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Relativistic Vlasov-Uehling-Uhlenbeck equation for nucleus-nucleus collisions
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A relativistic Vlasov-Uehling-Uhlenbeck equation for the nuclear phase-space distribution func-
tion is derived from the Walecka model through the use of semiclassical, local, and Born approxi-
mations.

The Vlasov-Uehling-Uhlenbeck (VUU) model intro-
duced by Bertsch et al. ' for heavy-ion collisions has been
used extensively in the study of the dynamics of heavy-
ion collisions, ' particle productions from such reac-
tions, ' and the properties of nuclear matter under ex-
treme conditions. ' Although this model is carried out
with the relativistic kinematics, it ignores the explicit ex-
change of mesons between nucleons, the small component
of the nucleon wave function, and the negative energy
states in the vacuum. As a first step towards a fully rela-
tivistic formulation of this model, we have recently con-
structed a relativistic VUU model for high-energy
heavy-ion collisions. ' In this model, the mean field is
obtained from the Walecka model" in which the
nucleon-nucleon interaction is described by the exchange
of an attractive scalar meson and a repulsive vector
meson. For the collision term, the nucleon-nucleon cross
section in the free space is used as in the normal VUU
model. We have successfully solved this model and ap-
plied it to heavy-ion collisions. Similar studies have been
reported by Blattel et a/. ' It is therefore of interest to
derive consistently the collision term from the Walecka
model as well. We shall pursue here such a derivation by
generalizing the nonrelativistic approach of Refs. 13 and
14.

In the Walecka model, only the nucleon field g, the
scalar-meson field P, and the vector-meson field V" are

I

included. Other mesons such as the pion and the rho
meson are neglected as they do not contribute to the nu-
clear binding energy in the mean-field approximation.
However, they need to be included in the calculation of
the nucleon-nucleon cross section. Since it is straightfor-
ward to include these other mesons, we neglect them in
the following for simplicity. The Lagrangian density in
the Walecka model is given by

L (x)=g[y"(it)„g, V—„)—(m g, P)]g-
+ ,' ( tJ„tti tJ"p —m,p ) —,' F" F„,+——,

' m ~ Vu V„—, (1)

where

F„.=a„v.—a.V„.
The masses m, m„and I, are for the nucleon, the scalar
meson, and the vector meson, respectively; g, and g, are
the coupling constants. The Green's function for the nu-
cleon is defined as usual by

iG (x„x~)= ( ~ T[f(x, )g(x~)]~ ),
where T is the time ordering operator defined on a time
contour as discussed in Ref. 14. Here, ( . ) denotes
the expectation value in the nuclear many-body state.
The nucleon Green's function satisfies the following equa-
tion:

(iy„B"„m)iG(x—„x,. )=i5(x, —x, )+ f d uX(x„u)iG(u, x, ),P xl (3)

where X is the nucleon self-energy.
Since the Walecka model is an effective field theory for nucleon-nucleon interaction in the nuclear matter, we shall

consider only the first and second orders in calculating the nucleon self-energy, corresponding to the Hartree-Fock (HF)
and Born terms, respectively. They are shown diagrammaticaly in Fig. 1, where the solid line denotes the nucleon
while the dashed line represents either the scalar or the vector mesons. The -first-order self-energy is real and can be
written as

XH„(x)=X,(x)+iy„X"„(x), (4)

and can be absorbed into the effective mass and momentum of the nucleon. Defining the nucleon effective mass by
m (x )=m +X, (x ), we can then rewrite Eq. (3) as

Iiy„[t)" —X"„(x,)]—m(x, )]iG( xii)x=i5(x, —x, )+ f d uX, (x„u)iG(u, x, ),
where X, is the second-order self-energy which, as shown later, leads to the collision term as in the nonrelativistic kinet-
ic theory.
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As in Ref. 14, the nucleon Careen's function G (x„x, ) and self-energy X,(x„x, ) can be written as

