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A classical nonrelativistic microscopic model for high-energy heavy-ion collisions is presented,
based on equations-of-motion calculations, where all the nucleon trajectories are computed with

suitable two-body forces between all pairs of nucleons in the target and projectile. Comparison with

experiment and with the results of other models is made. The model considers both position and ve-

locity configurations according to a nuclear structure model, the isomorphic shell model previously

and independently published. Thus, its results are objective and completely reproducible. The main

feature, however, relies on the properties of the two-body potential used in the model which repro-
duces both the transverse momentum transfer cross section and the longitudinal momentum loss

cross section, and at the same time possesses good saturation properties. While the present model

uses a nonrelativistic approach, its results are comparable to those of other models using relativistic

approaches.

I. INTRODUCTION

High-energy (HE) heavy-ion (HI) collisions is a subject
of growing interest in nuclear physics. This comes from
the indications that pion condensation, density isomers,
quark-gluon plasma, nuclear shock waves, and other ex-
otic phenomena may appear in the course of these reac-
tions. A complete relativistic quantum-mechanical han-
dling of such reactions should be the most desirable ap-
proach. Since such an approach, unfortunately, is not
possible, one resorts to classical or semiclassical ap-
proaches.

On the basis of specific initial conditions and appropri-
ate choice of XX interaction it has been shown' that
the equations of classical mechanics could be used to
determine the motion of each nucleon of the target-
projectile system. The easiest models for calculations are
the fireball and firestreak models assuming the simplest
collision geometry and thermal equilibrium. Hydro-
dynamical models are more realistic, taking into account
the compressibility, viscosity, heat conductivity of nu-
clear matter, and local thermal equilibrium. They are
based on local relativistic energy-momentum conserva-
tion and on the equation of state of the nuclear matter.
Among them the two-Quid models are more realistic.
The simplest microscopic models are the cascade mod-
els and the models using the Boltzmann equation.
The most microscopic models are those based on the clas-
sical equation of motion approach which can be relativis-
tic or nonrelativistic, " depending on the relative veloc-
ity between target and projectile. The models ofter a
dynamically consistent description of the surface effects
and the fragmentation process. The classical equation of
motion approach is essentially the molecular dynamics
approach which assumes a classical description valid for
bombarding energies ) 100 MeV/nucleon.

The introduction of the classical equation of motion
approach' for the study of HE, HI collisions is due to

Bodmer and Panos in 1977. Since then researchers from
other groups" ' have successfully applied variations of
the approach to several reactions. All these variations,
however, have more or less the same limitations and de-
fects. The purpose of the present paper is to simultane-
ously improve all these versions and thus to increase their
effectiveness and applicability. For one to comprehend
and appreciate these improvements a brief account of the
development of the classical equation of motion approach
is undertaken below. Because of these improvements and
the systematization and simplification of the method
reached afterwards, from here on we will refer to the ap-
proach as the classical equations-of-motion model, abbre-
viated as CEMMO. Meson production is not included
and the nucleons are taken to be spinless.

II. CLASSICAL EQUATIONS-OF-MOTION MODEL

Implementation of the CEMMO (classical "nonrela-
tivistic" equations-of-motion calculations, where all the
nucleon trajectories are computed with suitable two-body
forces between all pairs of nucleons) involves seven ele-
ments. ' "

A. Choice of a two-body potential

The choice of the best possible nucleon-nucleon poten-
tial acting between all pairs of nucleons presumably leads
(in the model dynamics corresponding to this potential)
to the mechanism of the reaction compression and other
interesting characteristics. The choice of the potential is
made by examining its high- and low-energy properties.

