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Delbriick and nuclear Rayleigh efFects in elastic photon scattering
in the giant dipole resonance region
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Elastic photon scattering at the excitation energy of the giant dipole resonance in medium- and
heavy-mass nuclei is described by a coherent superposition of Thomson, Delbruck, and nuclear
Rayleigh amplitudes, the last being evaluated within the framework of the interacting boson m.odel.
New accurate tables of Delbriick amplitudes are also given for 9 ~ E~ ~ 30 MeV and 0'( 0 & 120'.

I. INTRODUCTION

Since the introduction of the giant dipole resonance
(GDR) (Refs. 1 —3) in the interacting boson model
(IBM), calculations of large-angle photon scattering
have allowed both good reproduction of experimental
data found in the literature ' and predictions con6rmed
by the experiment.

In the above-mentioned calculations of elastic scatter-
ing the Delbriick contribution had, of course, been
neglected. The main purpose of the present work is to
describe elastic scattering in the GDR energy range at
small and intermediate angles, where the Delbruck am-
plitude and its interference with the Thomson and Ray-
leigh amplitudes play a dominant role, and to compare
the results with experimental data in the lanthanide and
actinide regions, thus extending the range of preliminary
calculations, carried out in Ref. 7 for ' Er. Since the en-
ergy region of interest is centered on the giant dipole res-
onance, the transition amplitudes can be computed in the
long-wavelength limit, R /K «1, where R is the nuclear
radius and A, the wavelength of incident radiation.

II. THE NUCLEAR MODEL

The IBM Hamiltonian describing the excitation of a
GDR and its coupling to low-frequency modes has al-
ready been discussed in a number of papers1-3, 5, 8-10

Therefore, the formalism will only be summarized here.
The GDR is represented in IBM by a P boson, with spin
and parity J = 1 and energy cp 77 5 A MeV in-
teracting with low-energy s and d bosons (J"=0+ and
2+, respectively) according to the following Hamiltonian:

A'=u(s, d)+E 8' +ho[(P+ XP) ~(d+ Xd)' ']

+b [(P XP)'"(d Xd)'"]' '

+b [(P+XP)' '[(d Xs+s+Xd)' '

*y (d+ Xd )' ']]' ' . (1)

Here, P(s, d) is the usual s-d boson Hamiltonian,

8 "'=a (P++P) (2)

The GDR widths, I „=I(E„), cannot be evaluated
within the framework of the model and are assumed to
depend on the excitation energy, E„,according to a phe-
nomenological power law:

I (E„)=kE„~, (3)

where the k and y parameters, as well as the dipole
operator coefFicient, D0, and the b coefBcients of formula
(1) are adjusted so as to give the best fit of the experimen-
tal photoabsorption cross section,

8 2

cr, (E)=
3A'c

E„r„S„
p2 p2

(E2 E2)2+ " E2+E2+
n 2 n

g

(4)

where E is the incident photon energy and
S„=~(1„)(D"'~(0, ) ~

are the dipole strengths.

whose diagonalization yields the energy spectrum of
low-lying collective states of positive parity, y is as-
sumed to have the same value as the corresponding pa-
rameter in the quadrupole-quadrupole term of 8(s,d)
(Refs. 4, 5, and 8) and is nearly equal to '—&7/2 for the
prolate nuclear shapes considered in the present work.
Finally, b0, b, , and b2 are coupling constants to be ad-
justed on the experimental photoabsorption cross section
for a given nucleus or isotope chain. The leading term,
responsible for the GDR splitting observed in photoab-
sorption experiments, is the quadrupole-quadrupole in-
teraction with coeNcient b2. The boson annihilation
operators have the general definition: A „=( —1) +"A (p= —J, . . . , +J).

The El transition from the mth low-lying state, ~I+ ),
with I=0,2, to the nth GDR state, ~1„),is given by the
reduced matrix element of the dipole operator: ' '
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1 + ( —1)
E„+E'+il „/2 E„E i I——„/2

(5)

In the case of inelastic scattering (E' (E ), the
differential cross section for unpolarized photons is sim-

ply

drain E'„'"(E,E', e) = ~P, ~'g, (e),

where the angular distribution of emitted photons, gj(0),
reads

go(8) = ( 1+ cos 0)/6,

g2 ( 8)= ( 13+ cos 0)/12,

(7a)

(7b)

when the angular momentum of the final nuclear state is
0 or 2, respectively.

