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Detailed-balance test of time-reversal symmetry for a pair of close-lying resonances

V. E. Bunakov* and H. A. Weidenmiiller
Max Pla-nck Inst-itut fii r Kernphysik, D 690-0 Heidelberg, West Germany
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We present a thorough analysis of tests of detailed balance involving a pair of interfering reso-
nances. For two close-lying (overlapping) compound-nucleus resonances in a regime where the
average resonance spacing is much larger than the average resonance width, we find enhancement
factors as large as 10 —10 .

I. INTRODUCTION

Nuclear reactions have long been used to test detailed
balance and, thus, time-reversal symmetry (see, e.g. , Ref.
1 and other references therein). Several experiments '

were carried out in the domain of isolated resonances for
which a theoretical analysis" is available. After the ob-
servation was made that, in the two-channel case, de-
tailed balance follows from unitarity alone, theoreti-
cal ' and experimental' " interest shifted to the
domain of many open channels and strongly overlapping
compound nuclear resonances.

It is the purpose of this paper to focus attention once
again onto the region of weakly overlapping resonances,
because this domain does not seem to have been fully ex-
plored as yet, either theoretically or experimentally. In
the theoretical analysis, two attitudes can be taken. One
may study violation of detailed balance in the ene~gy-
averaged quantities, or one may investigate explicitly a
case involving a few (in our case, a pair of) compound nu-
cleus resonances, and ask for the optimal conditions for
time-reversal breaking to be observed. The first approach
will yield expressions for observables measuring violation
of detailed balance that depend only on simple, well-
understood average nuclear properties, and on the
strength of the time-reversal-symmetry breaking part H'
of the Hamiltonian. Such expressions can usefully be em-
ployed in the analysis of experimental data to establish
unambiguous upper bounds on H'. This approach was
taken recently. ' The authors identified an observable
which shows a strong enhancement of symmetry viola-
tion in the domain of weakly overlapping resonances.
Experiments in this domain may lower existing upper
bounds on H' by at least an order of magnitude. The
second approach identifies the special situation most sen-
sitive to a possible detection of time-reversal-symmetry
violation. In this approach, a negative result is somewhat
more difficult to interpret than in the first one: The
analysis of the data involves a number of parameters (res-
onance energies, partial widths, scattering phase shifts,
etc. ) which are poorly known in part, and which are
difficult to determine precisely. Moreover, the anal-
ysis —even if successful —will only yield a bound on a
single matrix element of H'. Because of the expected sto-

chastic behavior of H' in the compound-nucleus regime,
such a bound carries limited information. (We quantify
this statement at the end of the paper. ) On the other
hand, the sensitivity of the analysis is, by the very nature
of the method, bigger in the second than in the first ap-
proach. Therefore the two approaches complement each
other, and the present paper can be viewed as a comple-
ment to Ref. 12.

In this paper, we consider the case of a pair of reso-
nances and take account of interference terms not con-
sidered in Ref. 4. It has been shown in Ref. 13 that such
terms might cause a significant "dynamical" enhance-
ment of order N'~ =(Do/D)'~ . Here, N is the number
of simple-structure components typically building up the
compound-nucleus wave function, and Do and D are the
average spacings of the single-particle and compound
states, respectively. We show that under suitable condi-
tions the enhancement might even be bigger. %'e also in-
vestigate the optimal choice of theoretical measures of
symmetry violation, and the statistical significance of
upper bounds deduced from experiments of this type.

The simplest quantity to use in tests of detailed balance
is

o,b (E) ob(E. )—'

b, (E)=2
o,b(E)+ob, (E. )

Here, a and b denote channels, and o,b(E) is the cross
section for the reaction a ~b at energy E. Because of the
difficulty to measure with sufIicient accuracy absolute
cross sections, it is advisable to consider instead of h(E)
the observable

o.b«r )ob. «rr )
~«r En)=

b(Err)~b (EI )

which involves only relative cross sections and can there-
fore be determined much more precisely. To first order
in A(E), we have

4(Er, Err )=b,(Er ) A(Err ) .

Therefore we proceed to work with the simpler form (1).
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In Sec. II, we consider an idealized case —two well-
separated resonances without background, and investi-
gate when 6 becomes maximal. In Sec. III, we include in
the analysis both an incoherent and a coherent back-
ground. We are led to the conclusion that for well-
separated resonances a sizeable resonance enhancement
does not exist, due to background problems. This leads
us to consider in Sec. IV the case of two close-lying (over-
lapping) resonances and the identification of a resonance
enhancement. Our result is analyzed in Sec. V in terms
of an enhancement factor and a statistical significance in-
vestigation.