Here, however, there is no simulation of the Pauli prin-
ciple beyond the consequences coming from the short-
range repulsive nature of the potential used. Also,
despite the fact that it was possible, the Coulomb interac-
tion is not taken into account, because of its insignificant
overall contribution to the results of interest for light nu-
clei.
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Our static central potential consists of a repulsive (R)
and an attractive (2 ) Yukawa-type component, and thus
short-range correlations are taken into account automati-
cally. Thus the potential has the form

where V~, V~, p~, and p~ are the strengths and ranges
of the potential components and r, is the relative dis-
tance of nucleons i and j. The values of the constants,
from Ref. 15, are

V~ =1.7X10' MeV/fm, V~ =187.0 MeV/fm

and

p& =31.8538 fm ', p& =1.3538 fm

These constants correspond' to an effective hard-core
radius r, = 1. 13 fm where V(r, ) =0 and to a radius
r —= 1.22 fm at the potential minimum V(r )= —27. 5
Mev.

The high- and low-energy properties of our potential
have been successfully tested in Ref. 15. The main
difference of this potential from all other potentials used
in HE, HI collisions is that it is the best potential which
simultaneously reproduces the first two moments
[o'"(E), longitudinal momentum loss cross section, and
o' '(E), transverse momentum transfer cross section] of
the c.m. differential scattering cross section for free nu-
cleons at high energies, ) 50 MeV/nucleon, and at the
same time possesses very good saturation properties. , A11
other potentials" ' have been tested with respect to
the second moment o' '(E) only, and possess moderate to
poor saturation properties. Thus, it is expected that our
potential will be more reliable in describing HE, HI col-
lisions, where both longitudinal and transverse momen-
tum transfers are important. In Ref. 16 a test is made for
all similar potentials' ' ' published until 1984. In that
theoretical test we have firstly estimated the o'(E)
values for all potentials examined which by construction
give acceptable values for o' '(E), and secondly we have
estimated the abilities of these potentials to give reason-
able binding energies. For the potentials in the literature
subsequent to Ref. 16, a similar test will appear else-
where, with the same conclusion that the potential of Eq.
(1) is superior to all other potentials published so far, re-
garding their high- and low-energy properties.

However, it is interesting to make some remarks con-
cerning two of the newer potentials. ' ' ' Kiselev, ' ex-
amining nucleon correlation functions for two of his
(P, , P2) potentials, gives preference to potential P2, which
has a radius r = 1.2 fm at the potential minimum
(V = —30 MeV). These values are almost identical to
our values r = 1.22 fm and V = —27. 5 MeV. Howev-
er, Kiselev even with this potential was unable to obtain
simultaneously satisfactory XX scattering and nuclear
densities, which is not a problem for our potential. ' '
Finally, I would like to qualitatively compare the poten-
tial of Eq. (1) with the central eff'ective nucleon-nucleon
potentials in the S& and 'So channels arising from resid-
ual color forces. ' These two potentials, comprising the
latest efforts to derive the XN potential from the quark

model with chromodynamics, ' are very similar to each
other and to our potential of Eq. (1), since all three poten-
tials have the form of two Yukawa-type components, a
core radius r, between 1.0 and 1.1 fm, and a depth be-
tween 22 and 28 MeV. In comparing the potential of Eq.
(1) with NN potentials derived from quark cluster models,
however, one should remember that for these potentials
the addition of a meson theoretical potential is needed in
order to fit the NX data.

B. Choice of initial configurations of nucleon positions

The configurations of positions r, are extended from
i =1 to Ap for the projectile and from i =3&+1 to
3p + A y for the target, where A z and 3T are the mass
numbers for the target and projectile, respectively. In the
literature the majority of researchers" ' ' choose a
random-number-generated configuration of positions (for
the target and the projectile) within a sphere equal to the
nuclear size, while the remaining researchers" consider
configurations corresponding to crystalline structures.
The former configurations lead to very hot nuclei which
contract and evaporate rather fast in comparison to the
reaction time, ' while the latter configurations also have
the disadvantage of contraction, since the nucleons drift
toward the configuration of minimum energy of the
chosen nucleon-nucleon potential. These arguments have
been checked by isolating both the target and the projec-
tile and leaving them to evolve according to the NN in-
teraction. Thus, both types of configurations of positions
in the literature exhibit undesirable features.