In the case of elastic scattering formula (5), with J=O,
If =0&+ and E'=F., reduces to the nuclear Rayleigh am-

plitude

III. NUCLEAR RAMAN EFFECT

The transition amplitude from the ground state of an
even-even nucleus, with I, =0,+, through GDR. excita-
tion, to a final state, If =Ok or 2k, with emission of a
photon of energy E'=E E(—If ), which is a kind of nu-
clear Raman process, is easily expressed by means of the
nuclear polarizability, PJ, "with J=0 or 2, respectively:

2~ ~JIf
PJ=

[3(2If+ 1)]'~ (A'c )

x y (rf+[l8 '"ill„-) ( I„-i[8"'Ilo,+ )

(E)= —Po

Q2 1

E„—E —i r„/2

1+ E„+E+ir„/2
where the factor of 1/&3 has been introduced for later
convenience.

IV. DELBRUCK EFFECT

The vacuum polarization effect in the elastic scattering
of a photon by nuclei, or Delbruck effect, has been stud-
ied at the lowest-order Born approximation by a number
of authors, in particular De Tollis and co-workers, '

Papatzakos and Mork, ' Cheng, Tsai, and Zhou, ' while
higher-order corrections, until now, have been included
in the high-E limit analytical integral representations
suitable for numerical evaluation have been given.

Numerical values of Delbriick amplitudes have been
tabulated by De Tollis and Luminari' at E =30, 50, and
70 MeV and by Bar-Noy and Kahane' in the 1.33—28
MeV range: the latter values were given in small energy
bins for E~ ~ 9 MeV, but were inadequate in the energy
regions of our interest. Consequently, it became neces-
sary to obtain new, more accurate results at the energies
and scattering angles required.

The two independent complex amplitudes for circular-
ly polarized photons are a++ =a and a+ =a +,
defined in the Appendix. Here, the first label refers to in-
cident photon helicity and the second to the scattered
one. The differential cross section for pure Delbriick
scattering is written in terms of the above-mentioned am-
plitudes as follows:

(Er ~)=(z~) "o~~++~+—)(Er ~)~
dQ

TABLE I. Values of Im a++. The Delbriiek amplitudes are in units of (Zu) ro,' as usual, En denotes 10". The energies, E, are in
MeV.

8
deg

0
1

2
5

10
20
30
40
50
60
70
80
90

100
110
120

E=9
4.71E+0
4. 16E +0
3.27E +0
1.60E +0
6.37E —1

2.07E —1

9.79E —2
5.49E —2
3.33E —2
2. 12E —2
1.40E —2
9.45E —3
6.52E —3
4.40E —3
2.96E —3
1.97E —3

E =12

7.76E+0
6.01E +0
4.23E +0
1.71E +0
6. 19E—1

1.94E —1

8.98E —2
4.94E —2
2.95E —2
1.86E —2
1.22E —2
8. 14E —3
5.59E —3
3.79E —3
2.52E —3
1.68E —3

1.12E+ 1

7.58E+0
4.82E +0
1.69E +0
5.90E —1

1.79E —1

8. 15E —2
4.42E —2
2.61E —2
1 ~ 64E —2
1.07E —2
7. 11E—3
4.86E —3
3.28E —3
2. 18E —3
1.45E —3

E =18

1.49E + 1

8.75E +0
5. 19E +0
1.64E +0
5.55E —1

1.66E —1

7.43E —2
3.95E —2
2.34E —2
1.46E —2
9.41E —3
6.26E —3
4.32E —3
2.85E —3
1.94E —3
1.27E —3

E =21

1.88E + 1

9.74E +0
5.35E +0
1.59E +0
5.24E —1

1.54E —1

6.80E —2
3.58E —2
2. 11E—2
1.32E —2
8.52E —3
5.65E —3
3.79E —3
2.56E —3
1.72E —3
1.12E —3

2.30E+1
1.05E+1
5.45E +0
1.53E +0
4.97E —1

1.42E —1

6.27E —2
3.32E —2
1.92E —2
1.19E—2
7.69E —3
5.04E —3
3.43E —3
2.30E —3
1.55E —3
1.02E —3

2.74E + 1

1.09E + 1

5.42E +0
1.47E +0
4.75E —1

1.33E —1

5.78E —2
3.03E —2
1.76E —2
1.08E —2
6.99E —3
4.60E —3
3.12E —3
2.09E —3
1.41E —3
9.34E —4

E =30

3.19E+1
1.14E+1
5.39E +0
1 ~ 40E +0
4.48E —1

1.25E —1

5.39E —2
2.80E —2
1.61E —2
1.00E —2
6.41E —3
4.24E —3
2.85E —3
1.91E—3
1.29E —3
8.44E —4
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TABLE II. Values of —Ima+ . The Delbruck amplitudes are in units of (Za) ro, as usual, En denotes 10". The energies, E, are
in MeV. We adopt the definition of the spin-fiip amplitude, a+, given by De Tollis et a/. , Nuovo Cimento A32, 227 (1976) [formula
(13)];therefore, it has the opposite sign with respect to that of Refs. 14 and 15.

