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Pion charge exchange and the optical theorem
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We give some applications of the optical theorem (and its extensions) to charge exchange reac-
tions of pions between isobaric analog states of nuclear targets, based on isospin invariance. We
then derive an inequality, valid in the strong absorption limit, to give a bound on reaction channels
which may be contributing to the isotensor optical potential, at pion energies near the 3,3 reso-
nance. We further show that coupling to pion absorption on T =1 pairs may provide a major corn-

ponent of this potential.

f, , —:(c', T +c c'lflc, T &, — (2)

with c the initial pion charge ( 1,0, —1 ) and T3 the target
isospin projection. Normally, T3 = —T =(Z N) I2 for-
the ground-state multiplet. For example, elastic scatter-
ing, SCX, and DCX amplitudes for an incident ~+ are
given by

f11=fo Tf1+ T(T+1)fz

fo =&T(f —Tf2)

f „=&T(2T—l)fp .

(3a)

(3c)

The optical theorem for each pion charge state c is
given by

Imf„= o T(c),k
(4)

with 111k the beam momentum and o T(c) the total cross
section for that charge channel.

Since the charge-state amplitudes f, , are all deter-
mined by the isospin amplitudes fo, f, , and fz, the three
relations implied by Eq. (4) can be used to express the
Imfoi and Imf » in terms of the total cross sections
o T(1), cr7.(0), and o T( —1). o T(0) is not, however, ex-
perimentally accessible, but a useful inequality may still
be obtained from Eqs. (1)—(4), which only relates (almost)

We consider elastic, single charge-exchange (SCX), and
double charge-exchange (DCX) scattering to isobaric
analog states. The main purpose of this paper is to
present a discussion of the dynamical content of the new-
ly isolated isotensor contribution to pion DCX. The ar-
guments are based on the optical theorem, and are in-
dependent of many details of the underlying mechanisms.

Let P, T denote isospin operators of the pion and tar-
get. For interactions which conserve isospin, the scatter-
ing amplitude may be written as an operator in the iso-
spin space of the pion and target as

f =fn+f1(4»+f2(4 T)'

where f and f, are functions of beam energy and scatter-
ing angle. (Unless otherwise specified, we shall use f, f,
to denote the forward scattering amplitude. ) The usual
elastic and charge-exchange amplitudes are obtained
from Eq. (1) by taking matrix elements

measurable quantities. We first obtain the result'

Recognizing that lf » l
((

l fo, l
(generally by a factor of

30 or so), this equation compares the forward SCX ampli-
tude to the difference of total cross sections, along with a
small correction for DCX (which is generally smaller
than the experimental errors in the other quantities). The
full SCX amplitude is not measured, only the modulus, so
that we must use

do ) 2„„(0)„)lImf„l

to obtain an inequality from Eq. (5a), which we write
1/2

(5b)

dc'
d& (0)sex ltrT( —I)—trT(I)l, (6)

1 k
2v'T

omitting the small correction for DCX. This relation can
be compared to data, as shown in Table I, for experi-
ments at 165 MeV. Note that the comparisons involve
targets differing by a few mass units, but similar (or iden-
tical) values of T, since the SCX and o r have not been
measured on the same targets. We neglect Coulomb and
related charge-dependent corrections, which are mini-
mized at energies near the 3,3 resonance, since they are
out of phase with, and are estimated to be smaller than,
the charge-independent contributions to Eq. (6). The
data of Table I are consistent with the inequality Eq. (6),
within the rather large experimental uncertainties.
Clearly these results are to be considered qualitative and
are given simply to illustrate the possible use of Eq. (6).
Note that the data are also consistent with Imfo, )0,
which should be true in the resonance region, as will be
discussed later.

To proceed further with the treatment of DCX scatter-
ing, we introduce an optical potential U. Again, isospin
invariance restricts the form of U to

U = Uo+ U, (p T)+ U~(p. T)2 .

The potential U appears in the equation of motion
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TABLE I. A comparison of the measured quantities (in fm) involved in the inequality given by Eq.

Target (T)

Ni (23
"Zr (5)
208Pb (22)

'Reference 2.
Reference 3.

)sex
0 0 a

0.29+0.02
0.30+0.02
0.42+0. 11

Target (T)

Fe (2)
93Nb (

11
)

209B'
(

43
)2

[0.&(
—1)—o z.(+ 1)]2v'T 4~

0.10+0.44
0.52+0.76
1.12+0.70

(Klein-Gordon) for the pion in the elastic and isobaric
analog channels, and fully determines the scattering am-
plitudes given by Eqs. (1) or (2).

There has been considerable interest recently in deter-
mining the isospin structure of the optical potential in the
resonance energy region. Multiple scattering theory pre-
dicts that to first order in the nuclear density of the tar-
get, the potential will contain isoscalar and isovector
terms only. The quadratic (isotensor) term involves
terms that are second order in the isovector density, and
these terms also provide corrections to the first-order
parts of U0 and U, . The second-order terms are depen-
dent on correlations, pion absorption, and other phenom-
ena which have made them hard to predict reliably. It
will be useful for us to write U = U+ Uz(P T), where

where 11'+' is the distorted elastic (optical) wave and u is
the pion velocity (assuming that U is local). ' This allows
us to interpret the isotensor potential U2 in terms of reac-
tion channels coupled to its imaginary part.