In the present paper, the initial configurations of posi-
tions, instead of being created ad hoc, are taken accord-
ing to an existing nuclear structure model, the isomorph-
ic shell model. ' These configurations have normal densi-
ties, include short-range nucleon correlations, and for the
potential of the previous section possess correct satura-
tion properties. ' ' That is, they fulfill all necessary re-
quirements for such initial configurations. These
configurations, for the nucleus examined in the present
paper and for any nucleus in the sd shell, have already
been published in Refs. 15 and 16, while for any other nu-
cleus the configurations can be derived from the informa-
tion given in Fig. 1 of Ref. 19.

The main advantage of the present configurations is
that, in addition to fulfilling the above requirements, they
come from an independent nuclear structure model' and
thus they are objective (not ad hoc) and available to any-
one interested in verifying our results or performing his
or her own calculations on HE, HI collisions.

C. Choice of initial configurations
of nucleon velocities (momenta)

The configurations of momenta p are extended, as are
the configurations of positions r, from i = 1 to Az for the
projectile and from i = A p+ 1 to 2p+ A T for the target.

In Refs. 1, 10, 13, and 14 the nucleon velocities are tak-
en at random in direction and magnitude (the corre-
sponding kinetic energies however, are in the range of
those for an ideal degenerate Fermi gas), while in Ref. 12
the magnitude of the initial velocities u, (0) is taken from
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—,'MV„„,=A' /2M(1/R, „) (3)

-'MV' =X'/2M(L'/p'&

Now, besides the magnitude of the velocity (=0.304
X10' cm/sec for our example) the complete vector of
the orbital component is well specified, since the average
position and the orbital angular momentum vector for
the particular nucleon are well specified within the iso-
morphic shell model (see Fig. 1 of Ref. 20). For the un-
certainty component, however, the velocity vector could
have any (random) direction, but for simplicity we con-
sider the specific direction where
V„=V»

= V, = ~ V„b ~
/&3 (=0.105 X 10' cm/see for our

example).
While in our example the kinetic energy for the specific

nucleon comes out to be 11.4 MeV, the nucleon kinetic
energies have an average value of about 8 MeV, which
means that the average nucleon kinetic energy in the iso-
morphic shell model is about equal to the average binding
energy and thus is substantially different from the Fermi

the relationship ,'M—u, (0)=E&—U(r, ) [where E~ is the
binding energy, M is the nucleon mass, and U(r) is the
average potential of a nucleon in a nucleus] and the direc-
tion of u, (0) is taken at random, and in Ref. 11 these ve-
locities are taken to be equal to zero. Thus, in all cases in
the literature, the velocities are taken more or less ran-
domly. To the contrary, the velocities in the present
work come from the same nuclear structure model' as
the "positions, '* their magnitudes and directions are con-
sistent with the independent-particle model, ' and include
the uncertainty due to the confinement of nucleons in the
nuclear volume.

Specifically, the kinetic energy in the present paper, as
in Svenne's paper, is calculated as the sum of the kinetic
energy due to confinement of the nucleons in the nuclear
volume and of the kinetic energy due to rotation of nu-
cleons. (Here, the rotation of a nucleon refers to the rota-
tion of the average position of this nucleon around its or-
bital angular momentum axis. Such positions and axes
for nuclei up to the end of the sd shell are given in detail
in Fig. 1 of Ref. 20.) Thus, according to Ref. 22, we have
for the kinetic energy of a nucleon

(T) ~Pi /2M(1/R, „+(L2/p ) ),
where R „is the confinement radius of the nucleons,
i.e., the radius of the outer-shell nucleon centers (R) plus
the radius of the nucleon bag (rz). M is the nucleon
mass, and p is the radius of the classical orbit of the aver-
age position of a specific nucleon. To be even more
specific, we take, as an example, the case of a proton in
the Ip shell, where (from Ref. 20) R =2.541 fm,
r&=0.860 fm, and p=2. 075 fm. For this proton from
Eq. (2) we obtain ( T) ~ 11.4 MeV. For simplicity, only
the equality is considered in any calculation involving
this velocity.

