K *tlasy )= [d’p dq'To(p' )9 ™ (q,q)t, ulp)
(19)
where p'=p+k—gq, $,=v"7, and ¥, is a single-
particle solution of the Dirac equation given by Eq. (6).
The wave function with the appropriate boundary condi-

tions for the outgoing kaon of three-momentum q distort-
ed by its interaction with the residual hypernucleus

S,=(—1)/"™(—1)""™¢ is the phase necessary to main-
tain the transformation properties of the irreducible ten-
SOrSs.

In Eq. (14) the many-body nuclear structure aspects are
already separated from the photoproduction mechanism
but in principle the sum extends over a complete set of
single-particle states @ and a’. The nuclear structure in-
formation involved in one-body processes is usually con-
tained in the double-reduced density matrix elements
(RDME), defined by**

\PJ;T(a',a)=.'I\_lT\ _1<ny TﬂI[CL@C’a]“Ji, Tj) ’
(16)

where ¥ =v2x +1, C,=S,C_,, and J and T are the to-
tal spin and isospin transferred to the nucleus in the tran-
sition. Using the definition of Eq. (16), we evaluate the
nuclear structure matrix element to obtain

t, + T
—m, m, N ¥, .r(a',a), 17

f

through an optical potential is ¢% )(q’,q) and obeys the
relation?’

¢x T, a)=¢%"(q’,q) .

The representation of the matrix element in Eq. (19) is
valid for any photoproduction amplitude based on di-
agrammatic techniques. We use a frame-independent
operator that can be written as

4
t= A(s,t)M; , (20)

i=1

where the gauge and Lorentz invariant matrices are given
in terms of Dirac matrices and momentum four-vectors
by

M, =—vs¥£p,,

M,=2ys(ep,p,'Pr—€DPAP, D) »

(21)
M3 ZYS(tp'y‘Pp _pye'pp) ’

M,=vs(€p, pPr—F,€Pp),

with €=(0,€) denoting the photon’s polarization four-
vector. The spin- and polarization-independent ampli-
tudes A4; which are functions of the Mandelstam vari-
ables and the coupling constants are given in Ref. 14
apart from the terms arising from the K1(1280) resonance
in the ¢ channel given by
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Af'=o0,
K1
AK1= 1 GT ’
2t =M} +iMg Ty MA+M,
1 K1 MA—M
Ak = GEl+Ggk AL
3t —MZ, +iMg Tk, r M,+M,
K1 1 G _GK MA M
AN = - — st
b —ME +iMg Ty, T M,+M,

I
YOtz t3

0"6(G3_G1)+G40"k
-G,
—k——a €eok—G,—

with

G,=kA,, G,=2A4,(ep'k-p—epk-p’),

where in the laboratory frame we have made the usual gauge choice of €,=

We obtain for the matrix element

(a',K T|t]a, y)——z lfd pd3q’¢K

with the momentum overlap distributions defined as

’P) f (p )fx ’ fK’gK ’

(25)

P3=8¢frs P4=88k -

Each of the four operators ¢, can be decomposed into
spin-0 and spin-1 transition amplitudes

t,=L,+ic-K,= 3 i'(—1)"

s,m

0% (K, (26)

s

with

4
(oK Htlagy ) =2
T LS,JMn=1

Gy=As;k-p+ A4k-p’,

2 2 lS+1—I+1 _1)S+l +j 14]] ESJ

It is important not to confuse these four-momenta,
which are determined by conserving energy and momen-
tum for the elementary process y+p—K T+ A in the
nucleon’s laboratory frame, with the momenta appearing
in the hypernuclear formation cross section, which are
evaluated in the many-body laboratory frame. Combin-
ing the transition amplitude ¢ with y, from the adjoint
wave function yields the following matrix form of the
operator:

G,
—k-a-eo-k+G2—kG4

G,k 0-€(G,+G;)+Gok

(22)
G,= A;ept+Ad,ep, (23)
0,e-k=0.
(g,9 )(Pl)(”Tth”_stKX”th)(“ —p3S, X# B3 XE S S e XE t4X” )
(24)

a’=1, (K9)=L,

where the S =1 part contains the important Kroll-
Rudermann term o-€. To simplify the angular momen-
tum algebra, we also employ the relation

TP owmsp)=
|P| X«\P

—x* . (P) . 27)

Finally, by evaluating the single-particle matrix ele-
ment in the LS coupling scheme where we couple the or-
bital angular momenta to L, the spins to S, and L and .S
to the total transition spin J, we obtain