G(x„x,.)=8(t„t,. )G (xi,x, . )+8(ti, t, )G (x„x, ),
X,(x„x, )=8(t„t,. )X (x„x, )+8(t, t, )X (x„x,.),

(6)

where 8(t], t, ) is 1 or 0 depending on whether t, is later or earlier than t, on the contour. Substituting Eqs. (6) and (7)
into Eq. (5), we then find

t)
ty„[ice„—X",(x])]—m(x, )I]G'(x],x] )= d x2[X (x],x2) —X (x„x2)]l'G (x2,x, . )

~ ~d x~X (x„x2)[]G ( x~, x]. ) iG—(xi,x] )], (8)

where the integration limits are for the time variable. There is no restriction to the spatial integrations.
Following Elze et al. ', we define x =(x, +x, )/2 and y =x, —x, and take the Fourier transform j d ye'~'~ of the

resulting equation. Making the semiclassical approximation, i.e., keeping only terms linear in fi, we obtain from Eq. (8)

y„a—~+) ~*~ m+——(a„m)ag ——) „(a;p*~)a; ]G
l x l

where p*"=p"—X"„ is the kinetic momentum and G (x,p) is the Fourier transform of the nucleon Green's function,
1.e.,

G (x,p)= f d ye'~~6 (x+y/2, x —y/2) . (10)

The Fourier transform of the right-hand side of Eq. (8) is denoted by F, . The real part of F, can also be absorbed into
the effective mass and momentum of the nucleon and is neglected in the following. We then take the trace of both Eq.
(9) and its product with y„and equate the real and imaginary parts of the resulting equations. From the real part of the
equations, the on-shell condition

p* Tr[iG (x,p)]=m Tr[iG (x,p)],
is obtained while the imaginary part leads to

1 x e v—[a~ —(a".p*~)a;] " +(a~m)a„Tr[]G (x,p)]= Im(TrF, ), (12)

where Im denotes the imaginary part. In accordance with Eq. (11), we neglect the off-shell effect and set therefore the
time limits of the two integrals in Eq. (8) equal. Furthermore, we assume, to be consistent with the semiclassical ap-
proximation, that the nucleon Green s function is smooth, so that its variation over a distance of 1/p is neglected.
Then we have explicitly,

F, = d ye'P ~ d y' X y —y', x iG y', x —X y —y', x iG y', x (13)

A similar equation can be obtained from the Hermitian conjugate of Eq. (8), i.e.,

1 ~ PI——' [a"—(a'p'")a~] " +(a"m)a~ ' Tr[iG (x,p)]= Im( TrF,+), (14)

where

F,+= f d ye']'~ f d y'[X (y y', x)iG (—y', x) —X (y y', x)iG—(y', x)] .

Substracting Eq. (14) from Eq. (12), we arrive at the following equation:

' [a"„—(a~*")a ] " +(a"„m)a"„'Tr[iG (x,p)]= Tr[X (x,p)G (x,p) —X (x,p)G (x,p)] .PI (16)

Expressing the nucleon Green's function in terms of the kinetic momentum, i.e., G (x,p*), and making use of the
equality

a~~. ..„„=a~[. ,
—(a~x..)a, ,

where a + is the partial derivative with respect to the kinetic momentum p, and a
~

is evaluated with p or pp x p, p = const
being kept constant, we rewrite Eq. (16) as
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'[Q"„—(ij"„X"„—Q„X",)P ] +(BI„"m)cP„'Tr[iG (x,p*)]=Tr[X (x,p*)6 (x,p') —X (x,p')G (x,p')] .

(18)

To simplify the notation, we sha]1 drop the vector meson in the derivation of the collision term and consider the scalar
meson only. In the end of the derivation, it is straightforward to put back the contribution from the vector meson. In
terms of the Fourier transform b,(x,p) of the scalar meson propagator b,(x, ,x2) defined by

&(,,x, )=(IT[y(, )y+(, )]I &,

the second-order nucleon self-energy can be calculated easily from the Born diagrams in Fig. 1. It is given by

d4p,* d4p,* d4p 4
X (x,p*)= I ~ f ~ f g, (2n. ) 5 (p*+p2 —p3 —p4 )

(2n. ) (2m. ) (2~)

X lb, (xp' —p3 )6'(xp3 )Tr[6'(xp,')6 (xpf )]
—b(x,p* —p3 )b(x,p* —p4 )6 (x,p3 )6 (x,p2 )G (x,pq )],

(19)

(20)

where the 6rst term is the direct term while the second term is the exchange term. Interchanging the superscript ")"
with "("in Eq. (19) gives —X (x,p").