Accordingly, the velocity and momentum of any nu-
cleon have two components (uncertainty and orbital com-
ponents) coming from Eq. (2),

average kinetic energy of about 25 MeV. This large
difference with the standard model is more explicitly dis-
cussed in the following paragraphs.

The Fermi kinetic energy comes by considering an
ideal degenerate Fermi gas, which uniformly fills a sphere
of radius R =ro 3 ' . In the framework of our approach
(classical with an internucleon interaction) this distribu-
tion is not the equilibrium one and leads to instability of
the nucleus. However, inclusion of the diffuseness of the
nuclear boundary leads to a substantial smoothing of the
distribution which, together with the XX interaction, ap-
parently leads to a shift of mometa toward lower values, '

that is, towards values closer to ours.
Perhaps the stronger argument in favor of our values is

that our kinetic energies (coming from previous, indepen-
dently published work ) have the unique advantage of
satisfying Koopman's theorem. In addition, from Table
II of Ref. 20 (where the kinetic energies for ' 0 coming
from eight papers using di(T'erent approaches are listed),
we see that kinetic energies (from 12.64 to 20.26 MeV)
which are higher than our values and approaching the
Fermi values lead to very low values (from 2.02 to 6.05
MeV) for the binding energy per particle. Thus, because
of the diffuseness of the nuclear boundary and of the XX
interaction, kinetic energies in the range of Fermi values
lead to poor binding energies and do not satisfy
Koopman's theorem.

The velocities discussed so far refer to the intrinsic
motion of the nucleons and should be redetermined with
allowance for the kinetic energy of motion of the ap-
proaching nucleus as a whole (external momenta). These
initial internal. momenta, however, are significant in ob-
taining a stable nucleus for a time comparable to the re-
action time.

D. Choice of an ensemble of initial configurations
of positions and momenta

Considering a single initial configuration of positions
and momenta for the target and for the projectile, a col-
lision between them is the computer analog of a collision
of a single projectile with a single target nucleus. Howev-
er, our experimental data for such collisions in a specific
nuclear reaction is the statistical average of many col-
lisions between projectile and target. Thus, for a realistic
computer simulation of the collision, an ensemble of X
initial configurations is needed. ' In the literature the
procedure for obtaining an ensemble of configurations
from an initial one is either not specified' or is taken by
arbitrary rotations of the initial configuration. ' In addi-
tion, the number X of configurations in an ensemble is
chosen empirically. In the present paper both the pro-
cedure for obtaining an ensemble of the initial
configuration-and the number of configurations in the en-
semble are chosen more or less simultaneously and in a
precisely specified way.

Considering either random-number distributions' ' '
of nucleons in the nuclear volume or considerin'g (as here)
nucleon distributions according to the isomorphic shell
model, ' one sees that the distribution of nucleons (par-
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ticularly for open-shell nuclei in the isomorphic shell
model) in the nuclear volume and specifically on the nu-
clear surface is not generally uniform. Thus, the pro-
cedure for deriving the ensemble from an initial
configuration, in combination with the number of distri-
butions in an ensemble, may inAuence the statistical aver-
age of the calculations, if we do not proceed with care.