L

A ?j- LSJ

— o M 1 3 ] % (28)
L S J
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where the integrals are given by
159= [ d°p d°q'¢% " (4,9 )p,(pop")
XY PIXY,(PIFFXKST, - (29)

The tensor operators as well as the momentum distribu-
tions determine the magnitude and importance of the
various matrix elements for the specific nuclear transi-
tion. While Refs. 30 and 31 provide compact analytic ex-
pressions for these operators for J =0, 1, 2, and 3, in gen-
eral we use the definition of the tensor product to obtain

(LY B)XY,(B XK1y,
= 3 ('lm'm|LM; ) LSM; Mg|JM)
M";_’,'XI'S
XY (B BIK - (30)
The S =0 and 1 transition amplitudes L, and K, can be
written as
L,=0,

K,=—[(G;—G,)e+G k],

L= (exi) !
Z_Ppe k >

A G,
K2="“7{P(Gz_kG4)+—k‘[€(p‘k)—k(p-e)]} ,
L,= Se. "( ><k)G1 31

3= p,P € P (31
S, G, ~

K;= X [P'(Gz+kG4)+‘k—[k(p-e)—-e(p'~k)]} ,
S,eS

L,= 0’ +G;)p'-(eXp)+G,,-(kXp)],
S.S,

K,= o {(G;+G;)[e(p’-p)—p(p'-€)—p'(ep)]

+G,[k(p'-p)—p(p’-k)—p'(p-k)]} ,

where the G; are given in Eq. (23) in terms of the elemen-
tary amplitudes 4;. Combining the nuclear structure
matrix elements [Eq. (17)] with the single-particle matrix
elements [Eq. (28)], we can carry out the spin projection
summations to obtain

S KIMgTeNgGK | TIT M TNy ) |?
M, M\

=3 |Fyl*,
J,M,A
with
rog
Fiy= 3 (=DS7L8{1 L+ j|IEY, (32)
L LS J

where the sum over the complete set of states a’ and a
has been eliminated by the delta function in Eq. (18).

V. NONRELATIVISTIC REDUCTIONS

In an attempt to compare the relativistic approach
with conventional calculations which employ the
Schrodinger equation to describe single-particle motion
in the nucleus, we require the matrix elements and, in
particular, the operator that is given in terms of Dirac
matrices to undergo a nonrelativistic reduction to Pauli
spin space. However, expansion in powers of p /M and
omission of higher-order terms may not always give us a
unique prescription,3>33 since operators derived from ful-
ly relativistic diagrammatic principles consist of propaga-
tors, vertex functions, and Dirac spinors, and it is not
clear at what stage of the derivation the approximation
should be performed. The effects from different nonrela-
tivistic reductions are small as long as p <<M, which is
not the case for kaon photoproduction. As discussed ex-
tensively in the literature,'’~!° the first step in a nonrela-
tivistic reduction is the replacement of E*+M* [where
E*=E —V(r) and M*=M +S(r)] by their free values
E + M, which leads to

¢ ¢
= —> = . 33
=|_op_, op ,| 4P (33)
E*+M* E+M

The amplitude can now be evaluated between the free spi-

nors #(p’') and u (p), emerging as an operator in Pauli
space. In the nuclear interior '
E+M
bound __ free 34
Ex E+M—V,+S, (34)

and most relativistic models find ¥V, ~300 MeV and
Sy~ —400 MeV for the nucleon,”® and ¥V, ~110 MeV
and S, ~—150 MeV for the lambda.’* Therefore, the
small component is enhanced by about 1.7 for the nu-
cleon but only 1.1 for the lambda as a direct consequence
of these large nuclear potentials.

The upper component of the Dirac spinor is usually
identified with a nonrelativistic wave function. However,
a reduction of the Dirac equation to an equivalent
Schrédinger equation® introduces not only the standard
state-dependent central and spin-orbit potentials but also
an energy-dependent term containing derivatives. This
shows that a Dirac equation with local, state-independent
potentials implicitly contains nonlocalities and energy
dependencies not present in the conventional nonrela-
tivistic wave equation.

