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Elastic scattering of protons and neutrons from Pb in the energy range up to 61.4 MeV is ana-

lyzed in order to establish a consistent phenomenology with which to examine the recent results of
dispersion theory. The present analysis avoids conventional assumptions about the energy depen-
dences of potential depths or geometrical parameters and attempts to include estimates of the un-

certainty in our knowledge of the derived potential parameters. Recently reported evidence for
energy-dependent geometrical parameters in the n+ Pb potential is supported by the present
analysis, but no comparable eAect is observed for phenomenological proton potentials in the range
of available data (E~ & 9 MeV). The present analysis shows that, unlike the situation for heavy-ion
scattering, the Coulomb potential does not cut off the imaginary potential for p+ Pb. Conse-
quently, no rapid excursions in the parameters of the p + 'Pb potential are expected to occur until
the incident energy is well below the Coulomb barrier where the nuclear potential is essentially
unobservable.

I. INTRODUCTION

After more than five decades of observation of
nucleon-nucleus scattering, it should be possible to con-
struct a satisfactory representation of this basic process,
but it should not be surprising to learn that the reaction
mechanisms are more complicated than our simplest po-
tential models. For example, recent observation' of a
rapid energy dependence of the geometrical parameters
of the n + Pb optical potential has been interpreted as
evidence for the dispersion correction to the optical po-
tential. A dispersion correction was discussed by Fesh-
bach in 1958 in the context of a generalized optical po-
tential, but it was usually omitted in phenomenological
parametrizations of scattering data. During the last few
years, the quality and scope of neutron scattering data
has improved to such an extent that a careful examina-
tion of dispersion corrections has become possible and
necessary.

Mahaux and co-workers have considered the problem
of dispersion corrections in detail. (See Refs. 5 —10 and
references cited therein. ) They argue (i) that the real part
of the optical potential V(r, E) at positive energy should
connect smoothly, but nontrivially, to the shell model at
negative energies through the dispersion correction, (ii)
that more detailed information about V(r, E) can be ob-
tained from the study of differential and polarization
cross sections at positive energy than from the study of
bound state properties, and (iii) that an improved under-
standing of the shell model potential can be obtained by
extrapolation of the scattering potentials to negative en-

ergy via the dispersion correction. Successful completion
of such a program would not only unify the description

of scattering data over a wide range of energies but would
also provide a completely independent determination of
absolute spectroscopic factors for bound quasiparticle
states that could be compared with recent results from in-
elastic electron scattering and (e,e'p) reactions. "'

The accuracy with which the optical potential can be
extrapolated to negative energy is a sensitive function of
the phenomenological potential parameters that are used
as input to the dispersion calculation. Mahaux and Sar-
tor have emphasized the need for an improved analysis of
scattering data particularly for p + 0 Pb, ' and the
present work is intended to meet that need. In Sec. II we
review some basic results of dispersion theory and
present a critical examination of the existing data and
previous analyses of the p+ Pb and n+ Pb poten-
tials. Section III describes three different approaches to
the problem of phenomenological potentials, and Sec. IV
contains new results for the magnitude and energy depen-
dence of the dispersion correction. The approach is un-
mistakably empirical, but considerable care is needed at
just this point if the full potentialities of the dispersion
theory approach are to be realized.

II. THE DISPERSION RELATION APPROACH

Following Mahaux and Sartor, the real part of the
mean field is written

V(r, E)= VHF(r, E)+XV(r,E),
where VH„(r, E) is a Hartree-Fock —type contribution
whose energy dependence is expected to be smooth.
b, V(r, E) is the dispersive contribution that is obtained
from the imaginary part of the optical model potential by
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the dispersion integral

b, V(r, E)=—,' dE',E' —E
where I' indicates a principal value. Moreover, the radial
moments of the dispersive contribution are related to the
corresponding moments of the imaginary potential by

where

[r~]~(E)= I W(r, E)r~dr .
A 0

When W(r, E') changes rapidly with energy as new chan-
nels open near the Fermi energy and new target excita-
tions are possible, EV(r, E) can be substantial. At low
energy b, V (r, E) has the form of a surface-peaked poten-
tial which, when added to VHz( r, E), results in an
energy-dependent geometry for the real, central potential,
V(r, E) The r. esulting rapid change in the real part of
the potential, V(r, E), at low energy has been called the
Fermi energy anomaly. It is an anomaly in the sense that
it is a departure from earlier phenornenological descrip-
tions, but, in principle, it is a necessary correction for the
finite probability that the target does not remain in its
ground state during the elastic scattering process.

A similar effect has been observed in the elastic scatter-
ing of heavy ions near the Coulomb barrier. ' ' As the
bombarding energy approaches the Coulomb barrier
from above, the empirical imaginary potential decreases
sharply since nonelastic channels are effectively closed by
the barrier. A corresponding increase in the depth of the
real potential and an increase in the cross section for
sub-barrier fusion are both described by a dispersion in-
tegral over the rapidly varying imaginary potential.
(More recent analysis' suggests that the decrease in ab-
sorption at a given radial distance is due to a decrease in
the radial extent of W(r, E), i.e., an energy-dependent
geometrical efFect. )

Evaluation of EV(r, E) for nucleon scattering requires
knowledge of W(r, E') over the entire energy range —~
to + 00, even though, in practice, phenornenological
analysis of scattering data provides less than perfect
knowledge of W(r, E') over the energy range from a few
MeV to at most a few hundred MeV. We follow the usu-
al practice ' that the imaginary potential at nega-
tive energy can be described by symmetry, i.e.,
W(r, E++E')= W(r, E& E'), where Ez is—the Fermi en
ergy.