0
deg

0
1

2
5

10
20
30
40
50
60
70
80
90

100
110
120

E=9
0.00

9.04E —2
1.75E —1

2.42E —1

2.01E —1

1.04E —1

5.99E —2
3.86E —2
2.73E —2
2.07E —2
1.65E —2
1.37E —2
1.16E —2
1.02E —2
9.19E—3
8.41E —3

E =12

0.00
2. 15E —1

3.20E —1

3.42E —1

2.30E —1

1.01E —1

5.38E —2
3.36E —2
2.32E —2
1.73E —2
1.36E —2
1.12E —2
9.47E —3
8.26E —3
7.41E —3
6.76E —3

E =15

0.00
3.58E —1

4.58E —1

4.09E —1

2.37E —1

9.36E —2
4.81E —2
2.93E —2
1.99E —2
1.47E —2
1.1SE—2
9.43E —3
7.93E —3
6.90E —3
6. 17E —3
5.62E —3

E =18

0.00
5.02E —1

S.82E —1

4.56E —1

2.37E —1

8.62E —2
4.35E —2
2.58E —2
1.74E —2
1.27E —2
9.90E —3
8. 10E —3
6.79E —3
5.90E —3
5.27E —3
4.80E —3

E =21

0.00
6.40E —1

6.92E —1

4.82E —1

2.32E —1

7.96E —2
3.91E—2
2.31E—2
1.54E —2
1.12E —2
8.69E —3
7.09E —3
5.93E —3
5. 15E —3
4.59E —3
4. 18E —3

E =24

0.00
7.77E —1

7.89E —1

5.01E—1

2.22E —1

7.37E —2
3.56E —2
2.07E —2
1.38E —2
1.OOE —2
7.73E —3
6.30E —3
S.26E —3
4.57E —3
4.07E —3
3.70E —3

E =27

0.00
9.02E —1

8.70E —1

5.06E —1

2. 13E—1

6.83E —2
3.24E —2
1.90E —2
1.25E —2
9.04E —3
6.96E —3
5.66E —3
4.72E —3
4. 10E —3
3.65E —3
3.32E —3

E =30

0.00
1.03E +0
9.SOE —1

5. 15E —1

2.06E —1

6.35E —2
2.98E —2
1 ~ 74E —2
1.14E —2
8.23E —3
6.33E —3
5. 14E —3
4.28E —3
3.71E —3
3.30E —3
3.01E —3

where Z is the atomic number, a the fine-structure con-
stant and ro the classical electron radius. We have also
calculated the Delbriick amplitudes, for the sake of com-
pleteness and comparison with the values in litera-
ture, ' ' in the 9—30 MeV energy range, for scattering
angles, 6, ranging from 0 to 120, with particular care for
small angles, where the amplitudes show rapid variations.
In Ref. 14 imaginary parts were given as a threefold in-
tegral representation [Eq. (3)], while real parts were given
[Eqs. (5) and (15)] as a sum of a fourfold integral repre-
sentation and a subtraction term: the latter, related to
the backward scattering amplitude and thus vanishing in '

the case of Re a++, involves a threefold integration, the
inmost one being a principal value.

The formulas of Ref. 14 have been translated into new
numerical programs and the integrations performed by

means of a Monte Carlo adaptative subroutine, RIwIAD
(Riemann integration with interval adjustment), written
by Lautrup' and slightly modi6ed in order to permit
multiple runs, and the CAUCHY subroutine written by
Kolbig for the evaluation of principal value integrals.
The calculations, carried out on a number of VAX
machines at the Department of Physics of Bologna Uni-
versity, required about 450 d CPU time: though this
amount of CPU time was shared between several VAX
computers available at the department, the calculations
required more than a solar year.

In evaluating the scattering amplitudes at 0=0, use
has been made of suitable analytical series. ' For the oth-
er angles, we follow the method of Ref. 14. The threefold
integration in the imaginary parts was carried out in only
a few Monte Carlo fast iterations at small angles up to a

TABLE III. Values of Re a++. The Delbriick amplitudes are in units of (Za) ro; as usual, En denotes 10". The energies, E, are
in MeV.

0
deg

0

2
5

10
20
30
40
50
60
70
80
90

100
110
120

5.29E +0
3.45E +0
2.36E +0
9.97E —1

3.97E —1

1.41E —1

7.72E —2
4.56E —2
3.04E —2
2.08E —2
1.50E —2
9.35E —3
6.96E —3
4.85E —3
3.32E —3
2.21E —3

E =12

7.48E +0
3.83E +0
2.37E +0
8.33E —1

3.40E —1

1.17E —1

6.32E —2
3.61E —2
2.32E —2
1.54E —2
9.83E —3
7.49E —3
5.97E —3
3.68E —3
2.43E —3
1.58E —3

E =15

9.69E +0
3.99E +0
2.28E +0
7. 18E —1

2.67E —1

9.68E —2
5.04E —2
3.16E —2 .