II. TWO WELL-SEPARATED RESONANCES
WITHOUT BACKGROUND

To work out b,(E), we use the general expression ob-
tained in Ref. 14 for the diA'erence 5S,& =S,b

—Sb, be-
tween the S-matrix elements connecting channels a and b
caused by the presence of a time-reversal-symmetry
breaking (T-breaking) part H' in the Hamiltonian. To
first order in H', and in the case of two resonances with
complex resonance energies g, and g2, partial widths I „
and I 2„and resonance wave functions +1 and +2, we
have from Eq. (14) of Ref. 14

2

M,b= —2(2')' y (E —
g, ) '(I' Im(e" ~H'~e &

—I"' Im(e' '~H'~VJ ) )

+2i (E g )
—l(E g )

—i(1 1/2~ I 1/2 I 1/2~ I l/2)

The quantities ~I/~z' are the channel wave functions, and &z, = ( %2~H'~'I/, ) defines the mixing of compound resonances
1 and 2 caused by the perturbation H'. We have'" Az&= —&i&. The matrix elements (4~@'~H'~%' ) describe
compound-nucleus decay via the T-violating interaction. In Eq. (4) we have considered two resonances in the absence
of any background originating from direct reactions, or from far-lying resonances. This restriction is lifted in the next
section.

It is our aim to maximize b(E) as expressed in terms of 5S,b and S,'b'= —,'(S,b+Sb, ). To this end, we introduce some
simplifications. Since only the last term on the right-hand side of Eq. (4) contains the resonance enhancement, ' ' we
focus attention on this term and omit the terms proportional to the matrix elements ('I/'E'~H' ~%' ). Moreover, we write
o,b

= ~S,b~ . The omission of kinematical factors in this relation is justified because we evaluate the normalization-
independent quantity b, in Eq. (3). The restriction to a single entrance and a single exit channel is lifted in Sec. III.

We have, to first order in H',

o,i, ob, =+—2[ Re(5S,b) Re(S,'„')+ Im(5S, b) Im(S,'b')]
2

=2 g E —g'
~ Re}&2,(E —

g2 )[~I „(I*,„I2b)' —~l, „~(I *„I~, )' ]
j=l

+%'', (E —g*, )[~1 b ~(l,.r,*.)'"—~r,.~(r„l,*„)'"]}

and, to zeroth order in 0',
A

—,'(o.~+oi. ) = IS.'b'I'

= ~ ~E —
g, ~-'~(l, .r„)'"(E—g, )+(r,.l „)'"(E—g, )('.

We consider the case of very weakly overlapping resonances. It is characterized by the assumption that the "external"
coupling between compound resonances via the open channels can be neglected in comparison with the "internal" cou-
pling via the matrix elements of the Hamiltonian taken with respect to the resonance wave functions. Formally, this
means that we omit the last term on the right-hand side of Eq. (3) of Ref. 14 in the determination of the orthogonal ma-
trix introduced in Eq. (9) of the same reference. Then this orthogonal matrix is real and, as a consequence, all I '/, car-
ry, for all m but fixed a, the same (potential scattering) phase shift. Moreover, the matrix & „ is purely imaginary, and
can be written, for m ( n, as &' „=iv „. Then v „ is real and symmetric. Expressions (5) and (6) simplify to

&(E)= „(II, I,.I

'"—Il I .I'")(I Il .I, I'"+I Il .I'
& }[(E—E2) Il ).I ib I'"+(E—E, )Il,.I ~b I

'"]'+—,'(I, 1,.1 i~ I

'"+I ill 2. 1 ~g I'")'} (7)

We have used g =E —,'i I, j =1,2—. Equation (7) shows
that b, (E) is maximal when E is at the interference
minimum of the cross section ~S,'b'~, i.e., when

E =Eo= ~r,.r„~'"E,+ ~r,.r„~'"E,
/I, .r„/'"+ fr,.r„f'"
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With I 1
—I 2=-I where I is the average resonance width

(a condition often met for isolated resonances where the
many open gamma channels contribute more strongly to
the total width than the particle channels) this yields for
b, (Ep)

b (Ep) -=4 r lr r, l'"+lr, .r,„l'" (9)