The method has been applied to the n + Pb system
using two different prescriptions. Mahaux and Sartor
represent the energy-dependent imaginary potential in
terms of three radial moments, calculate the dispersive
correction for each moment and reconstruct the central
real potential from these calculated moments. Johnson,
Horen, and Mahaux' represent the energy dependence of
the imaginary potential with a volume absorption term
(Woods-Saxon form) and a surface absorption term
(derivative Woods-Saxon), each with a constant geometry

but with energy-dependent depths. Their final real poten-
tial consists of three terms: a volume Woods-Saxon com-
ponent that varies smoothly with energy, a volume
Woods-Saxon term derived from a dispersion integral
over the imaginary volume potential, and a surface com-
ponent with energy dependence obtained from the disper-
sion integral over the surface imaginary component.
Both methods require detailed information about the
phenomenological imaginary potential W(r, E ). Since
this information is available, both methods provide a
good description of the n + Pb scattering over a wide
range of positive energies, and both provide a suitable
basis for extrapolation of the mean field to negative ener-
gies.

The situation for p + Pb is considerably less satisfac-
tory. ' One reason for this is that the extrapolation from
positive to negative energy covers a considerably greater
energy range for protons than for neutrons. The
Coulomb barrier for protons ( —16 MeV for Pb) masks
the nuclear potential below this energy, while for neu-
trons very accurate determinations of the nuclear poten-
tial have already been carried out down to 4 MeV.
Moreover, the presence of isobaric analog resonances
cornplicates the energy dependence of the proton optical
potential in the range 14 MeV &E (20 MeV. Another
source of difhculty in the p + Pb case is the lack of con-
sistency in previous analyses of proton scattering. This
lack of consistency must now be considered brieAy before
we introduce the present analysis.

In their detailed treatment of dispersion effects in
n + Pb, Johnson et al. ' based all calculations on fits
to the original measurements of total cross sections,
differential elastic scattering cross sections, and analyzing
power. By contrast, Mahaux and Sartor ' started with
optical model potential parameters from a wide variety of
sources. They discussed the sensitivity of the results to
the selection of starting values. One issue was whether or
not the original authors allowed the geometrical parame-
ters to vary in their calculations. A second criterion was
the "goodness of fit" as assigned by Percy and Percy' in
their compilation of published optical potentials. For
neutron scattering, the procedure worked fairly well since
most of the measurements were of recent vintage. In Ref.
9 their selection of neutron potentials was enhanced by a
set of individual best fit calculations of Johnson which
met all of the Mahaux-Sartor criteria for acceptable po-
tentials.

For proton scattering, the tabulated potentials were
based on analyses spread over many years. Some of the
potentials were based on assumptions that are now con-
sidered implausible, while others imposed various con-
straints (e.g. , constant geometry for the real part of the
potential) that could mask the very effects of interest in
the present application. The choice was then either to in-
clude questionable potentials or to apply the criteria dis-
cussed above strictly and thus reduce the input data
available for the dispersion calculations. When the strict
criteria were applied, all of the data below- E =20 MeV
were excluded except one set at 16 MeV, and that energy
lay very close to the isobaric analog resonances at 15.6
and 16.3 MeV. ' Dispersion calculations based on the re-
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stricted set of potentials (but including the 16-MeV re-
sults) yielded very strong energy dependences for the mo-
ments and the ratios of the moments of the real potential.
Extrapolation to negative energy lacked the stability that
was obtained for neutron scattering. At least two reasons
for this difficulty suggest themselves: (i) The energy
range of the extrapolation is much larger for the
p + sPb case than for the n + Pb case, and (ii) the ex-
trapolation of the proton potential is strongly influenced
by the least well determined point in the data set, i.e., the
potential at 16 MeV, where isobaric analog resonances
cannot be ignored. In view of the apparent success of the
dispersion method for n + Pb, the very large effort thus
far invested in the method, and the unsatisfactory condi-
tion of the p+ Pb calculations, the need for a new
analysis of the p + Pb potential is clear.