We write the full elastic channel optical potential
U, = U, +AU, with U, given by

U, =UO+U, (cia Tic), (10a)

and

(lob)

o.,' '—:—2U ' ImAU, ,'+' 2d'r,

In order to consider the contribution of b, U, to Eq. (9),
we define the quantity o.,' ' by

U=U +U ($ T) (8)

It should be noted that both isovector and isotensor parts
of U may contribute to DCX: U& to second order
through successive SCX via analog states, and U2 to first
order directly (plus higher order terms).

Recent empirical studies of DCX have shown some in-
teresting features of the structure of U. It has been
known for some time that potentials of the form of Eq.
(8), with U& only having terms linear in the target isovec-
tor density, do not predict the correct angular distribu-
tion. Experiments at 164 MeV show diAraction minima
at -20, which is a considerably smaller angle than these
potentials will produce. This has been taken as evidence
for the existence of an isotensor ( U2) term, to provide
sufhcient interference with the contribution to DCX from
the U, term in order to give the correct angular distribu-
tion. Based on a theoretical model by Johnson and Sicili-
ano, Greene et al. have performed fits to the paramet-
ric forms of U2. By a systematic study of elastic, SCX
and DCX data at —165 MeV for a variety of targets,
they have obtained a set of values for the parameters that
provide reasonable agreement with existing data for ana-
log states. In order to gain some insight into the physical
origins of the resulting values of their parameters (and
especially their signs), it is useful to obtain some general
results based upon the optical theorem and the eikonal
approximation.

It is well known that ImU rejects the loss of elastic
Aux into open reaction channels. In fact, the reaction
cross section can be expressed through an extended opti-
cal theorem

which is positive for Imb, U, &0 (or ImUz (0). Equation
(11) represents that part of the reaction cross section that
couples to the (P T) part of the optical potential, due to
dynamical processes not included in U. These presum-
ably involve two or more target nucleons, and have an
isospin structure that gives the (P T) form Two .exam-
ples which might be expected to contribute significantly
to this term are pion absorption on T = 1 pairs and dou-
ble scattering from T =1 correlated pairs (uncorrelated
double scattering being included in U). Models of these
reactions are under study.

We now examine the constraints that the above-
mentioned relationships impose on the optical potentials
used in pion-nucleus scattering and charge-exchange re-
actions. The empirical optical potentials have some in-
teresting features in the present context. In the reso-
nance region, the potentials are largely imaginary, as one
would expect from simple multiple-scattering arguments
involving the 3,3 ~X resonance. Based on the isospin of
the resonance (T = —), first-order theory gives a potential
of the form in Eq. (8) with ImU0 &0, and ImU, &0. Cal-
culations using such first-order potentials result in a for-
ward amplitude for SCX that turns out to have
Imfo, )0, which agrees with the sign given by Eq. (5a)
using the data of Table I. The DCX forward amplitude
for this potential is also found to have Imf » (0. These
signs can be understood from the following simple eikon-
al argument.

The forward amplitude in the eikonal approximation
can be written [for a local U(r)] as

o „=—2u ' I Im U(r)
~

g'+ '(r )
~

d r, (9) f = —ik j b db(e'+' ' —1),
0

(12a)
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with phase function g defined by

g(b) = —u
' f U(b, z)dz,

I

where u ( =k /a)) is the pion velocity.
This phase may be expanded, as in Eq. (7), to give

X(b) =Xo+X)(4'»+Xz(4»' .

(12b)

(13)

f b db f dzli) U le
co(b—, z) —«(b)

U 0 QO

f b db e «(b—)
U 0

X f dzl&U l(e
—m(b, z)+e~(b, z))

0

f bdbe '-"'f" dzl~U, l,
U 0 QO

(16)

For the potential Eq. (8), yz=O, and we find to lowest or-
der in g& that

where we have assumed the symmetry b U, (b, z)
=EU, (b, —z).

For comparison we find

f, =k f bdbe ' y)(b), (14a)
1mb f„=1mbfz(cl(()() T) lc)

=—f bdbe ' f dzlhU, l,
U 0 OO

(17)

fz= ,'ik f b—dbe ' g(b) . (14b)

For purely imaginary U, and U0, with Im U, & 0, we thus
find purely imaginary forward amplitudes, with Imf, (or
Imf()) ))0, and Imfz (or Imf )) ) &0.