1.92E —2
1.30E —2
8.75E —3
6.47E —3
4.32E —3
3.43E —3
2.25E —3
1.39E —3

E =18

1.19E+1
3.78E +0
2.03E +0
6.53E —1

2.38E —1

8.57E —2
4.27E —2
2.50E —2
1.72E —2
1.12E —2
7.77E —3
5.50E —3
3.76E —3
2.47E —3
1.96E —3
1.20E —3

E =21

1.42E + 1

3.66E +0
1.95E +0
5.92E —1

2.06E —1

7. 18E —2
3.81E —2
2.26E —2
1.47E —2
9.78E —3
7.37E —3
4.79E —3
3.51E—3
2.30E —3
1.62E —3
1.08E —3

E =24

1.64E+ 1

3.65E +0
1.82E +0
5.06E —1

1.91E—1

6.71E —2
3.27E —2
1.87E —2
1.35E —2
8.30E —3
5.79E —3
4.59E —3
3.0OE —3
1.98E —3
1.26E —3
9.57E —4

E =27

1.87E+1
3.40E +0
1.66E +0
4.82E —1

1.72E —1

5.83E —2
3.01E—2
1.73E —2
1.12E —2
7.44E —3
5.69E —3
3.72E —3
2.66E —3
2.06E —3
1.30E —3
9.35E —4

E =30

2.09E+ 1

3.29E +0
1.54E +0
4. 18E —1

1.49E —1

5.48E —2
2.79E —2
1.66E —2
1.03E —2
7. 17E —3
4.92E —3
3.60E —3
2.SOE —3
1.74E —3
1.22E —3
8.08E —4
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TABLE IV. Values of —Rea+ . The Delbruck amplitudes are in units of (Za) ro; as usual En denotes 10". The energies E, are
in MeV. We adopt the definition of the spin-fiip amplitude, a+, given by De Tollis et al. , Nuovo Cimento A32, 227 (1976}[formula
(13)j; therefore, it has the opposite sign with respect to that of Ref. 14 and 15.

0
deg

0
1

2
5

10
20
30
40
50
60
70
80
90

100
110
120

0.00
1.26E —1

1.45E —1

1.18E —1

8.52E —2
4.76E —2
3.12E —2
2.23E —2
1.73E —2
1.43E —2
1.20E —2
1.03E —2
9.27E —3
8.50E —3
7.82E —3
7.42E —3

E =12

0.00
1.86E —1

1.66E —1

1.15E —1

7.68E —2
3.92E —2
2.51E —2
1.80E —2
1.38E —2
1.10E —2
9.43E —3
8.04E —3
7. 18E —3
6.50E —3
5.98E —3
5.64E —3

E =15

0.00
2. 12E —1

1.62E —1

1.04E —1

6.97E —2
3.32E —2
2. 14E —2
1.49E —2
1.13E —2
9.06E —3
7.59E —3
6.51E —3
5.78E —3
5.27E —3
4.94E —3
4.65E —3

E =18

0.00
2.09E —1

1.67E —1

9.75E —2
6. 14E —2
2.97E —2
1.82E —2
1.25E —2
9.60E —3
7.59E —3
6.29E —3
5.52E —3
4.96E —3
4.49E —3
4. 19E—3
3.96E —3

E =21

0.00
2. 10E —1

1.51E —1

9.13E—2
5.72E —2
2.58E —2
1.57E —2
1.09E —2
8.30E —3
6.51E —3
S.SSE —3
4.77E —3
4.31E—3
3.96E —3
3.67E —3
3.98E —3

E24

0.00
2.09E —1

1 ~ 41E —1

8.54E —2
5.07E —2
2.35E —2
1.37E —2
9.74+ —3
7.27E —3
5.84E —3
5.00E —3
4.24E —3
3.84E —3
4.02E —3
3.26E —3
3.OSE —3

E =27

0.00
1.92E —1

1.29E —1

8. 11E—2
4.33E —2
2. 11E—2
1.23E —2
8.68E —3
6.53E —3
5.22E —3
4.42E —3
3.86E —3
3.83E —3
3. 11E—3
2.90E —3
2.73E —3

E =30

0.00
1.88E —1

1.30E —1

7.62E —2
4.20E —2
1.92E —2
1 ~ 15E —2
7.91E—3
5.91E—3
4.75E —3
4.02E —3
3.76E —3
3. 10E —3
2.83E —3
2.62E —3
2.77E —3

maximum of about 150 iterations in the less favorable
cases of large angles for Im a++. On the contrary, the
fourfold integration in the real parts required up to
thousands of fairly slow iterations, more than 8500 in the
less favorable case of large angles for Re a+, while cal-
culation of the subtraction terms required dozens of very
slow iterations. The convergence was checked by chi-
square tests of the iteration procedure.