For simplicity, we sometimes consider the special choice
Ir,.r»l=lr, .r»l. Then,

1/2 1/2 '
I 2b

I 1b
b, (Ep)=2

. I

and Ep -=—,'(E, +E2). This essentially is the result of Ref.
14 where the same choice was made. We observe that the
maximum value (9) of 6(Ep ) is attained only in a narrow
neighborhood IE —Ep ~ I of Ep. Outside of this inter-
val, A(E) decreases rapidly, and at most other energies in

I
E —

—,
' (E, +E2 ) I

~ D is reduced by a factor of order
(I'/D) ((I (we assume here that IE, E2I =D—). The
function b,(E) thus shows a "resonance enhancement"
near E =Eo. This enhancement is correlated with a
sharp minimum of o,b(E) at . E =Ep, where, with

y, b
= I &, I » I' = I 2, I 2b I', we have

2 2

o,i, (Ep) =2.4 1 'Dab
(11)

ground is included. We take this background amplitude
T,b to be independent of energy, and to be T conserving,
T,b

= Tb„since T,b cannot show any resonance enhance-
ment. With y, b the mean value of

I I,I .
b I

' over many
resonances j, we estimate the magnitude I T,„I

of T,b as

y,b/D. Note that we consider cases where, for the two
resonances under consideration,

I
I „I 2b I

' and/or
I
I z, I 2&

I' may diff'er from y,b.
In preparation of a more realistic treatment, we first

consider the case of an incoherent background. It might
be due, for example, to systematic noise in the detectors,
or to incoherent channels free of resonance contributions.
We see from Eq. (11) that because of the very small size
of 0'

b (Ep ) the inclusion of an incoherent background
T,b I

reduces the estimate (10) by a factor
o,b(Ep)/.

I T,b I
which even for

I T,b I =y,b/D (a condi-
tion which ensures that the resonance curves can be ob-
served over an interval of length =D) destroys the reso-
nance enhancement factor (D/I ) in this estimate.

However, inspection of expression (7) modified by the
inclusion of an incoherent background shows that a reso-
nance enhancement still persists, provided that we con-
sider a more asymmetric situation for the partial widths.
If I 2, I"2b =(I /2D) I ~, I &b then the maximum in h(E)
is shifted to

E,„=(2DE +I E, )/(2D+I )=E

This value is extremely small in comparison with the
value 2 (y, b /D) typically attained outside the
minimum. We note that the parameter D is conspicuous-
ly absent in Eqs. (9) and (10). This is counterintuitive
inasmuch as for isolated resonances the energy scale is
defined by D. We now show that this unphysical feature
results from the neglect of the background contribution.

III. TWO WELL-SEPARATED RESONANCES
WITH BACKGROUND

We investigate the condition under which b.(E) attains
a maximum in the more realistic situation ~here a back-

the minimum value of o,b at E =E „ is given by
I 1 I 1b /D and thus is much larger than in the previous
case (we put again

I T,b I
=

I
I „I » I

/D ), but the esti-
mate (10) ( now at E =E,„) remains the same and so
does the resonance enhancement factor (D/I ) .

We now consider the case of a coherent background,
originating from the tails of far-lying resonances. The
amplitude S,'b' contains the additional term
T,b exp(i 5, +i 5b ) with T,& positive and T,b

—y, b /D,
while 5„6b are the potential phase shifts. The expression
for h(E) is now

6S,b 2U„(lr„r,.I'"—lr,„r,.I'")
~(E)= Re (0)

= Re 1/2s., I r,.r» I (E —g, )+ I r,.r„(E g, )+T.„(E g—, )(E g,)— — (12)

We see that b, (E) will attain its maximum value when the
absolute value of the denominator on the right-hand side
of Eq. (12) has its minimum, i.e, in the minimum of the
cross section. A more detailed analysis of Eq. (12) shows
that for

Ir,.r„l= lr,.r„l=y.'„~T.', D'

Hence, the addition of any sizable incoherent background
(which is always present) to the coherent background just
considered will wipe out the enhancement in the same
manner as discussed above for the case of a purely in-
coherent background.

This situation can once again be changed by consider-
ing the asymmetric case

the minimum is shifted by =- T,bD/(4y, b ) from its origi-
nal position Eo. For T,b

~ y,b/D the maximum value of
b, (E) is still given by Eq. (10). More importantly, the
minimum of the cross section has the small value (11).