III. PHENOMENOLOGICAL ANALYSIS

A. Individual best fits

We define the empirical optical potential as

U(r, E)= —V+F(r, R„,az ) i W&F(r, Ri„ai—)

+i4WDaD „s'(r,zD, aD)
dr

+I, 1 d
Vso F(r, Rso, aso) ~

Apl c

In this section we describe three separate approaches
to the determination of a suitable empirical optical poten-
tial for the p + Pb system. Since some of these
methods are unconventional, a parallel analysis of the
n + Pb system was conducted at each stage both as a
control on the p+ Pb analysis and as an extension of
the work reported by Finlay and Petler. The three ap-
proaches are conveniently described as (1) individual best
fits, (2) grid searches, and (3) Fourier-Bessel expansions.
The data base for the present analysis consists of the fol-
lowing measurements. Proton scattering: Cross section
and analyzing power data at 9, 10, 11, and 12 MeV (Ref.
18), cross sections and analyzing power at 13 and 14 MeV
(Refs. 19 and 20), cross sections at 21, 24. 1, 26.3, 30.5, 35,
and 47.3 MeV (Ref. 21), and cross sections at 40 MeV
(Ref. 22), 49.4 MeV (Ref. 23), and 61.4 MeV (Ref. 24).
Analyzing power data at 30.5, 40.0, and 49.4 MeV were
also included in the analysis. Neutron scattering: Cross
section data at 4, 4.5, 5, 5.5, 6, 6.5, and 7 MeV (Ref. 2), 9,
11, and 25.7 MeV (Ref. 25), 20, 22, and 24 MeV (Ref. 1),
and 30.3 and 40 MeV (Ref. 26).

The proton data set improves upon the set available to
Mahaux and Sartor by including the detailed measure-
ments of Ref. 18 at low energy and by deleting the data
set at 16 MeV, which is too close to the isobaric analog
states to permit analysis in terms of a one-channel optical
potential. ' The neutron data set is nearly the same as
that used recently by Johnson, Horen, and Mahaux. '

In all of the calculations described below, it is, of
course, the shape elastic scattering that is described in
terms of the optical potential. Below E„=7 MeV com-
pound elastic scattering is not negligible and very careful
corrections were applied to the measured data. The pro-
cedure was described in detail in Ref. 2.

where R = r A ' and F (r,R,a„) is a form factor. The
optical potential was assumed to have a Woods-Saxon
form factor for the real central potential, both volume
Woods-Saxon and surface derivative Woods-Saxon imagi-
nary central potential, and a real derivative Woods-Saxon
spin-orbit potential. The proton spin-orbit potential was
held fixed at the values given by Becchetti and Green-
lees. The neutron individual best-fit calculations of Ref.
3 used the spin-orbit potential of Armand et ah. , so
several supplemental calculations were performed to veri-
fy that the main results for the central real and imaginary
potentials were not very sensitive to this choice of spin-
orbit potential.

In multiparameter searches of this type, there is always
some ambiguity over the division of the absorptive term
between its surface and volume components. Preliminary
calculations verified the observation of Van Oers et al. '

that for proton energy below -30 MeV the volume ab-
sorption term in Eq. (4) was very small. Accordingly, in
both the individual best-fit and the grid-search analysis,
we set Wv(proton)=0 for E~ (30 MeV. For neutrons,
volume absorption was found to be nonzero at somewhat
lower energies, again in agreement with previous analy-
ses. ' ' Hence, we require Wi, (neutron)=0 for E„(10
MeV. With these constraints, the remaining parameters
of the potential were searched using the computer pro-
gram FQP (Ref. 28) until a best fit (in the sense of
minimum g ) to the scattering data was achieved. Re-
sults are displayed as the solid symbols in Figs. 1-3 for
the real and imaginary volume integrals per nucleon
Jv/A and Jii /A and the rms radius R, , These quanti-
ties correspond exactly with the quantities [r ]i„[r J~,
and T4&2 of Ref. 7. Final values of the parameters are
given in Tables I and II.

B. Grid searches

There are two familiar shortcomings to the individual
best-fit analysis described above. First, it is possible (and
was indeed observed in the present work) that the best fit
to the data is obtained when one or more of the parame-
ters takes on an unreasonable value. Second, because of
the complexity of the multidimensional g space, it is
difFicult to assign an uncertainty to the final parameters.
The grid-search method provides a partial answer to both
of these problems. In the present search, grids were
formed on those two parameters, r~ and aD, that showed
the most significant energy dependence in earlier work.
The real radius parameter rz =Rz A ' was fixed at
values between 1.13 and 1.34 fm (0.01 fm steps), and the
surface diffusivity aD was fixed at values between 0.1 and
0.8 (O. l or 0.05 fm steps). Since a complete grid search at
each energy requires a very large number of calculations,
the following constraints were imposed: 8'& =0 for
E„&10 MeV and for E (30 MeV (as before), whenever
Wv&0, the geometrical parameters rv and ai, were held
fixed at reasonable average values learned from the indi-
vidual best fits, and the spin-orbit parameters were held
fixed at the Becchetti-Greenlees values for both protons
and neutrons. At each grid point, the values of the
remaining parameters ( V~, Wi„WD, az, RD ) were
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FIG. 1. Volume integral per nucleon versus energy for the real part of the potential for protons and neutrons and Pb. The solid
points are the results of individual best Gts to the experimental data. The open bars are the limits of acceptability found for the grid
searches as described in Sec. III. The line through the proton data is a least-squares fit to the grid-search results. A parallel line is
drawn through the neutron data to guide the eye.

searched for best fit to the data at each energy. Final
values of the remaining parameters were recorded for
each search along with g, Jz/A, J~/A and R, ,

In most cases, a well-defined minimum in y could be
located in the r~ —aD plane that could be used to deter-
mine some limits on the acceptability of parameter
values. The method is not mathematically rigorous so we
call the resulting range of parameter values limits of ac-
ceptability" rather than error bars in the usual sense.
The main goal of this grid-search exercise was to under-

stand the reliability of the estimates of three quantities
(Jv/A, J~/3, and R, , ) as determined directly from
the measurements. The selection criteria for acceptable
fits were as follows.