Tables I and II give the values of the imaginary parts,
Tables III and IV the real parts with three significant di-
gits. The relative errors of the imaginary parts are equal
to or smaller than 1%. Since the real parts are given as
sums of an integral representation and of subtraction
terms, their relative errors depend on the ratio of the con-
tributions: both subtraction terms have a l%%uo precision,
while integral representations are less accurate. In the
complete values of Re a++, where the subtraction terms
vanish, relative errors come from the integral representa-
tions and are smaller than 5% for 0&60, smaller than
10% for larger angles. In the case of Re a+, where the
subtraction terms are present and large, the relative er-
rors are usually 4% at small angles (O& 5'), 3% or even
2% at intermediate angles (up to 40'), and 1% at large
angles, with a few exceptions of 2% in some high-E&

I

cases. The comparison with previous results in Ref. 14 at
Ez =30 MeV and Ref. 18 at E~ =9 MeV is satisfactory
and within the limits of the computational method. It is
worth recalling that the global minus sign of the Im a+
values given in Table I of Ref. 18 is wrong, once the cor-
responding real parts are assumed to be positive.

V. ELASTIC SCATTERING CROSS SECTION

Elastic scattering in the GDR region is taken as the
coherent superposition of the above-mentioned nuclear
Rayleigh and Delbriick e6'ects with the classical Thom-
son amplitude, written in its simplest form as:

(10)

where A is the mass number, M the atomic mass unit, e,&

and c& the initial and final photon polarization vector, re-
spectively.

Let A&z, with A, , A, '=+1, be the total amplitude of
elastic scattering of photons with initial polarization A,

and final polarization A, '. The differential cross section
for unpolarized photons'in the initial and final states is

d„"(E„O}=,' X I A««, , O}l'-
u, '

=
—,
' g I ~ APq (E~, O)~ +

~ Ao+ A "(E )~ [—,'(1+ cos O)+ —,'ll, 'cosO]+ A;„,(A, A', E~, O}I . . ,

A, A,
'

Here, the Delbriick amplitudes, A &&., are connected to the dimensionless quantities, a&&, defined in the previous section
and listed in Tables I—IV by the relationship

A P~ (E,O) =Z a roa„~ (Er&O) .

Finally, A '"'(A, , A, ',E,O) is the interference of the nuclear Rayleigh, Thomson, and Delbriick amplitudes:

A'"'(l, , l, ';E~, O)=2[ Re[A/& (Er, O)] [Ao+ ReA (Er)]+ 1m[A&&. (E~,O)] ImA (E )j d' z &. (O) .

(12)

(13)
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Here, d'
& & is a signer rotation matrix, with ele-

ments 1s6Gd 232Th

TABLE V. IBM parameters.

238U

d', , =d', , = cos ( —,'8),
dI (=d' ) )=sin ( —,'0) .

(14a)

(14b)

It has to be pointed out that the elastic scattering cross
section defined by formulas (10)—(14) lacks a number of
contributions of minor importance in the energy and an-
gular ranges we are interested in, 8 ~ E& ~20 MeV and
30' + 0 ~ 120', respectively. For a thorough discussion of
a more general form of the elastic cross section, the
reader is referred, for instance, to Ref. 22, where an
analysis of scattering of 2 —10 MeV photons by U is
carried out, with the addition of an incoherent term to
the elastic cross section, due to nuclear resonance Auores-
cence from bound levels, whose importance decreases
with increasing photon energy and becomes negligible in
the GDR region. For analogous reasons we have omitted
the Rayleigh scattering from atomic electrons in the
coherent cross section, because it is important at smaller
energies and angles than those considered in the present
work.

At higher photon energies different corrections become
sizable, for instance, the contribution of other giant reso-
nances, such as isoscalar and isovector quadrupole excita-
tions, to the nuclear Rayleigh amplitude. The experi-
mental uncertainties of the photoabsorption cross sec-
tion, on which the nuclear model parameters are adjust-
ed, are, in general, too large for reliable evaluation of the
effect of E2 giant resonances in the GDR energy region.
Moreover, formula (10) for the Thomson amplitude is
strictly correct only in the Ez ~0 limit. At high photon
energy, where the long-wavelength approximation on
which our formulas are based is no longer valid, a correc-
tion due to proton and virtual meson form factors be-
comes important (see, for instance, Ref. 21). The Thom-
son contribution to the scattering cross section has the
same angular dependence as the nuclear Rayleigh term
and, for the nuclei and, the energy region considered in
the present work, it is always smaller by at least a factor
of 3: that is why we have used the classical limit given by
formula (10).

cd (MeV)'
ap (MeV)'
a& (MeV)'
aq (MeV)'
x'
a, (MeV)'
a4 (MeV)'
cp (MeV)
bp (MeV)
a, (MeV)'
b2 (Mev)
Xp
Dp (fm)'
k (MeV' ~)"
y'

12
0.0
0.0060
0.0046

—0.0162
—0.9790

0.0440
0.0125

14.30
0.0
0.500
0.360

—0.9790
8.0
0.0050
2.5

12
0.0

—0.0014
0.0035

—0.0108
—1.3280

0.0
0.0

12.60
0.200
0.0
0.300

—1.3230
10.4—11.4
0.0065
2.5

15
0.0

—0.0014
0.0028

—0.0116
—1.3230

0.0
0.0

12.90
0.0
0.0
0.250

—1.3230
10.4—11.4
0.0065
2.5

's-d boson parameters, defined in Ref. 5.
P-boson parameters of formula (1).