In the present paper, for the first time, we specify the
whole procedure for obtaining the ensemble, in a way in-
dependent of the specific nuclear collision. We start by
discussing an angular division of both the projectile and
the target nuclei. It has been found preferable for this
angular division to be the same for the projectile and the
target, and independent of the specific nuclei involved.
As a first step, we consider any regular polyhedron hav-
ing a common center with the target nucleus and another
(similar) polyhedron having a common center with the
projectile. (The relative orientation of the two polyhedra
is arbitrary. } As a second step, we assume that the two
polyhedra approach each other in characteristic ways,
e.g. , vertices of the one polyhedron approach the vertices,
or the center of faces, or the middle of edges of the other,
and vice-versa. By deciding which ways of approaching
we want, we specify the number (X) of configurations in
the ensemble for the specific polyhedron considered. All
these X configurations so derived are symmetrically dis-
tributed in space. Substituting the polyhedron with
another regular polyhedron, the number N is changed,
since the numbers of vertices, edges, and faces are
dift'erent for each polyhedron. To be more quantitative,
if our imaginary polyhedron is a tetrahedron (4 vertices),
an octahedron (6 vertices), a hexahedron (8 vertices), an
icosahedron (12 vertices), a dodecahedron (20 vertices),
or an icosidodecahedron (30 vertices), the minimum num-
ber N of configurations in our ensemble (considering only
the simplest case where vertices of the one polyhedron
approach vertices of the other polyhedron} is 4 X4, 6 X 6,
8X8, 12X12, 20X20, or 30X30. Dealing with vertices
alone (without considering middles of edges or centers of
faces of a polyhedron) is sufficient since, if we want a
larger ensemble, it is enough to consider a polyhedron
with a larger number of vertices.

We have performed our calculations with a minimum
X equal to 16 (for each impact parameter, where the po-
lyhedron has been chosen to be a regular tetrahedron)
and the results (see the next section) are satisfying. This
is due to the fact that the orientations with which the
projectile approaches the target were uniformly distribut-
ed in space, and to the fact that the generator
configurations of both the target and the projectile satisfy
many nuclear properties. Our number X =16 should be
compared with the numbers X=25 —50 in Ref. 12,
X =100 in Ref. 13, and X =535 in Ref. 14. Of course,
the larger N, the better the statistics. However, any
reductions of X save substantial computing time (this is
proportional to X), which is a critical factor in calcula-
tions of heavy ion collisions. The rather small X which
we used in our calculations su%ces to provide adequate
statistics for single-nucleon inclusive cross sections, but is
too small for two or more nucleon correlations by at
least an order of magnitude.

K. Many-body dynamical trajectory calculations

These calculations are performed for all A ( = A p+ AT) nucleons of the target-projectile system. For each
initial configuration of the ensemble, each impact param-
eter b, and each laboratory energy EI, we perform (by us-
ing Newton's or Hamilton's equations) dynamical trajec-
tory calculations. These calculations are repeated for
each time step and are continued until the collision is
efFectively over. At each time step we check the total en-
ergy of the system, the total linear momentum, and the
total angular momentum of the system, which should be
conserved during the whole collision. Small deviations
(1 —2%%uo) are considered acceptable and it is according to
this criterion that the time step is decided.

F. Analysis of trajectories

We first decide on the appropriate binning and the
physical quantities of interest, while in the calculations of
the cross sections we distinguish between lower and
higher energies of products in the following sense. It
has been found preferable for the momentum required in
the calculation of the cross sections for the lower energies
to be evaluated by using p =2rnE, while for the higher
energies by using E =p c +m c . This procedure is
used here just for the calculation of the final cross section
from the nuclear momenta, which are calculated nonrela-
tivistically from the classical trajectory calculations. This
use of di6'erent momentum expressions dependent on the
energy is inspired by a similar treatment in Ref. 9 from
which we also take the dividing energy (290 MeV). In
Ref. 9 (the results of which we use for comparison), when
the relative energy of a nucleon pair is below 290 MeV,
nonrelativistic kinematics is used, whereas above this lim-
it the kinematics is taken to be relativistic.