To obtain a nonrelativistic amplitude that is to be used
with Schrédinger wave functions, the relativistic operator
of Eq. (20) needs to be evaluated between free Dirac spi-
nors in order to reduce it to Pauli spin space. It has been
shown previously!#2® that the static o -€ operator should
not be used in a nuclear calculation, while dropping
terms of order p2/M? coming from the spinors provides
a good approximation to the full operator. The integral
IEY of Eq. (29) in an entirely nonrelativistic calculation
are then obtained by setting n =1 where

PP)= (P W (p)

is the density of some nonrelativistic wave functions and
the nonrelativistic operator K3, can be written in terms
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of the G, defined in Eq. (26)

Lo=90 1L exk)— L pr(exk)
T2k | M, M,
=—¢€|G, _P_ k-p’
K, =—¢ G+2k M, M,
+ €p _ €p
k 2k M, M, —Ga
G,—kG, G,+kG,
A e A R
p p

where we have used E, =M, and E, ~M,, and discarded
contributions coming from products of the small com-
ponents, since they are of order p2/M?2. Note, that previ-
ous nonrelativistic calculations have only included the
o -€ part of the operator K, and L, which is responsi-

ble for non-spin-flip transitions was neglected entirely.

VI. PLANE WAVE AND LOCAL APPROXIMATIONS

It is useful to discuss some approximations to the
single-particle matrix element [Eq. (28) and (29)] that are
commonly made. Using the free kaon solution, which is
a delta function in momentum space
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we arrive at the nonlocal relativistic plane wave impulse
approximation (RPWIA) result

1= [ d% p, (0", L YH(B) X Y, (BIIEXK STy
(37

with the densities p, given by Eq. (25) and the operators
K5 given by Eq. (31).

There are several possibilities in going from a full non-
local to a local computation. In coordinate space nonlo-
calities can be partially included by replacing p— —iV,,
acting on the bound-state wave function, and q— —iV,,
acting on the kaon wave function; however, this method
ignores the momentum dependence of the propagators.
We reduce K to local operators by fixing the initial nu-
cleon momentum p to a certain constant value, which
may be either zero (frozen nucleon approximation) or
some average Fermi momentum. In the relativistic case,
however, caution is required since the operators K5 in
Eq. (31) contain parts of the single-particle wave function
via the relation (27). Therefore, the local operators K
will have to be redefined from the original amplitudes ¢,
in Eq. (22).

Using the partial wave expansion for the kaon solution
as well as for the photon, we arrive at the local relativis-
tic distorted wave impulse approximation (RDWIA) re-

#% (q,q')=6(q'—q), (36)  sult
i J
ool 1oL L) (i1, )| 2 I
FJ: N +7,+IK Ik TL+SA Y n n .
MWL%EII (— BT o o ollo o0 ol &
Iy lk L S J
X[[Yly(ﬁ)x Y, (ﬁ)]fof]ﬂ,fr2drpn(r)U,K,q(r)jly(kr) , (38)
where
1,0,=1, I,l5=0, L,,1,=1, 15,1,=T.
U Ie» 4(7) is the kaon radial wave function and the p,(r) are now local densities in coordinate space,
N=fe(Nfir), pr=Ffe8 P3=8fr P4=88& - (39)
The operators K 5 are now local and can be written as
L,=L,=0, L,=G,—kG,, L,=G,+kG,,
(40)
_ G, _
K1=K1, K3 Kz—_"(GXk) K4=_~[(G1+G3 )6+G4k] .

If kaon distortions are neglected, the plane waves from the photon and the kaon can be combined, simplifying the ex-

pression for the local RPWIA

N 4 I' l, L b

Fy=V4nj]3 S (=DSTEEST 0, 10 o ol 1k
LS n=1

L

[T EE NI

%]

Y]

J
J (LYLQ)XEK 51y [ ridrp,(njL(Qr),
J

(41)
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where Q=k —q is the momentum transfer to the nucleus.
The nonrelativistic expressions can be obtained from the
relativistic formulas (37), (38), and (41) by taking only the
term for n =1, using nonrelativistic wave functions for
the density p; and employing the nonrelativistic operator
K3 of Eq. (35) throughout.

VII. RESULTS AND DISCUSSION

Rather than examining a large number of specific kaon
production reactions from a number of nuclei, we investi-
gate the effects arising from different elementary operator
descriptions, kaon distortions, nonlocal contributions
from the operator and from Fermi motion, and the use of
relativistic baryon wave functions for the bound single-
particle orbits for the p-shell nucleus '°0. The initial
state is doubly closed and would only be modified by 2p-
2h admixtures from the sd shell and we can restrict the
configuration space in the final state to a closed 1s-shell
core and an open lp shell for the nucleons, while the
lambda goes into an s or p orbit. We have neglected the
AN residual interaction including coupling to the contin-
uum as considered by Rosenthal et al.® This clearly may
lead to some energy shifts in lambda states, although
strongly bound lambda states in p-shell nuclei and high-
spin transitions are relatively unaffected.® It is very un-
likely that the resolution of the early experiments will be
able to separate energy levels split by this interaction. In
any case, our calculation can handle more complicated
factor ¥; r(a’,a) given in Eq. (16) should this prove to be
necessary.