( 1 ) y values no more than 50%%uo larger than the
minimum value were accepted at each energy.

(2) The radius parameter (rD ) of the surface absorption
potential must be larger than the radius parameter (rz )

of the real central potential.
(3) The diffusivity of the real central potential az must

TABLE I. Individual best-St parameters for the p+ 'Pb potential (energies in MeV, lengths in fm,
~so=6.2 Me» rso=1.01 fm aso=0 75 fm

9
10
11
12
13
14
21
24. 1

26.3
30.5
35
40
45
47.3
49.4
61.4

64.0
64.2
64.2
63.3
63.1

61.9
54.6
52.9
52.9
51.3
48.6
52.5
49.6
49.2
46.6
43.1

1.17
1.17
1.17
1.17
1.17
1.17
1.20
1.22
1.19
1.18
1.21
1.14
1.17
1.17
1.18
1.20

0.78
0.77
0.75
0.75
0.75
0.76
0.78
0.71
0.65
0.75
0.63
0.83
0.72
0.74
0.72
0.59

7.0
7.7
6.7
6.7
8.1

7.4
10.4
10.3
7.7
9.1

5.1

4.7
6.3
6.5
5.6
6.6

1.40
1.30
1.25
1.25
1.24
1.29.
1.32
1.23
1.34
1.25
1.20
1.33
1.24
1.24
1.27
1.25

0.66
0.69
0.67
0.66
0.65
0.66
0.65
0.77
0.87
0.71
0.84
0.76
0.74
0.73
0.70
0.73

0
0
0
0
0
0
0
0
0
4.3
3.2
4.3
3.2
3.6
4.0
2.2

1.06
1.34
1.32
1.24
1.19
1.18
1.34

0.79
0.72
0.66
0.74
0.70
0.72
0.73
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be less than 0.8 fm.
(4) The radius parameter (rD ) of the surface absorption

term may not exceed 1.40 fm.
The first criterion is entirely arbitrary but appropriate

for the present purpose, i.e., to explore the limits of ac-
ceptability of the parameter values that provide a good
description of the data. The consequences of allowing a
50% degradation in y are illustrated in Fig. 4(a) for 12-
MeV protons and in Fig. 4(b) for 7-MeV neutrons. It is
clear from Fig. 4 that the calculations with larger y also

provide a very good description of the data. The second
criterion codifies a property of almost all optical models
in the literature and is a property of optical potentials ob-
tained from microscopic folding models. It is discussed
at some length in Ref. 29. The third and fourth criteria
are also consistent with the history of optical model stud-
ies.

Results of the grid searches are listed in Tables III and
IV and shown as open bars in Figs. 1 —3. For the most
part, the individual best fits fall within the range of ac-
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FIG. 2. Volume integral per nucleon versus energy for the imaginary part of the potential for (a) protons and (b) neutrons and
208pb. The solid points and open bars were defined in Fig. 1. The lines through the data are best fits of the grid-search results to ana-
lytic functions discussed in Sec. IV. The dash-dot-dot-dash line is redrawn from Ref. 7.
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TABLE II. Individual best St parameters for the n + Pb potential (energies in MeV, lengths in fm,
~so=5.75 Me» rso=& 105 fm ~so=0 499 fm).

4.0
4.5
5.0
5.5
6.0
6.5
7.0
9.0

11.0
20.0
22.0
24.0
25.7
30.3
40.0

45.4
47.6
43.9
41.0
42.2
43.2
44.0
45.9
42.9
43.6
44.3
44.5
43.1

43.3
38.9

rv

1.29
1.21
1.28
1.33
1.29
1.27
1.26
1.20
1.25
1.20
1.18
1.17
1.18
1.16
1.18

0.63
0.83
0.73
0.74
0.75
0.70
0.70
0.76
0.65
0.71
0.71
0.71
0.70
0.71
0.76

6.7
14.5
16.7
13.5
i5.2
10.4
8.8
6.6
5.5
5.7
5.0
44
4.8
3.7
2.6

1.27
1.35
1.35
1.38
1.38
1.34
1.32
1.32
1.20
1.23
1.29
1.29
1.24
1.31
1.32

0.36
0.15
0.13
0.24
0.19
0.27
0.31
0.47
0.69
0.58
0.52
0.55
0.66
0.55
0.49

'v

(0.2
1.45
2.19
2.16
1.84
3.33
5.47

rv

1.20
1.23
1.29
1.29
1.24
1.31
1.32

av

0.69
0.58
0.52
0.55
0.66
0.55
0.49

'rv =r&, a v =aa as in Ref. 3.