'Coe%cient of the E1 operator in formula (2); for Th and 'U
see Figs. 5 and 6.
Parameters of formula (3).

6Yabs

mentioned isotopes are listed in Table V: the s-d boson
parameters have been adjusted on the experimental ener-
gies and E2 transition strengths of low-lying positive-
parity states, the P-boson parameters derive from a best
fit to the experimental photoabsorption cross sections,
taken from Ref. 25 for ' Gd and from Ref. 26 for Th
and U. The experimental and calculated cross sections
are shown in Figs. 1 —3.

Once the IBM parameters have been adjusted on low-
energy levels and photoabsorption data the calculation of
scattering cross sections is performed without further de-
grees of freedom.

The differential cross section for elastic scattering of 12
MeV photons by ' Gd is plotted in Fig. 4 as a function
of the scattering angle. The separate contributions of

VI. RESULTS AND COMMENTS

(mbj

300—

156Gd

The scattering formalism discussed in the previous sec-
tions has been applied to deformed heavy nuclei, ' Gd,

Th, and U, for which both the low-energy collective
states and the giant dipole excitations can be satisfactori-
ly reproduced within the IBM framework. In the case of
gadolinium the lowest-order Born approximation to the
Delbriick amplitudes is expected to be accurate enough
to make Coulomb corrections negligible, owing to the
small value of the expansion parameter, Za= 37 This
is, of course, more questionable for uranium and thorium,
where sizable discrepancies between calculated and ex-
perimental scattering cross sections at intermediate an-
gles have been interpreted in terms of Coulomb correc-
tions

The IBM-Hamiltonian parameters used for the above-

(e fmj

200— — 200

100— —100

)I I0- "'

10 12 14 16 18 20 22 24

E& (MeV)

FIG. 1. Photoabsorption cross section by "Gd. Solid line:
present calculations with the parameters of Table V; experimen-
tal data are taken from Ref. 25. The straight line segments at
the bottom represent the calculated dipole strengths, S„, in
e fm units.
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Th il
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FIG. 2. Photoabsorption cross section by Th. Solid line:
present calculations with the parameters of Table V (DO=10.4
fm); experimental data are taken from Ref. 26.

uncertainties in this energy region, as is evident from a
comparison of Refs. 26 and 27.

In the case of U, the discrepancy between the
present calculation and the experimental data con6rms
the conclusions of Ref. 23, where a similar effect has been
interpreted in terms of Inissing Coulomb corrections to
the Delbruck amplitudes. Also the reined analyses car-
ried out in Ref. 22 for 2 U and in Ref. 24 for both 2 sU
and Th support the conclusion that Coulomb correc-
tions play an important role in the Delbriick scattering of
9 MeV photons by actinides.

The introduction in the present work of a nuclear mod-
el for Rayleigh scattering does not improve the agree-
ment between calculations and experiments obtained in
Refs. 22-24, where use had been made of Lorentzian fits
or optical theorem plus dispersion relations. The present
approach proves successful in reproducing large-angle
scattering, where the Delbriick effect plays a minor role,
but is not negligible thanks to the interference term (13)
and inelastic scattering to the 2&+ state, provided that the

Thomson, Delbruck, and nuclear Rayleigh eff'ects, as well
as the absolute value of the interference term of formula
(13), are also plotted as functions of 8. As expected, the
pure Delbruck contribution decreases rapidly with in-
creasing 8, but the interference term, linear in the
Delbriick amplitudes, is never negligible: being positive
at small angles, it causes a sizable increment there of the
total cross section; at large angles (8)80') it becomes
negative and produces a non-negligible decrement. The
nuclear Rayleigh contribution fixes the order of magni-
tude-of the total cross section everywhere except at small
angles, where the Delbriick term is dominant.

The elastic scattering of 9 MeV photons by Th and
U is plotted in Figs. 5 and 6, respectively, where the

solid and dashed curves correspond to two choices of the
Do coefficient in the electric dipole operator of formula
(2). The lower Do value in Table V reproduces the exper-
imental photoabsorption data of Ref. 26, as shown in
Figs. 2 and 3, the higher value being compatible with the
higher limit of the data at E&=9 MeV. It has to be
pointed out that the experimental photoabsorption cross
sections for thorium and uranium are affected by large
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FIG. 3. Photoabsorption cross section by U. Solid line:
present calculations with the parameters of Table V (D0=10.4
fm); experimental data are taken from Ref. 26.