For the purposes of our current investigations we de-
scribe 1°N as a pure p, ,, proton hole coupled to an s- or
p-shell lambda to form the various states in °N. The
ground-state configurations arise from a p, , proton hole
and a s, ,, lambda coupling to a 0~ and a 1~ state. This
degeneracy would most likely be removed in a realistic
calculation that includes the AN residual interaction al-
though the splitting is unlikely to be very large, so as not-
ed above first generation experiments most likely cannot
resolve the two states. At higher energies around 11 and
17 MeV one encounters substitutional transitions that
take place only within the 1p shell. The splitting between
the cluster of states belonging to the (pi,5,p3,,) and
(p l_/lz,pl »2) configurations will provide important infor-
mation about the lambda spin-orbit interaction if it is
larger than the splittings induced by the AN residual in-
teractions.

The remaining states, which involve an s-shell proton
hole are at much higher energies (E, =~20-30 MeV) and
may be difficult to resolve since they are above the quasi-
free production threshold.

The reaction (y,K ¥) from nuclei unlike the (w*,K 1)
reaction can strongly excite S =1 transitions. In terms of
the spin-flip and non-spin-flip operators defined in Eq.
(26), the differential cross section for the elementary pro-
cess ¥ +p—K T+ A can be written as

mM, M
do__ 1 9 A s (LP+KP), @2
dog” Py

3272 kmW?

which shows the well-known fact that the S =J =0 and
S =J =1 terms contribute equally to the cross section.
This is not the case for kaon production from nuclei
where selection rules can eliminate the S=0 or S=1
contributions in certain transitions. For example, in
several of the high-spin and unnatural parity transitions
leading to the states in }°N such as (p3/5,5,,,)27 or the
(p3/,p3,2)3" state only the spin-flip operator can con-
tribute. Low-spin transitions proceed mainly through the
S =0 part of the operator and, therefore, can test the
non-spin-flip piece of the amplitude although most of
these states have small cross sections. The only pure
S =0 transition goes to the (s} 5,5,,,)0" state which is at
rather high excitation energy and is probably not observ-
able.

The momentum transfer for kaon photoproduction
from nuclei near threshold (which is 684 MeV for %0
and less for heavier nuclei) is above 500 MeV/c and pro-
duces very small cross sections. For zero-degree kaons,
the momentum transfer decreases monotonically with in-
creasing photon energy while for kaons a few degrees
away from zero degrees the momentum transfer reaches a
minimum and then increases. For kaons within a for-
ward cone of about 15° a reasonable compromise is to
consider E[,, =1.5-2.0 GeV with a Q value at 0° of
250-300 MeV/c. Figure 4 shows the angular distribu-
tion of kaons populating the (pj5,s,,,)1  state at
El,=0.84, 1.0, 1.5, and 2.0 GeV calculated in the rela-
tivistic impulse approximation. For higher photon ener-
gies, the cross sections are larger at very small kaon an-
gles, but fall off much faster at larger angles. At 840
MeV, an energy the Mainz Microton project will have
available, the cross section ranges from 5-30 nb/sr for
kaon angles up to 20°.

In Fig. 5 we show the energy dependence of the total
cross section and differential cross section at 0° for the
1, and 3% transitions. Contrary to the increasing for-
ward cross section, the total cross section remains about
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FIG. 4. ‘Angular distributions for the (p5,5,,,)1"
state at different photon energies.
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FIG. 5. Total (solid curve) and differential (dashed curve)
cross sections at O, =0° for the 1, and the 3" transition as a
function of the photon laboratory energy.

constant from 1.2-1.8 GeV and slowly decreases at
higher energies. This suggests that for experiments em-
ploying a large solid angle detector energies considerably
lower than the previously recommended 1.5-2.0 GeV are
favorable. :

Before addressing the significance of relativistic wave
functions and kaon distortion, we examine the sensitivity
of the kaon photoproduction from nuclei to different ele-
mentary amplitudes which all describe the free process
p(y,K)A reasonably well.