ceptability, but when they do not it is usually because one
of the above criteria was violated in the free, individual
best-fit searches. The case of neutron scattering at 40
MeV is perhaps the most interesting since it showed a
clear double minimum in y space —both of which have
been previously reported in the literature. ' These mini-

ma occur at values of rz of =1.13 and 1.25. In the
present analysis, the minimum at rz —1.25 is excluded by
criterion 2 (rD ) rz ). The resulting solution for smaller
rz is much more consistent with the general trends in the
data, and its use would serve to remove a diSculty in a

6. 8

6.6

6.4
+ 208pb

6.2

6.0
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+ 208P13

6.2
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FIG. 3. Root-mean-square radius of the real part of the optical potential versus energy for (a) protons and (b) neutrons and Pb.
The solid points and open bars have the same meaning as in Fig. 1.
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FIG. 4. Optimum fit to the differential cross section data from the grid search (solid lines) for scattering of (a) 12-MeV protons and
(b) 7-MeV neutrons from Pb. The dashed lines in each case show the slightly degraded fits that result from optical parameters th t2 parame ers a
lead to g values 50%%uo higher than the optimum results.

recent application of the moment method.
Analysis of the proton scattering data below 12 MeV

provides a clear illustration of the value of the grid-
search approach. At these energies the Coulomb poten-
tial tends to mask the nuclear potential. Di6'erential
cross sections show only weak dift'raction patterns and
analyzing powers are small ( (3%). Thus, in spite of the
excellent quality of the data, a very wide range of optical
model parameters provides satisfactory fits to the data.
(The y valley was so fiat that the criterion of a 50% in-
crease in y was never achieved at 9—11 MeV. ) App1ica-
tion of criteria (2)—(4) led to some limitation on the range
of the parameters, but eventually, a new constraint was
required. The radius parameter of the surface imaginary
term, rD, was held fixed at a series of values (1.28, 1.295,

and 1.32 fm) taken from widely used "global" optical
models. ' ' As before, a grid on the parameters rz and
aD was constructed, and the remaining parameters were
varied for each grid point until a best fit to the data was
obtained. Final values for the range of Ji, /A, Jii /A,
and R, , were obtained by combining the results from
the calculations at the three fixed values of rD.

Several qualitative features of the individual best-fit
and grid-search procedures can be seen from an examina-
tion of Figs. 1 —3.

(1) The limits of acceptability of the parameters of the
optical model are quite broad for low-energy ( (15 MeV)
protons and quite narrow for high-energy protons. The
neutron-nucleus potential is determined better than the
proton potential at low energy but less well at high ener-

TABLE III. Volume integrals (in MeV fm') and root-mean-square radii (in fm) for p + 'Pb.

Individual best fits

min max min

Grid searches
J~/A

max min
+ rms

9
10
11
12
13
14
21
24. 1

26.3
30.5
35
40
45
47.3
49 4
61.4

482
481
481
478
472
464
443
445
404
396
390
378
366
365
351
330

78
77
61
60
70
70

103
104
103
113
91
98
90
91
93
90

6.08
6.06
6.04
6.05
6.04
6.05
6.22
6.20
5.97
6.09
6.03
6.07
5.99
6.01
6.04
5.91

473
468
469
475
462
465
441
434
412
392
383
382
360
365
343
326

542
542
540
528
519
500
458
444
430
414
395
398
370
368
365
334

59
69
57
58
69
68

100
105
104
103
91
92
86
88
90
86

84
87
85
84
94
76

106
110
111
117
96
97
93
92
99

100

5.98
5.88
5.95
6.00
6.03
5.95
6.19
6.14
6.01
5.94
5.93
6.10
5.97
5.99
5.96
5.86

6.47
6.49
6.49
6.42
6.44
6.26
6.30
6.24
6.15
6.21
6.05
6.19
6.05
6.07
6.04
5.96
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TABLE IV. Volume integrals (in MeV fm') and root-mean-square radii (in fm) for n + Pb.

Individual best fits

Jv/A &rms min
Jv/A

max max

Grid searches
Jg /A

min min
+ rms

max

4
4.5
5
5.5
6
6.5
7
9

11
20
22
24
25.7
30.3
40

412
396
417
44-3

420
400
398
370
376
348
339
328
325
310
299

33
33
33
52
46
42
41.51
46
48
54
58
56
57
64
74

6.27
6.34
6.45
6.71
6.57
6.40
6.33
6.18
6.21
6.11
6.05
5.98
6.01
5.93
6.11

401
385
416
410
405
394
386
358
349
338
323
316
313
296
270

418
426
422
448
426
416
412
379
364
355
349
333
337
322
304

32
32
32
41
39
39
39
43
49
54
54
53
58
63
68

36
40
34
55
47
44
45
50
52
57
58
54
61
66
77

6.20
6.24
6.38
6.39
6.36
6.19
6.14
6.03
5.95
6.00
5.86
5.86
5.89
5.83
5.81

6.35
6.59
6.46
6.70
6.56
6.41
6.37
6.31
6.39
6.15
6.10
5.99
6.12
6.05
6.14

(2) The real volume integral for protons is well de-
scribed as a linear function of energy over the entire
range of the data. The solid line in Fig. 1 is a least-
squares fit to the grid search results (treating the range of
acceptability now as a mean value and an uncertainty)
yielding

J /A =(504.5+5.9) —(2.92+0. 13)E (MeVfm ) .