FI(jr. 4. DifFerential cross section for elastic scattering of 12
MeV photons by "Gd. Solid line: calculated total elastic
scattering cross section; dashed line: nuclear Rayleigh contri-
bution; dotted line: Thomson contribution; double-dot-dashed
line: Delbriick contribution; dot-dashed line: interference term
between nuclear Rayleigh, Thomson, and Delbriick amplitudes
[formula (13}].
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higher D0 value of Table V is adopted. While Coulomb
corrections apparently are of minor importance in the en-
ergy region of 4-7 MeV, the situation in the upper tail
of the giant dipole resonance is not yet clear and new
measurements in the 9—18 MeV range at scattering an-
gles smaller than 90' are desirable in order to throw light
on the rnatter.

It is worth mentioning that in recent measurements of
scattering of 25 —100 MeV photons by Pb in the angu-
lar range 8= 15'—80 (Ref. 30) the importance of
Coulomb corrections is smaller than expected, even at
8=15'. On the other side, the computational method for
Coulomb corrections, based on the impact-factor approx-
irnation, ' has to be carefully reinvestigated, as shown in
Ref. 31. In any case, the Delbriick amplitudes tabulated
in the present work could be considered a useful supple-
rnent of previous calculations. '
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APPENDIX: DELBRUCK
SCATTERING AMPLITUDES

In this section, the main formulas for Delbriick ampli-
tudes are briefly recalled; they have been originally de-
rived in the lowest perturbative order by De Tollis and
co-workers' ' using a dispersion relation at fixed
momentum transfer. Therefore, we refer to the original
papers' ' for a detailed derivation, while in the follow-
ing the relevant results are only shown for reader's con-
venience.

The system of units A=c=m, =1 is assumed, where
m, is the electron rest mass; the Delbruck scattering is
described by means of two independent (complex) ampli-
tudes for circularly polarized photons, namely
a++ =a and a+ =a +, labels + and —referring
to helicities, the first subscript to the incoming photon
(i), the second to the scattered one (0).

The circular polarization states are given by the four-
vectors

1(e',")—: (e'j'+it, e,"'),O
l

(A1)
(

4020 140
I

60 80 100 120
8 (deg)

FIG. 6. Differential cross section for elastic scattering of 9
MeV photons by SU. Solid line: IBM calculations with
DQ 10.4 fm; dashed line: IBM calculations with DQ = 1 1 ~ 4 fm.
Experimental data: 4, Ref. 24; 0, Ref. 23.

(o)(e,")' —= (e", —
E X,e,"),0

0 V'2

where A, ; (A,, ) for incoming (outgoing) photon is equal to
+1 and —1 for right- and left-handed circular polariza-
tion, respectively. Moreover,
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e"'=e", =(O, 1,O),

e2'=( —cos —,'8, 0, —sin —,'8),
e12'=( —cos—,'8, 0, sin —,'8),

(A2)

where 0 is the scattering angle.
De Tollis et al. ' ' give the imaginary parts of

Delbruck amplitudes in terms of threefold integrals
which contain only irrational and elementary functions of
the arguments:

Ima++(d p)= f dy f dx f dzA+(x, y, z;d p), k )2, x+ =[p+(k —4y)' ], b(y)=&1 —I/y
KP 1 X p+- (A3)

where the kinematical variables, p and d, are defined as
follows:

d =k sin —,'0,
The real- parts of the amplitude are given as subtracted

dispersion relations, free from singularities in the fourfold
integral representation:

(A4)
p =k cos~8,

and k is the photon energy in unit of m, . If k & 2 in Eq.
(A3), Ima++ vanish.

+—
I

Rea++(d, p) =Cz(d)

+ I'2p' - dp'
a(d) p p' —p

(A5)

D+(p, d) = I dy f dx f dze(l ) A+(x,y, z;d, p) (k )2), (A6)
7TP 1 X p

where a(d)=(4 —d )' when d(2 and a(d)=0 otherwise. The step function, e(x), takes the values e(ixi)=1,
e( —ixi)= —1, the variable, l, being defined later. As usual, P means the principal value of the integral. The A+ func-
tions in Eqs. (A3), and (A6) are then given by

A+ (x,y, z;d, p) = (2y +1M) R 01'+ —2y + +y(d —2d y+p —2) R 02'
1+y(z —1) (, 1

z +1 2y(p —2)
z —1

2z2

i
(z' —1)'

p+d (1) z +] 1 z + ] I 12 2 (1)

z —1 z —1&0 z —1

k2 1+y(z —1)
y(y+p) z' —1

p2 (2p +(2 2

+d (I —r ) (R"' —R'" )
z —1

(R'3' —R13')— (R' —R )+r R01
z —1

4 2
Z +6Z + 1 (R(4) —R(4) )
4 2( 2 1 )3 02 12

r12(3z +1)+
y(z —1)