To proceed further, we introduce the local approximation at the space-time point x, i.e., the field operator P(x) is as-
sumed to have the following expansion:

P(x)= g U'(p')e'~ "a„(p*),
p+, s

where U„'(p') is the spinor wave function for spin state s and is normalized according to

Tr g U„'(p*)U„'(p') =4m/po
s

with 4 the spin-isospin degeneracy of the nucleon, and
e ~—(pe2+ m 2)1/2

(21)

because of the on-shell condition Eq. (11). The nucleon annihilation operator is denoted by a (p ). The antinucleon
part has been dropped in the present study. From Eqs. (2), (6), and (21) we have

iG &(x,p*)= —g U„' (p*)U„'&(p')f(x, p")2m5(po —co) (22)

iG ii(x,p'}= g U' (p*)U'p(p' [}I f (x,p')]2ir5—(po —co) . (23)

The function f (x, p*) is the seven-dimensional on-shell nucleon's phase-space distribution function defined by

f (x,p*)= ( Ia„+(p')a„(p') I & .

From Eq. (22), we can write

Tr[iG (x,p*)]=—16n5(p —m )mf (x,p*) .

(24)

We then substitute it into the left-hand side of Eq. (18) and neglect the off-shell contributions by taking 5(p * —m ) to
the left of the differential operators. For the right-hand side of Eq. (18), we use Eqs. (22) and (23). After some straight-
forward algebra, we obtain 6nally the relativistic VUU equation,

, I [i}„" (d„'X„" d„'—Xl„'}c}p„]—p„*+m (8"„m)dl' jf (x,p*)
Po

= f I f IMI (2ir) 5'(p'+p2 —
p2

—
pf, )5(co+co2 co3 co4)— —dpi' dp3 dp4

(2ir)' (2~)' (2m. )'

x ff (»p3 }f(»p4 }[1—f(»p')][1—f (x,p2 )]
—f (x,p')f (x,p;)[1 f (x,p,')][1 f (x,—p')]J, — (25}

where IM I is the spin and isospin average of the square of the nucleon-nucleon invariant scattering amplitude M in the
Born approximation,
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FIG. 1. First- and second-order nucleon self-energy. The
solid curve denotes the nucleon while the dashed line represents
either the scalar or the vector mesons.

The vector meson can be straightforwardly included by
using the scattering amplitude calculated in the Born ap-
proximation with both scalar and vector mesons. Other
mesons such as the pion and p meson can also be taken
into account in a similar way.

The mean-field part of the relativistic VUU equation
has the same form as that derived in Refs. 8 and 16. The

M =ig, [U„'(p" )U„'(p*, )b(x p*, —p*)U„(p*)U '(p*)

(p4 )U (pl )~(x pl p4 )U (p3 )U (p2 )~

(26)

collision term also has a similar form as that used in our
previous calculations in that it contains both the Pauli-
blocking factors and the nucleon-nucleon cross section.
According to the precedigg derivation, the nucleon-
nucleon cross section in the Born approximation can be
calculated with the exchange of both the scalar and the
vector mesons, and possibly also the isovector mesons
such as the pion and the rho meson. Once the nucleon-
nucleon cross section in the free space can be fitted in an
average way by such an e6'ective meson model, then the
density dependence of the nucleon-nucleon cross section
in the nuclear matter can be studied by including the
self-energy of the mesons. Such studies have already
been explored by Bertsch et al. ' for the nucleon-nucleon
inelastic cross section and by Wu et al. ' for the kaon
production cross section.
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