Because of their large ranges of acceptability, the points
below E =14 MeV have little inhuence on the slope of
the line. At the same time, a significant rise in the
volume integral at E & 14 MeV is consistent with the re-
sults of the grid search. Interestingly, the individual
best-fit results are well described by the straight line the
slope of which is in excellent agreement with global opti-
cal potentials. Such a result mould be inexplicable in
terms of dispersion corrections. This observation (Fig. 1)
provides the strongest testimony for the importance of
parameter uncertainty considerations in optical model
analysis.

(3) The trend in Jv/A for neutrons, however, is well
described by a parallel straight line (Fig. 1) for E & 10
MeV and a narrow region of enhancement for E&7
MeV.

(4) The energy dependence of Jii, /A (Fig. 2) is roughly
similar for neutrons and protons near threshold. More
detailed comparisons will be performed in Sec. IV, where
dispersion calculations are discussed. For now it is im-
portant to observe that the present analysis excludes the
dash-dot-dot-dash line that was used to represent
Jii (E)/A for protons in Ref. 7. We refer to models for
J@,(E)/A that intercept the positive energy axis as
Coulomb cutoff models and return to them in Secs. IV
and V.

(5) The rms radius of the real proton potential (Fig. 3)
shows only a slight tendency to decrease with increasing
energy, while the rms radius of the neutron potential
shows a sharp enhancement for E & 10 MeV.

(6) Both for the individual best fits and for the grid
searches, y was minimized for values of the surface
diffusivity aD & 0.60 fm for protons at every energy, while
for neutrons all of the data below =7 MeV required
aa &0.40 fm.

Observations (2) and (5) contain some of the main re-
sults of the present work. They are in contrast with an
earlier phenomenological analysis' of p+ Pb scatter-
ing where evidence of a rapid change in slope of V(r, E)
near the Coulomb barrier was obtained in the framework
of a fixed-geometry model and with a less complete data
set. The present results contrast even more sharply with
the dispersion relation calculations of Mahaux and Sartor
in Ref. 7, where rapid excursions in both Jv(E)/A and
R, , were predicted at 15 MeV&E &30 MeV. On the
other hand, a more recent dispersion analysis by these au-
thors' is in overall agreement with our new results in
that the anomaly in Ji,(E)/A is no longer visible in the
energy domain E & 15 MeV, and the energy dependence
of R, , is much gentler than in the earlier work. The
differences between Refs.7 and 10 are clearly important
in the present context and will be discussed in Sec. IV.

Observation (6) is a less obvious but perhaps interesting
feature of the analysis. The tendency of the surface imag-
inary diffuseness to decrease with decreasing energy was
noted by Armand et al. in their analysis of n + Pb and

Bi and strongly confirmed by Lawson, Guenther, and
Smith in an independent study of n + Bi (Ref. 33) and
for n + Y (Ref. 34). The effect was anticipated by Mol-
dauer in a study of s-wave strength functions and
scattering data at very low energy. If a decrease in aD at
low energy is a phenomenological hallmark of the strong
surface coupling that characterizes the Fermi energy
anomaly, it appears that the most interesting region for
p+ Pb has not been reached for E~)9 MeV (see
Tables I and II).

C. Fourier-Bessel expansions
The large uncertainty in the values of optical model pa-

rarneters is one of the noteworthy results of the grid
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search analysis. Can these uncertainties be reduced? In
this section we attempt to extract the features of the real
and imaginary potentials directly from the data without
constraining the analysis to the conventional Woods-
Saxon form factors. The method consists of adding to
the Woods-Saxon potential an extra term given by a
Fourier-Bessel series, e.g.,

V(r)=
1+e

N—g b„jo(q„r),
n=1

where

x =(r r~ A'~'—)/a~ . (6)

The jo are spherical Bessel functions and q„= nm/R,
where R is a cutoff radius. The computer code GENOA
(Ref. 36) has been modified to search on the b„'s for best
fit to the data. By introducing a matrix inversion routine
into GENOA, the covariance matrix M of the parameters
b„may be obtained from the secular equations that mini-
mize g /N. The diagonal elements of the matrix M are
the errors in the coefficients b„, and the correlations be-
tween them are given by the off-diagonal elements. With
these quantities, one can construct a much better state-
ment of the uncertainties in the quantities of interest, i.e.,
Jz/3 and R, , A similar expansion can be carried out
simultaneously for the imaginary potential with appropri-
ate modifications in the error matrix.

In the present work, Fourier-Bessel expansions were
performed simultaneously for both the real and imagi-
nary potentials (an extension of the work of Ref. 3). In
most cases, good convergence was obtained at a large

enough cutoff' radius (12 fm) to justify the claim of model
independence. Minimization of the quantity g per de-
gree of freedom was strictly observed in order to study
the number of terms in the expansion required to obtain
an optimal description of the scattering data. Once
again, proton scattering near the Coulomb barrier pro-
vided the most difficult fitting problem.