1+2d z +1 (R(21 —R(2))
z —1

+1 2+1 (R( ) R( 1)+ z (R(2) R(21) R( )

4 03 13 2 03 13 01
z —1

(A7)

(x,y, z;d,p) =— (1)

+d p
2p+ I R 01 2 1+y(z2 —1)
z —1 2 g+P

2z'
~12

z —1

2+1
X R"' —R"' — (R "1—R1»)02 12 2( 2 1 )3z

2 2

+ 1(I 2 r )k2R111+,k2R121 k 1+y(z —1)
T 12 01 2 Ol

( + )

Z2+1 2+1 2
(R(3) R(3))+ ('+') (R(31 R(3))+2 ( + )R111

2(z2 1)
02 12 2(Z2 1)2 03 13 y y I 12

2z +1 (1) (1) (S)

(z —1)2 2 r12(R 03 R 13 ) r12R 01 (AS)
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where the following variables have been introduced:

x —d x+0
r12=,p=, l =x+4y —d

l = l /2p, A. =x —l

C +Ck 4d A.

a;=[n, (n; —4d A.)]', b;k=, c, =n, +a; (i, k =0, 1,2, 3),
Qi Qk

no=(x+d ), n2=l +4d x+16d y (1—z ),
n =(i+2d ) n =i +4d x+16d (1—z )

CiCk

The functions, R k', s = 1,2, . . . , 6, in Eqs. (A7), and (A8} are defined as follows:

16(b;k —1), , An; nk,
R (k~, R;k = 16Abk

QiQk C;CJ

(A9)

(A10)

(Al 1)

R(2) «R(s)16k,b;k
ik ik

C;Ck

T

n;

2y(y+p) a;c; QkCk

4knk
3

Qk
(A12)

16&jk
R,-k =

CiCk

(6) A,
2 nI.x+1, Rk =

4y(y+p} 2

4A, nk
2

Finally, the C+(d) functions of Eq. (A5) are related to the backward scattering amplitude,

C+ (d) = (Rea++ )[i —d s-
+—

(A13)

which implies C+(d)=0 since a++ vanishes in the backward direction. Therefore, the only subtraction term to be
evaluated is C (d), which is expressible by means of a threefold integral

Bi(y,z, g;d )
+Bz(y, q, g;d )

S
(A14)

Moreover, the B1 and Bz functions are given by the following expressions:

B,(y, q, g;d)=
s1sz 2ys1sz

»y2 y1y2

(Si+$2) u r y(s1 +$2)
b (y)+ — + arcosh&y

g —r 0 i+b(y)+ ln
rya', a ', b(y)—

2u u 1 a2+b(y)+, , ln
rz ru' az a~ b(y)— (A15}

2

B~(y, q, g;d)= — +, ,+, , b(y)
r ry' y(pi —p2)

y 1yz 2y 1yz

2ry ry
2 2y1yz& y 1yz

(pi —p2)'

2y 1yz

r arcosh&y-
y'(y —r)

a', +b(y)
ln

u 'a ', a ', b(y)—.
~here the relevant quantities on the right-hand side are defined as follows:

q1 ~2 ~3 +2dq3 P2 6 1+~2+03 + d 4dq 3 ~3 ~3+d

4pi =q i +q2+q3, 4u =U = d (q i +q2), si z =5+pi z, yi 2 y+pi 2, u =u (y s)

a', =(1+u'/ry )'~, a&=(1+r/u')'~, b(y)=(l —I/y)'~, q =qi+qz+q3 .

(A17)

It is worth recaHing that the forward scattering amplitude has been also derived by De Tollis' as infinite but rapidly
convergent analytical series. In the photon energy range that we have considered (Er )2m, ), the following formulas
hold:
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2

—1n—+34 P2

P
Rea++ = ——+—7 9 p

9p 4 2

1 41n—
2 p

14 4
Ima++ = 1n——

9mp p

2 " (2n —1)!!
(2n +2)!!

4ln—
P

3
109 p 1 4+——1n—
42 m. 3 p

4n n +n 1

n (2n —1)

(2n —1)!! 4n —n +n —1 q„+~
(2n +2)!! n ~( 2n —1)2

2

+ 3 — ln ———+ +g(3)
4 7

6 p 4 12

(A18)

where p =2m, /E .

4
X 1n——

P

1 12n~ —2n +1 + 6n +2n —1

k=, k(2k —1) 2(4n —n +n —1) n(n+1)(2n —1)

(p ~ 1, g(3)=1.202056903),

(A19)
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