If we now include the quadratic term U2 in U and
write the full isotensor amplitude as fz

=fz + b,fz, we
find that no lowest order in g, and g2,

&fz=k f b db e ' yz(b) . (14c)

,i,(+ )(b z) —ikz —[co(b, ) z(b+)]«/2
Y'c 7 (15)

with the limiting values g', +'—+e'"' for z~ —ao, and
)~e'"' ' ' for z~+ ~. (u and )( are real functions

and i (b))=cg, (b). [We take z =0 as the symmetry plane
of the target, with cu(b, z)= (o(b, —z), —and cu(b, O)=0.]
Setting Eq. (15) into Eq. (11),we write

Again, this amplitude is purely imaginary for imaginary
Uz {and Uo). In order to provide interference and thus
move the minimum to more forward angles, b.fz should
be opposite in phase to fz, that is, 1mb fz )0. This means
that ImU2 must be negatiue. This places a constraint on
any specific reaction model that may be proposed as be-
ing the source of the Uz term. This predicted sign of Uz
also agrees with the phenomenology of Greene et a1.,
who find that the best fit U2 is largely imaginary and neg-
ative. (Actually, the fits of Greene et al. involve an ener-

gy shift that moves them considerably oF resonance. As
a result, their potential is not purely imaginary but is ap-
proximately of the form Re U0 = —Im U0 and Re U&

= —ImUi. %'hile this complicates the algebra slightly,
the final predictions concerning the DCX amplitudes and
their confirmation by the eikonal analysis are not
changed. )

We next show how to use the extended optical theorem
Eq. (9) and the DCX amplitudes (in the eikonal approxi-
mation) to put a bound on the reaction cross section o', '.
For simplicity, we shall assume purely imaginary optical
potentials in Eqs. (7) or (10). The eikonal wave function
for this case can then be rewritten as

where we use Eqs. (10b), (12b), and (14c). Working to
lowest order in go, y„and gz, we set a(b)= igo{b—) in
Eq. (16). Now comparing Eqs. (16) and (17), we obtain
the inequality

(18)

which gives a lower bound to o.,' '. This inequality is
modified in the presence of real optical potentials, but the
changes will be small for

l
Re U l

«
l
Im U

l
.

As mentioned following Eq. (11),o,' ' depends on 5U„
which in turn reflects isospin-dependent coupling to
nonelastic channels. Suppose we label the final channels
by a, with projection operator on the channel space, Q, .
Then a possible contribution to 6U, could be of the form
(using the Feshbach formalism)

», (a)={clV'g.(E —a.+(g)-'g. Vlc), (19)

where V connects the elastic (and isobaric analog) chan-
nel to a: e.g., V=u(T P), and the channel interaction
H, is assumed to be isoscalar, for simplicity. (This is not
the most general form. ) Then it is easy to show that o,' '

calculated from Eq. (11), using Eq. (19), is simply the
nonelastic cross section into channel a. This cross sec-
tion may be a directly measurable quantity, if the final
channel a is distinct from those involved in the U, part of
the optical potential. In that case, its contribution to o', '

can be directly compared to (4m. lk)Imb f„using optical
model analysis to obtain b,f„.The inequality Eq. (18)
should be satisfied for the channels giving the dominant
contributions to o.,' '.

As a test case, we discuss the cross section for pion ab-
sorption with np emission. The reaction (m.—,np), where
measured, is known to have much smaller cross sections
than (m. +,pp) and (m, nn). In a pair-absorption model,
this means that absorption on T =0 (np) nucleon pairs in
the target dominates over absorption on T =1 pairs, e.g.
(nn or pp). The absorption on {nn) pairs can contribute
to the isotensor optical potential. Let us see to what ex-
tent the inequality Eq. (18) is satisfied, if we identify
o', '=o (m+, np) (with c = 1).

Altman et a/. ' measure the ratio 8+ of correlated pp
to np pairs for ~+ absorbed by ' O, for fixed proton an-
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gles and find R+ =27.0+5.0 for 165 MeV. If we assume
the integrated cross sections also scale with R+, we esti-
mate

o(m+, np) =o,b, /(1+8+ )-9.0 mb, (20)

cr(sr+, np) =1.5 —1.8 mb, (21)

where we further assume the coupling to be all isotensor,
as in Eq. (19).

The optical model calculations of Greene et al. give
us' numerical values for the separate amplitudes f, , and
b f,.

„

from which we obtain (for sr+ on ' 0 at 165 MeV)

Imb, f„=4.8 mb . (22)

using the total absorption cross section o.,b, =252 rnb.
The fraction of Eq. (20) attributable to the valence pair
may be estimated to be ——,', counting zero-range nn pairs
in ' O. Alternatively, one may use the ratios of o (n+, np)
on ' 0/' 0, measured by Altman et a/. "which gives an
estimate of —,

' for the fraction. The result yields

We find the quantities Eqs. (21) and (22) are similar in
magnitude. With the identification' cr(m+., np) =cr', ', the
inequality Eq. (18) is not satisfied by (our estimate) of ab-
sorption. [Although the data are not precisely on reso-
nance, we do not expect this to change Eq. (18) substan-
tially. ]

We conclude from this that absorption on nn pairs is
consistent with a sizable fraction (e.g. , —,') of Eq. (22),
which is contributed by the isotensor optical potential.
Other inelastic channels may also contribute, notably the
correlated double scattering from T =1 pairs. Investiga-
tion of these mechanisms in specific models is underway
and will be reported more fully elsewhere.
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