Results from the Fourier-Bessel expansion analysis are
summarized in Fig. 5 for the volume integral of the real
potential and in Fig. 6 for the volume integral of the
imaginary potential. Comparison of Figs. 5 and 6 with
Figs. 1 and 2, respectively, shows that all of the trends
observed in the results of the grid searches are also ob-
served in the Fourier-Bessel analysis: (a) real volume in-

tegrals show an enhancement for low-energy neutrons but
not for low-energy protons, (b) the imaginary volume in-
tegrals have similar threshold behavior for protons and
neutrons, and (c) uncertainties in the volume integrals for
the proton potential are somewhat smaller in the
Fourier-Bessel analysis than in the grid search. This sug-
gests that the 50% change in the y criteria used in the
grid searches was a bit too generous for the proton data.
The reduced uncertainty at low proton energy is a direct
result of the inclusion of the excellent low-energy analyz-
ing power data of Ref. 18. An earlier report of the
present work mentioned huge uncertainties in the
Fourier-Bessel imaginary potential, but those results were
obtained before the analyzing power data had been incor-
porated into the analysis.

We conclude that the three phenomenological analyses
are in good general agreement on the energy dependence
of the real and imaginary parts of the Pb optical poten-
tial for protons and neutrons. We turn now to dispersion

565

495-

425—

390-

355-

285—

250-
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FI~ 5 Fourier-gessel analysis results for the volume integral per nucleon versus energy of the real part of the potential for Pro-

tons ~solid squares) and neutrons (open circles) and zosPb. The solid line through the proton data is taken directly from Fig. 1 to facil-

itate comparison with the grid-search results.
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relations for an understanding of this new phenomenolo-
gy.

(E —E )J„,(E)/A =I, EF ~ E & s

IV. DISPERSION CALCULATIONS

In order to carry out the dispersion integral [Eq. (2)$, a
functional representation of Ja, /A vs E is required.
Three specific forms have been recently advanced by
Mahaux and Sartor. ' (1) The linear segment (LS) form
is given simply by

=I, E&s .

(2) The Brown-Rho (BR) form is given by

(E —E )'
J~(E)/A =b

(E E„) —+r

160

+ 208Pb

(Fourier —Bessel)

BR—
80

Ii )~i I y
i ly

~ '

40

a)

-10
I

20

E (MeV)

I

40

120

90

r). + 208pb

(Fourier —Bessel)

BR—

60

30

0—
-10

E„(MeU)
60

FICr. 6. Fourier-Bessel analysis results for the volume integral per nucleon of the imaginary part of the potential for (a) protons
and (b) neutrons and Pb. The lines through the data are best fits of the Fourier-Bessel results to the analytic functions discussed in
Sec. IV.
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(3) The Jeukenne-Mahaux (JM) form is given by

(E E—~ )"
J~(E)/A =j (E E—) +m

Each of these three parametric forms was fitted to the
grid-search parameters and to the Fourier-Bessel expan-
sion parameters. The best fits are shown as lines in Figs.
2 and 6, and the resulting parameter values are given in
Table V. It should be noted that the its to the proton
data for J~/A show more scatter than the corresponding
fits to the neutron data.

With these parametrizations of Jii, /A, the dispersion
integral can be evaluated either numerically or analytical-
ly for the dispersion correction to the real, central
volume integral. (By limiting this calculation to volume
integrals, we avoid the need to determine separate energy
dependences for the surface and volume absorption terms
in the phenomenological model. ) The calculated quantity
is the sum of the polarization (Jpo ) and correlation (Jco )

contributions to the total volume integral. Typical re-
sults are shown in Fig. 7. There are twelve such disper-
sion calculations to evaluate (three fitting functions and
two kinds of nucleons for both the grid search and the
Fourier-Bessel optical parameters). In Fig. 7 we show re-
sults for the JM parametrization that seems to provide
the best overall representation of the data in Figs. 2 and
6; dispersion corrections calculated with the other para-
metric forms are similar in shape. The differences in de-
tail, however, can be informative. We characterize each
calculation of AJ= Jpo+ Jco in terms of two parameters:
The maximum amplitude of the correction (b,J '") and
the incident energy at which the correction is a maximum
(E '"). The amplitude of the correction is proportional
to the product of the parameters br (jm) for the BR (JM)
parametrizations, respectively, and has extrema at
E Ez =+r (m)—. Since b (j) is the value of the imaginary
volume integral for E »EF, it is automatically larger for
protons than for neutrons because the Coulomb correc-
tion and the symmetry term in the potential increase pro-
ton absorption for X & Z nuclei. Values of these parame-
ters are given in Table VI. Note that the abscissa in Fig.
7 is E Ez, where EF—(the Fermi energy) is —6 MeV,
while E„,E, and E '" are projectile energies in the labo-
ratory.

Examination of Table VI shows that the scatter in the
calculated dispersion correction is significantly greater
for protons than for neutrons, i.e., 0 MeV&E '"&14.5
MeV, while 3.5 MeV(E„'"&8 MeV. The present re-
sults for hJ for neutrons are all in approximate agree-
ment with the recent LS (Ref. 7) and BR and JM (Ref. 9)

parametrizations by Mahaux and Sartor both in the mag-
nitude of the correction and in the energy (E„'") at
which the maximum correction occurs. The origin of
this good agreement is found in the similarity of the pa-
rameters used to describe the energy dependence of
Jir/A, and this similarity is a direct result of using near-
ly the same neutron potential parameters for both analy-
ses.