In all the models considered below, pseudoscalar (PS)
coupling was used for the KAN vertex. In Ref. 36, we
showed that using the Born terms only in pseudovector
(PV) coupling agreement with data can only be obtained
by refitting the coupling constants resulting in a change
of their values by 20-30 % in contrast to pion photopro-
duction where both coupling models give identical pre-
dictions for the basic process.’! If the operator for
p(7,K T)A is not readjusted, PV calculations overpredict
the data by a factor of 2-3, which leads to large effects
when the amplitude is used in nuclear calculations.?’
This surprising result may be due to the much larger
kaon mass. However, if one uses effective operators that
were obtained phenomenologically by a fit to the data,
the difference between the PS and PV results are small.
Even though PV coupling is known to, in general, yield
more moderate relativistic effects in the nucleus, in this
process both operators have the same structure in Dirac
space as given in Eq. (21). They only differ by a constant
term in the amplitude 4, which is compensated by small-
er coupling constants in the case of PV theory. More dis-
cussion on this problem can be found in Refs. 36 and 37.
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We show results using the coupling constants of
Thom3® with the Born terms only (which include K * and
3 exchange terms), the Adelseck, Bennhold, and Wright
(ABW) II coupling constants'* and resonances, which are
a fit to photoproduction data with the Born terms plus
two s-channel spin-J resonances, the new Adelseck and
Wright (AW) III results!® which include the kaon reso-
nance K1(1280) in the ¢ channel and an additional u-
channel resonance term, and the AW IV results!® which
fit both photoproduction and electroproduction data.
The electroproduction data from the proton determines
the primary coupling constant gg, » rather well through
a very consistent data set as compared to the photopro-
duction data set and confirms former determinations of
the kaon radius.!* The value of the primary constant
gx an determined by the electroproduction fit is in general
agreement with values determined by hadronic processes,
and the inclusion of the K1(1280) ¢ channel resonance in
the photoproduction fit increases the value determined
from photoproduction analyses to a similar value. These
results resolve a long-standing concern that gg,y deter-
mined from electromagnetic interactions was consider-
ably smaller than the value extracted from hadronic reac-
tions or predicted by quark models. Using a different
method, Tanabe er al.’® can also recover the hadronic
value for g,y by including K * A final-state correlations
in the free process through a conventional absorptive fac-
tor in each partial wave. This method can only be ap-
plied in the kaon-lambda cm frame and, thus, the calcula-
tional framework of evaluating momentum space matrix
elements with operators in an arbitrary frame is lost. In
Table III we give the four sets of coupling constants un-
der investigation in this paper.

Figure 6 illustrates the sensitivity of hypernuclear for-
mation to different elementary operators for the 37 and
0, . transitions. The cross sections for the 3% transition
at very forward angles are roughly similar, except that
the magnitude varies by almost a factor of 2 and the
shape from the AW IV amplitude is quite different. Fer-
mi motion effects are small for 0° kaons and, therefore,
the hypernuclear cross section is roughly proportional to
the elementary cross section provided the o-€ term is
dominant as in the 3% transition. At larger kaon angles
the curves fall off differently indicating an increased sen-
sitivity to the details of the operators. The predictions of
the different amplitudes differ even more dramatically
from each other in the case of the O~ transition. Here
the amplitude with the largest value for gg,y (AW III)
predicts the highest counting rates, while ABW II with
the smallest K AN-coupling constant yields the lowest
cross section. On the other hand, the shapes and the po-

TABLE III. Coupling constants for the reaction p (y,K *)A°.

Set gA Gs Gy Gr Gp' Gy' GNx G‘Vz Gy Ref
e = = — _ — == — .
Vi Vi 4 41 4 47 V4 V4 Vi ©
Thom 2.57 1.52 0.105 0.064 0 0 0 0 0 38
ABW 11 1.03 —0.807 0.220 —0.048 0 0 1.47 0.111 0 14
AW III 4.30 3.60 0.124 —0.338 0.269 0.829 —0.907 0.103 3.35 13
AW 1V 3.15 3.28 0.027 —0.188 0.132 0.063 —1.11 0.101 0.698 13
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FIG. 6. Angular distributions for the 0, and 3" state with
the coupling constants of Thom (— — —), ABW II (—-—.—.),
AWIII (—-—-),and AW IV ( ) of Table IV.

sitions of the minima are quite different for the four
curves, and clearly cannot be simulated by just rescaling
the dominant coupling. We found the behavior shown in
Fig. 6 in a number of other transitions; namely
differences of almost a factor of 2 between different
operators for high-spin states with large cross sections
and very large differences in magnitude and shape for the
lower spin states. This situation clearly calls for new ex-
perimental efforts to measure the elementary production
process more precisely in order to unambiguously deter-
mine the elementary amplitude. If not otherwise men-
tioned, we will use AW IV in this paper.