Ir,.r,„l =-,'(r/D)'Ir, .r„l .

Then the interference minimum shifts to E,„=E2, and
for

I T,& I y, b /D the cross section in this minimum in-
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creases to a value y,b/D, while b,(E) at E =E,„re-
tains its value [(9) and (10)] and, hence, the resonance
enhancement factor (D/I ) . For T,&

&)y,~/D there ap-
pear two minima at E=—E, and E=E2 where the cross
sections are o,&=-T,t, I

. Therefore, the maximum of
h(E) at these points is reduced by a factor y, & /TD « 1.

In the presence of direct reactions, the matrix element
T,b acquires an additional phase. The situation remains
qualitatively the same as for T,b real, provided that
ImT, b

~ ReT,b
+ y,b/D: In the symmetric case

I I,.I )g I

-=II,.r„l the cross section minimum is smaller
by a factor (I /D) than the value elsewhere, and the in-
coherent background therefore destroys the enhancement
of A(E). In the strongly asymmetric case

the enhancement of b, (E) persists.
In summary, we see that the introduction of a coherent

background with T,&
& y,& /D does not qualitatively

change the picture obtained by studying the incoherent
background alone: For the symmetrical case, the
minimum value of the cross section is so small that the
enhancement of A(E) is destroyed upon the inclusion of
an incoherent background. One needs to go to the exotic
asymmetrical case in order to improve the situation. In
other words, the case of two well-separated resonances

does not offer much hope for meaningful experimental
tests of detailed balance.

IV. TWO CLOSE-LYING RESONANCES

The physical reason for the negative result found in
Sec. III is the very smallness of o.,b in the minimum,
suppressed in comparison to its value elsewhere by the
factor (I /D) «1. A remedy may be found by con-
sideration of a pair of resonances for which this factor ac-
cidentally is larger than expected on average. Since the
case of two resonances with unusually large widths ap-
pears fortuitous, we here focus attention on the case of
two close-lying resonances for which the spacing
IE, —E2I =d is significantly smaller than the average
spacing D. (In this situation one may obviously also al-
low for a larger background than given by
I T,& I =y,&/D. ) However, this leads us into the situation
of two overlapping resonances (I &d) for which the
number of parameters in S,b increases drastically since
each of the I ~,

= II ~, I exp(i5, ) in S,&(E) becomes in-
dependently complex. (We do not consider the case I & d
since the repulsion of the two resonances makes this situ-
ation rather unlikely. ) However, the analysis of this case
with I -d and sin5J, —= cos5., shows that for any choice
of I „I,~ /(I 2, I z& ) one still gets the maximal effect [(9)
and (10)] for A(E) at the minimum E =E;„ofthe cross
section, defined by

Ir,.l » IE, +
I r,.r,& IE, + II &.I „r,.I'„"[(E,+E ) cosP+ —,'(I —I, ) sing]

I+II 2.12bl+211 .I' I .I I'"cosp (13)

where P=P, —
$2 and PJ =51,+5jq The valu.e of o,s at

the minimum is typically y /I allowing for a much
larger background. We note that the minimum is not
very pronounced for I -d and that b,(E) takes a value
close to (9) and (10) in the whole range
IE ——2(E&+E2)I & I' of the two overlapping resonances.
Hence, the point E, (E„) in Eqs. (2) and (3) should be
chosen inside (outside) this interval, respectively, with
IE„——2(E&+E2)I)D. Then, 6(E„)=(I/D)b(E, ), and
b, (Et,E„)—= b, (Et ) shows an enhancement by the factor
D/I &)1. This factor is not as large as the factor
(D/I ) found in Secs. II and III, but its usefulness is not
put into jeopardy by the unavoidable incoherent back-
ground.

It is interesting to compare our resonance enhance-
ment factor D/1 for b, (Et,En) and for b.(E&) with the
result of Ref. 12. There, detailed balance violation is cal-
culated for several observables, one of which can be
rewritten as

Ref. 12 show that for (I /D) &0, the quan—tity F' car-
ries a resonance enhancement factor (D/I )' . (This fac-
tor appears to be little affected by incoherent background
contributions. ) Our resonance enhancement factor D/I
is, for D ))I, substantially bigger than (D/I )' but it
comes into existence only in the rather special situation
considered in the present section; This is in keeping with
the remarks in the Introduction.