For the final calculations of the proton inclusive cross
sections around a specific angle (e.g., around 90') a nu-
merical integration for each energy over all impact pa-
rameters is made. In our calculations, we have con-
sidered ten impact parameters from 0.0 to 1.8R with a
step 0.2R (where R is the nuclear radius).

G. Stability of computer simulation
for the target and projectile nuclei

Before carrying out calculations of nuclear collisions,
we should examine how stable an individually modeled
nucleus is, as far as its main properties, e,g. , radius, bind-
ing energy, conservation of momenta, etc. , are concerned.
Many potentials in the literature have the defect that a
considerable number of nucleons lose kinetic energy rath-
er quickly and come to be spaced in the neighborhood of
the minimum point of the two-body potential (contrac-
tion), while other nucleons acquire kinetic energy and
evaporate. It is of great importance to minimize both the
contraction and evaporation for both the target and pro-
jectile nuclei, for a time at least longer than the collision
time, in order for the results of calculations to be
significant. Moreover, for times characteristic of the col-
lision of the two nuclei (e.g., nuclear diameter divided by
the velocity of light, i.e., =15—30 fm/c), the main nu-
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clear properties of each of the noninteracting projectile
and target nuclei, besides the total energy of the system,
should be conserved, i.e., gp, =0, and g, [r, ,j, ]=0, that
is, the linear and angular momenta should be conserved.

Molitoris' nuclei'" assume crystalline structure and
Fermi random momenta, and are stable for typical col-
lision times of about 30 fm/c. However, these nuclei do
not conserve momenta. ' Our isomorphic shell-model
nuclei, ' assuming nucleon and momenta distributions as
in Secs. II B and II C, respectively, and governed by the
two body-potential in Sec. II A, conserve momentum and
have moderate contraction and evaporation properties.
For example, in the cases of nuclei from ' 0 to Co the
deviation from conservation of momentum does not
exceed 1 —2%%uo, the evaporation starts after 10—15 fm/c
and the contraction at the same time is about 2%%uo of the
rms nuclear radius.

The initial separation between target and projectile is
of interest. Theoretically it should suffice to initially
separate the nuclei so that they are outside each others
force range. In fact, specifically for our model where
contraction and evaporation are limited for a rather long
time, it is sufficient to let target and projectile initially be
just outside each others force range independently of the
laboratory relative velocity.

26 is treated relativistically. A relativistic microscopic
approach of this reaction is really more realistic, since
such treatment anticipates the multiple production of 6
isobars and m mesons which accompany the products of
this reaction. These products inAuence the dynamics of
the process to a large degree. Here, such products are
not studied and we restrict ourselves to the determination
of the inclusive proton cross sections and of the inclusive
cross sections as a function of impact parameter, without
going into the various aspects of the complex dynamics of
relativistic collisions. For example, in describing the ap-
proach of the colliding nuclei, their Lorentz-contraction
is not considered and no retarded interaction is used. In
general, no relativistic corrections have been made. Rela-
tivity has also not been used for two-nucleon scattering in
deriving' our potential [Eq. (I)]. However, only in the
calculations of the final cross-sections do we distinguish
between lower and higher energies of products by taking
the momenta from p =2IE and E =p c +m c, re-
spectively. In all other cases the nuclear momenta are
determined nonrelativistically from the classical trajecto-
ry calculation. The use of our simplified approach for
modeling various features which have essentially quan-
tum relativistic character can be considered only as a first
approximation. Comparison with experiments is not
sufficient and can only be a crude justification.

The difterence in numerical realization between stan-
dard treatments, e.g. , as in Refs. 9 and 26 (where the cal-
culations require large computation times), and our ap-
proach is significant. For example, calculation of a single
collision of an o particle with a Pb nucleus in Ref. 9 takes
about 30—40 min of BESM-6 computer time; thus, for the
100—200 collisions required, 50—100 h of the BESM-6
computer time is needed. This should be compared with
only 15 h in our PRIME 9955 computer for the reaction
Ne+ Ne.