The inclusion of kaon distortion in a momentum space
calculation requires the numerical evaluation of the six-
dimensional integral given in Eq. (29). In investigating
convergence, we varied the number of integration points
over a wide range and found that precision of 2% was ob-
tainable with about 200000 integration points. This
comparatively small number of integration points (pion
photoproduction at energies from threshold up to the del-
ta region from p-shell nuclei requires approximately
300000 integration points for the same integrals!®) was
obtainable since the phase space for the rescattering K
(the variable q’) can be restricted to a small cone about
the asymptotic momentum q since kaon rescattering at

backward angles gives only negligible contributions. This-

compensated for the fact that for photons around 1.5
GeV, the K * is highly energetic (T'*~700 MeV) and re-
quires about 25 partial waves to describe the outgoing
kaon sufficiently accurately.

As expected from the discussion in Sec. III, the effects
of kaon distortion are small for p-shell nuclei. In Fig. 7
we compare the full nonlocal distorted wave impulse ap-
proximation (DWIA) calculation with nonlocal plane
wave impulse approximation (PWIA) and find differences
of the order 20—-30 % for a number of hypernuclear tran-
sitions. The high-spin states are uniformly scaled down,
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FIG. 7. Comparison of nonlocal DWIA (solid curves) with
nonlocal PWIA (dashed curves) calculations for various transi-

tions to \°N.

while for the lower spin states kaon distortion can slight-
ly modify the shape of the curves. We show only nonre-
lativistic results in Fig. 7, since we find that kaon distor-
tion affects the relativistic calculations in the same way.
Note that we have not included the Coulomb distortion
of the K in our nonlocal DWIA calculations, but since
our calculations are far away from threshold this neglect
of Coulomb distortion is of minor importance for p-shell
nuclei. The size of our distortion effects in p-shell nuclei
is comparable to that quoted by Rosenthal et al.?

While the small effects of K distortion in p-shell nu-
clei comes as no_surprise, this situation will clearly
change when one proceeds to heavier nuclei. The reac-
tion 208Pb(')/,K“L)f\OBTI has been mentioned as a useful
probe of possible modification of hadronic properties in
nuclear matter. One might envision testing the
modification of electromagnetic currents by measuring
the magnetic moment of a deeply bound hyperon via
209Bi(y,K *)2Pb (Ref. 40) in order to compare it with
that of the free lambda. Studying the nonmesonic decay
channel NA— NN dominant for heavy nuclei may reveal
information about the weak interaction in a situation
close to nuclear matter. As shown in Fig. 8, however,
K7 distortion effects are large for the 4 =208 system,
reducing cross sections by a factor of 3 or more in a local
calculation. As pointed out in Ref. 8, configuration mix-
ing should be much more important in a heavy system
and may result in additional reductions. We do not see
the need for an experiment on the 4 =208 system, but
suggest that targets around 4 =40 should suffice to study
the properties of a lambda bound in the 1s, ,, shell. Fig-
ure 8 shows that kaon distortion for the 4 =40 system
only leads to a reduction of about a factor 2 in cross sec-
tion. A possible alternative reaction to investigate
modification of the lambda moment is 45Sc(‘)/,K +)‘,‘\SCa.
Note that all of our calculations outside the p shell are lo-
cal since we have not yet prepared our code for higher
configurations but plan to do so in the future.

To assess the significance of relativistic effects, we com-
pare calculations using Dirac wave functions and a full
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FIG. 8. Comparison of local DWIA (solid curves) with
PWIA (dashed curves) calculations for the reactions
“Ca(y,K XK (4,,) and 2®Pb(y,K *)**T1 (6, ).

relativistic production operator with computations per-
formed in a nonrelativistic framework as outlined in Sec.
V; that is, we use the free relation between the upper and
lower components, identify the upper component with a
conventional Schrodinger-type solution, and employ a
p?/m? reduction of the operator. Using the Dirac equa-
tion in nuclear reactions has proved most successful in
predicting spin observables of proton-nucleus scattering,
while the effects in photonuclear and electronuclear reac-
tions have been less pronounced. We have not modified
the propagators contained in the elementary operator in-
side the nucleus. These medium modifications of the
basic amplitude go beyond the impulse approximation
and are. outside the scope of this work. Such
modifications might bring about large effects as suggested
in Ref. 28. However, a proper inclusion of medium
modifications is a lengthy computation.