V. ENHANCEMENT FACTOR AND
SIGNIFICANCE OF EXPERIMENTAL RESULTS

We use the estimates (9) and (10) for the maximum
value of b, (E„Et,) to introduce and evaluate the
enhancement factor for the observation of T violation in
detailed balance. Following Ref. 13, we introduce the
root-mean-square matrix element Uz. for T violation (as-
pects of this step are analyzed below), and write Eq. (10)
(on which we focus attention) as

([-,'( ., + „.)]')

(the brackets denote energy averages) and thus bears
some formal analogy to b, [cf. Eq. (1)]. The authors of

VT V12
~max =~max =

I f
Uy

where
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1 /2
2b

~&b

1/2 and I allows for a value of f -=10. We therefore esti-
mate

We relate UT to the root-mean-square matrix element V
of the strong interaction by

b. ,„-=(10 /10 )P
VT

(19)

vT=JV . (15)

The quantity P (or, more modestly, an upper bound on P)
is the object of experiments on detailed balance. It is

largely independent of excitation energy E and mass
number A (while v7 and V are not). This can be seen by
writing P=(I'"'/I i)'~ where I'"'=2m vT/D and
I i=2~V /D are the spreading widths for T violation
and for the strong interaction, respectively —quantities
which are known ' to depend little on E and A. This
yields

,„=—Pf—
I UT

(16)

We identify V/I =(2~D1 i)' /I as the enhancement
factor. (This quantity, of central interest for the theoreti-
cal analysis, should not be confused with the "resonance
enhancement factor" introduced above to quantify the
amplification of b, ,„due to resonance eFects. ) In the
ideal case of infinite energy resolution and arbitrarily
small I this factor might be very large but in practice we
have to account for the finite energy resolution AE which
might be bigger than I, the average width of isolated res-
onances. It is easy to see that in this case the est,imate for
b,„reads

(17)

AE AE
(18)

The range of variation of the observed' ' values of I p

The best energy resolution known to us for protons is'
AE =300 eV. The Triangle Universities Nuclear Labora-
tory (TUNL) experiments were carried out on nuclei with
3 =50—60 and proton energies near the Coulomb bar-
rier. Because of the negative Q values, the a channel (the
best candidate for the entrance channel of the inverse re-
action) was closed or at least unobserved in these nuclei.
The situation is more favorable near A =40. [References
16—18 report resonance studies with the (~v, a) reaction
on K, 'K, and Cl.] Assuming that a value hF =1
keV can be attained for both proton and alpha channels,
using a typical resonance spacing' ' of D = 50 keV,
and a spreading width r ~ =—1 MeV, we find for the
enhancement factor

The energy resolution of 1 keV is obviously not easily at-
tainable for o; beams, but the alternative kind of T-
noninvariance test with the same amount of enhance-
ment' involves rather complicated experiments with po-
larized neutrons and oriented targets.

To determine UT, many experiments yielding 6 and the
calculation of the variance of v &z would be necessary. In
practice, only one (or a few) upper bounds on 5 are ex-
pected to become available. To derive an upper bound on
vT (or better, on P) from this kind of data, we return to
Eq. (17), and following Ref. 10 in a modified way, consid-
er

VT

6 „AE
NfV

as a Gaussian-distributed random variable with zero
mean value. Then a single upper bound, ~A, „~

~ b, v, im-
plies' a statistical upper bound $0 on P with confidence

DOTE
P(P ~ Pv) =1—erf

OV
(20)

The authors are grateful to Dr. D. Davis for a careful
reading of the manuscript.

Taking b,v=5X10 we obtain from Eqs. (20) and (19)
the bound $~5.5X10 at a 90% confidence level.
Another independent measurement with the same bound
increases the confidence level to 99%. A more conserva-
tive estimate of f = 1 or h,E = 10 keV increases the
bound by an order of magnitude, which is still a factor 20
better than the best obtained so far with the same
confidence level. "' The experiment proposed in the
present paper thus offers a viable alternative to the test
advocated in Ref. 12. We hasten to add, however, that
only a confidence level well above 99%%uo would yield a
physically relevant statement, and that in the actual ex-
periment values of ~f ~

(1 must be excluded to avoid a
decrease in the enhancement factor.

In summary, we have shown that existing bounds on
the T-violating interaction can be much improved for the
realistic case of two close-lying resonances. The improve-
ment is due to specific resonance-enhancement factors
typical for detailed balance experiments on compound-
nucleus resonances.
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