For proton scattering, the situation is less clear. The
various parametrizations of Ja /A difFer significantly
from one another in the important region below E =9
MeV, where there are no data to constrain the functions.
Moreover, the uncertainties in the values of J~/A for
protons are relatively large below E =20 MeV. The
scatter in the calculated values of b,J and E~

'" (Table II)
can be attributed directly to these two effects, i.e., lack of
data below 9 MeV and larger parameter uncertainty
below 20 MeV. Even so, the aUerage behavior of AJ is
quite similar to the average behavior of AJ„. If the LS
parametrization is excluded on the grounds that a sudden
change in the slope of Jir(E)/A is unphysical, the shape
of the predicted AJ vs E is practically the same for pro-
tons and neutrons; specifically, the incident energy at
which the dispersion correction is a maximum is in the
neighborhood of 3—5 MeV for both neutrons and pro-
tons.

This last observation is quite different from our expec-
tations if the presence of the Coulomb barrier served to
cut off the imaginary potential for low-energy protons.
One calculation, which incorporated such a Coulomb
cutoff effect by letting the proton imaginary potential go
to zero at E —+7 MeV, yielded a very large dispersion
correction (bJ '"=98 MeVfm, E '"=14 MeV). We
find no support for such a result in the present analysis.
The trend of the present empirical values of Ja, /A vs E
for protons is not very different from the trend for neu-
trons. Moreover, a correction of such large amplitude
peaking at E =14 MeV would likely produce observable
consequences in the present empirical values of Jv/A for
protons, but no such effects are visible in Figs. 1 and 5.
We note that the reanalysis of p+ Pb of Ref. 10 does
not employ a Coulomb cutoff in Jii,(E)/A [the BR and
JM forms are used and Jii (E)/A ~0 at E =EF j, and the
resulting moments for the full real potential reach their
maxima at energies below the Coulomb barrier.

Finally, we comment brieAy on the differences between
the dispersion calculations of Refs. 7 and 10. Reference
10 appeared while the present work was already in pro-
gress. The improvements that result from the removal of
a Coulomb cutoff have already been emphasized. Anoth-
er significant improvement was the incorporation of po-

TABLE V. Parameters used to fit the energy dependence of the volume integral of the imaginary
part of the potential.

Proton grid search
Proton Fourier-Bessel
Neutron grid search
Neutron Fourier-Bessel

97.5
101
60
64.3

19.3
22.6
13.9
12.9

97.2
110.5
63
69.4

5.7
11.3
9.5
9.6

96.7
105.1
57.4
62.6

11.8
15
9.9
9.7
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An important conclusion may be drawn from the
present analysis of proton and neutron scattering. The
energy dependence of the imaginary potential is quite
similar for both projectiles (see Figs. 2 and 6). In contrast
to recent observations in heavy-ion elastic scattering, the
Coulomb barrier does not cut off the imaginary potential
in the p+ Pb system. The phenomenology developed
in this paper is consistent with the notion that the imagi-
nary potential is dominated by damping into complex
modes of the target-plus-projectile system, rather than by
direct reaction channels that would indeed be closed off
as the proton energy is lowered below the Coulomb bar-
rier. %'e suggest, therefore, that the origin of the imagi-
nary potential may be different for scattering of nucleons
and heavy ions.

Dispersion models provide estimates of the corrections
to the real potential that can be compared with the re-
sults of the phenomenological analysis. The neutron data
(Fig. 1) are entirely consistent with the calculated disper-
sion correction of 30—40 MeV fm peaking at about 4—5
MeV. The even larger predicted corrections to the pro-
ton data were not found either in the best-fit calculations
or in the Fourier-Bessel expansions. However, an effect is
suggested within the large uncertainties of the grid-
search calculations below 14 MeV. This is not intended
to suggest that the "Fermi energy anomaly" is absent for
the proton potential. Indeed, if Fig. 1 were extended to
negative energies to include the bound states (work in
progress), a large departure from the straight line would
definitely be required. Lawson et a/. made the same

observation for n + Bi. We do conclude, however, that
a consistent analysis of the scattering data alone was un-
able to find convincing evidence for what should be a
large effect. The present analysis further suggests an ex-
planation for this new result, namely that the dispersion
correction for both neutrons and protons has its largest
effect below —10 MeV, where, for protons, it would be
exceedingly dificult to observe.

Although it would be very valuable to have more pre-
cise values for the proton potential parameters below the
Coulomb barrier, the traditional study of cross section
and analyzing power measurements seems to be reaching
its limits. A careful measurement of total reaction cross
section for p + Pb below 14 MeV might reduce the lim-
its of acceptability of the proton potential parameters and
thus provide firmer basis for extrapolating the optical po-
tential to negative energy. Sub-barrier deuteron stripping
reactions might provide another useful constraint on the
potential.
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