Figure 9 compares the relativistic and nonrelativistic
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FIG. 9. Angular distributions for the 0~ and 1~ ground state
comparing the relativistic (solid curve) and nonrelativistic
(dashed curve) calculation.

computations for the 1~ and O~ ground state. While for
very forward angles the relativistic calculation is about
20% larger than the nonrelativistic one, the differences
are more pronounced at larger angles. Dramatic
differences can be observed for the 0~ state. Not only is
the relativistic cross section larger by an order of magni-
tude, but the position of the minimum is shifted consider-
ably. Even though the 1~ and O~ states may not be
resolvable energetically, the angular distributions based
on a relativistic and nonrelativistic approach might be
distinguishable at larger kaon angles since one would
measure the incoherent sum of the 0~ and 1~ cross sec-
tions. In Fig. 10 we show the differences between relativ-
istic and nonrelativistic calculations for a number of ex-
cited states with the configuration (p;,},p;,,) allowing
transitions with J=0%, 11, 2%, and 3™ which are all de-
generate in our model. Again, the 37 transition with the
largest cross section is only affected at larger kaon angles
while the low-spin states experience greater sensitivity.
We found this behavior for a number of other transitions
as well. These results can be understood by the fact that
the high-spin states are dominated by the o -€ term which
is part of the operator K, in Eq. (31) and is insensitive to
the lower components of the Dirac spinors that are
strongly modified in the relativistic formulation. Low-
spin transitions proceed mainly through the S =0 or
non-spin-flip part of the operator which is of order p/m
and thus affected by a relativistic calculation. However,
the differences between the relativistic and nonrelativistic
cross sections are still subject to the elementary pho-
toproduction amplitude. Using Thom’s or ABW II cou-
pling constants yields larger relativistic effects even for
the high-spin transitions, as has been reported earlier.'?
Thus, the final conclusion on whether relativity is impor-
tant can only be drawn after the elementary process is
better understood.

In Fig. 11 we assess the validity of using a nonrelativis-
tic operator for a calculation with Schrodinger wave
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FIG. 10. Same as Fig. 7 for the 0", 1%, 2%, and 3™ states
with the (p3,5,p;,,) configuration.
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FIG. 11. Comparing different approximations to the elemen-
tary operator for the O, ; and the 3% transition in a nonrelativis-
tic calculation, using the full operator (— — —), a nonrelativis-
tic operator ( ), and the o -€ term only (—. —-—. ).

functions. We compare the operator of Eq. (35) in which
contributions from the products of the small spinor com-
ponents have been dropped with the full operator and a
calculation performed with the o-€ term only. For the
3% transition, there are no differences between the
different computations for 0° kaons. Away from 0°, the
o-€ term only shows deviations from the full operator
while the nonrelativistic operator of Eq. (35) is in excel-
lent agreement with the relativistic amplitude. Details of
the operator are clearly important for the O™ transition.
While some effects show up already when using the non-
relativistic operator, retaining only the o-€ term over-
predicts the cross section by an order of magntiude and
cannot reproduce the minimum of the form factor.

We have calculated the cross section for various transi-
tions with Woods-Saxon wave functions and harmonic
oscillator wave functions for '%0. The deeply bound
lambda state is equally well described by the two wave
functions, while the p-shell lambda which enters the 3"
transition and is bound by about 1 MeV is not adequately
described by the harmonic oscillator wave function. We
recommend using Woods-Saxon—type wave functions for
the lambda.

In Sec. VI we derived the extreme ways of treating
nonlocalities and mentioned that in coordinate space
nonlocalities can be partially treated by replacing mo-
menta by gradients. While the momentum space in-
tegrals in Eq. (29) treat nonlocalities exactly, the local ap-
proximations in Sec. VI freeze the operator at some con-
stant proton momentum and, therefore, ignore nonlocal
effects entirely. In Fig. 12 we compare the nonlocal cal-
culation with the frozen proton approximation (p=0)
calculated in a relativistic formalism. Large differences
are revealed for the high-spin transitions as well as the
states that have lower cross sections. Therefore, when
performing a relativistic calculation, it is important to in-
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FIG. 12. Comparison of the nonlocal calculation (solid
curve) with the local frozen proton approximation (dashed
curve) computed in the relativistic framework.

clude nonlocalities properly. On the other hand, nonlo-
cal effects are small in the nonrelativistic calculation.
Figure 13 shows a difference of about 10% for the high-
spin states while the effects are more significant for lower
spin states. Again, this result is subject to the elementary
operator used since when using Thom’s model for the ele-
mentary process the effect of nonlocalities in the nonrela-
tivistic calculation can be as large as 50%. A large value
of g an seems to suppress relativistic effects and nonlocal
effects.