Our results on the inclusive proton cross sections com-
ing from our simplified approach are compared in Fig. 1

with experimental data and with the results of Refs. 9
and 26, where a relativistic treatment is considered. One
may see the relative successes of the three approaches

III. CALCULATIONS AND DISCUSSION

On the basis of a potential, that of Eq. (I), the model
permits discussion of the main dynamical stages of the
collision process: the approach of the nuclei, overlapping
of the nuclei, propagation of excitation within the system,
and breakup of the system into fragments; i.e., discussion
of the whole evolution of the collision. In our calcula-
tions the process of fragment production (which depends
on the potential used ) was not taken into account.

As an example we consider the reaction Ne+ Ne at
a laboratory energy of 800 MeV/nucleon. This energy
(moderately relativistic) is intermediate between energies
of a few hundreds of MeV and GeV, and in Refs. 9 aiid
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FIG. 1. Irivariant inclusive double-di6'erential cross section for the emission of protons in the reaction ' Ne+' Ne at a bombard-
ing energy of E/A =800 MeV/nucleon. Dots represent the experimental results of Nagamiya et al. for the system Ne+NaF {Ref.
27). (a) shows the histogram coming from the calculation in Ref. 26, while (b) shows that coming from Ref. 9. Finally, (c) shows the
histogram coming fram our calculations. All cross sections are detected at an angular range of about 90 .
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3000

been considered at these energies.
Our results on inclusive cross sections as a function of

impact parameter are shown in Fig. 2. There are no ex-
perimental data for comparison. However, some qualita-
tive remarks can be made. Specifically, we see that the
dependence of the inclusive cross sections on impact pa-
rameter is much stronger for low energies (up to E = 140
MeV) than for higher energies.

IV. CONCLUSIONS
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FIG. 2. Inclusive cross section as a function of impact pa-
rameter for the emission of protons in the reaction ' Ne+ Ne
at a bombarding energy of E/A =800 MeV/nucleon. Energy
(MeV) of inclusive protons is taken as a parameter in the
present figure. Inclusive cross section is equal to zero for
E =20 MeV and b + 1.2; E = 140 MeV and b ~ 1.6; E = 180
MeV and b ~ 1.8; E =220 MeV and b ~ 1.6; and E =260 MeV
and b ~ 1.6. The value of inclusive cross section for E =20
MeV and b = 1.0 is 7900 mb c /sr(GeV), but it is omitted from
the figure for reasons of scale.

presented in Figs. 1(a)—1(c). In making this comparison,
however, one should keep in mind the approximations
made in each of the three approaches. One notes, howev-
er, that our results, just as the results from Ref. 26, do
not show the tendency of the experimental data to de-
crease at very low energies (0—40 MeV), while the results
from Ref. 9 agree with these low-energy data. The reason
why this decrease does not appear here or in Ref. 26 is
discussed in Ref. 9: two-body cluster emission has not

The present approach, while nonrelativistic, gives re-
sults on inclusive proton cross sections for Ne+Ne col-
lisions at 800 MeV/nucleon which are comparable with
those of Refs. 9 and 26, which are relativistic. In this
comparison one should consider, of course, the approxi-
mations made in each study. It is of interest that the
computer realization of the present approach is very
much more economical than the existing relativistic ap-
proaches, ' at least for the present intermediate energy.

The main characteristic of the present calculations
(which closely follow the original work by Bodmer and
Panos) is that they are completely reproducible. Anyone
could repeat our calculations and could obtain identical
results. This is because instead of the random position
and momentum distributions (which also lead to large en-
sembles of initial distributions and, consequently, to large
computing times), all our distributions come from a nu-
clear structure model, the isomorphic shell model, ' pre-
viously and independently published.

While the present approach has been demonstrated
here by using a specific reaction, it is valid for any reac-
tion. The configurations of positions and momenta for
any nucleus could again be taken from the isomorphic
shell model.
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