The results show in Figs. 12 and 13 were obtained us-
ing plane waves for the kaon, so that all the nonlocalities
are due to Fermi motion. Figure 14 shows angular distri-
butions comparing local and nonlocal DWIA calcula-
tions with the respective PWIA calculations performed in
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FIG. 13. Same as Fig. 12 but calculated in the nonrelativistic
impulse approximation.
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FIG. 14. Angular distributions showing the effect of distor-
tion on the nonlocal (solid curves) and local (dashed curves) cal-
culations.

a nonrelativistic framework. The difference of the two
solid lines as compared to the difference between the two
dashed lines changes very little indicating that the nonlo-
cal effects arising from the smearing of the kaon momen-
tum by the optical potential are minimal. This comes as
no surprise since the kaon optical potential has such a
simple form and is dominated by s-wave scattering which
involves no gradients. This is to be contrasted with pion
photoproduction where the nonlocal effects generated by
the highly complex and stronger pion optical potential
significantly alter the angular distributions.!’

VIII. CONCLUSIONS

As the results presented in the previous sections show,
the theoretical and calculational underpinnings of the in-
vestigation of hypernuclear states through kaon pho-
toproduction are in place. A number of conclusions
about various commonly made approximations follow
from our investigations, but these conclusions are sensi-
tive to the basic production operator as shown in Fig. 6.
In fact, the largest uncertainties lie with the basic opera-
tor and this should be kept in mind since different basic
operators affect the size of the other effects. In carrying
out the remainder of our studies, we have used the best
fit!3 available to photoproduction and electroproduction
data which is AW IV as given in Table III. This fit has
the advantage that the primary coupling constant is in
rough agreement with that obtained from hadronic pro-
cesses. While this gives us some confidence in our results,
it is of crucial importance that additional photoproduc-
tion experiments from the proton be performed for pho-
ton energies from threshold up to about 2 GeV to

confirm the basic operator.

Using the AW IV coupling constants and associated
resonances, we showed the sensitivity of kaon photopro-
duction from 'O to the use of a relativistic description of
the bound baryons (the proton and the lambda). Unlike
our previous results!? using the operator fitted only to
photodata which produced coupling constants in
disagreement with hadronic analyses, we do not find
tremendous relativistic effects on the larger cross sec-
tions. The effects are on the order of 30% although
much larger effects show up in lower spin transitions and
at larger momentum transfer. Again, we make the point.
that whether or not relativistic treatment of the bound
baryons is important cannot be addressed without discus-
sion of the operator in question.

We have also examined the contributions of nonlocali-
ties arising from Fermi motion and the basic operator for
the cases of both relativistic and nonrelativistic descrip-
tions of the baryon wave functions. For high-spin transi-
tions, which always have the largest cross sections within
a cluster of almost degenerate states, we find that nonlo-
calities produce changes in the cross section of about
20% for the nonrelativistic baryon wave functions, while
producing considerably larger effects for relativistic wave
functions. A full relativistic calculation must include
nonlocalities properly, while a nonrelativistic calculation
makes a smaller error by using a local approximation.
Furthermore, unlike the case of pion photoproduction,
the inclusion of the kaon optical potential does not
significantly increase the nonlocal contributions.

We also showed in Fig. 11 that retention of only the
o -€ term in the production operator leads to appreciable
variation in the cross section of the high-spin states only
away from 0°. As usual, considerably larger effects are
found in the lower spin transitions. Thus previous calcu-
lations of kaon photoproduction or electroproduction
from nuclei with only this term and a frozen proton
(p=0) should be taken as preliminary away from 0°.

Finally, we note that the cross sections leading to the
high-spin states are sufficiently large that 100% duty cy-
cle linacs should be able to study them with either tagged
photons or the use of virtual photon spectra near the end
point.*! Photon energies from theshold up to 2 GeV have
been considered except one should keep in mind that the
elementary operators were only fitted to data up to 1.4
GeV so that higher energy experiments from nuclei have
even greater uncertainties in the elementary operator.
For the first round of experiments, the energy range from
1 GeV up to 1.4 GeV would seem most appropriate.
While we have carried out our investigations assuming
160 is the target nucleus, our code can include all effects
for any p-shell nucleus and can be easily extended to all
nuclei. At the present time we need experimental data.
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