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Neutron-proton weak coupling: Reducing shell-model dimensions by truncations
in the neutron and proton subspaces
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A scheme for shell-model truncations based on diagonalizing and then truncating the separate
neutron and proton subspaces and then combining the truncated subspaces together for rediagonali-
zation is described and evaluated. Projected m-scheme techniques are used for these calculations
and aspects of this technique relevant to this application are discussed. Detailed calculations are
made for Ne and 'Ne. The truncated results for level schemes, 8 (E2) values, and wave-function
amplitude distributions are compared with the results of calculations in the analogous full shell-
model basis spaces. The results suggest that the neutron-proton "weak-coupling" approach may be
an eAective truncation scheme even though it is known that the n-p interaction has a dominating
influence on these nuclei.

I. INTRODUCTION

The nuclear shell model has evolved to the stage that it
can be used to make systematic studies of fundamental
features such as electromagnetic moments and transition
probabilities, beta decay rates, and such complex phe-
nomena as isospin mixing and parity violation. ' Such
successes are limited, however, to regions of nuclei for
which shell-model dimensionalities are small enough to
be manageable in explicit calculations. In order to make
shell-model calculations more generally applicable, tech-
niques for reducing the model state dimensions must be
developed.

In the present work we study a truncation approach
based on diagonalizing the separate neutron and proton
subspaces of a total shell-model space. The lowest-lying
neutron and proton eigenvectors which result are then
combined to form a new space for the total number of ac-
tive particles and this new space is rediagonalized to
"weakly" couple the neutron and proton results into the
full solution. Of course, the coupling is in one sense cer-
tainly not weak, but the hope is that the low-lying eigen-
vectors of the untruncated space will turn out to have
large overlaps with the eigenvectors of the space con-
structed from the low-lying eigenvectors of the separate
neutron and proton spaces. The aims of this work are to
develop a technique for making such calculations and
evaluate the results by comparing them to corresponding
results obtained in the analogous untruncated model
spaces.

Previous work along these lines has been reported by
Arima and Hamamoto, Wong and Zucker, McGrory,
and Chiang, Wang, and Hsieh. The work of Arima and
Hamamoto concerned the particle-hole states near ' O.
In this case the two subspaces contain particles from
difterent shells, a situation which is the traditional realm
of weak-coupling calculations. The same approach can
in principle also be applied in cases for which the parti-
cles in the two subspaces occupy the same orbits. For ex-

ample, the states of Ne could be modeled in terms of
the products of the states of ' F:

Ne) =
~

' F,J;T; ) X
~

' F,J, T, ) .

This direct-product approach in general does not produce
states with good J and T values and the basis generated is
overcomplete.

McGrory proposed a truncation scheme for heavy nu-
clei in which neutrons and protons would occupy two un-
connected subspaces. In this context, states of Ne
would be modeled in terms of the products of ' 0 and
' Ne states,

Ne, j ) = [ ~

' Ne, J, T, ) &&
~

' O, J T ) ]

but there would still be problems with nonconservation of
isospin in the final space. Chiang, Wang, and Hsieh
have applied the McGrory approach to describe the
%=81 and 83 isotopes. In this case the product wave
functions will have good J and T values since the protons
and neutrons occupy completely diA'erent orbits.

The neutron-proton weak-coupling truncation method
we describe here is based on the projection operator ap-
proach used in the shell-model code oxBAsH. It pro-
duces wave functions with good J and T values. The
method starts with separating the original shell-model
space for X active particles into neutron (N„p rtaicles)
and proton (X particles) subspaces. The nn and pp com-
ponents of the model Hamiltonian are then diagonalized
in the respective subspaces to produce spectra of low-
lying neutron and proton eigenstates X,J, T, and N J T .

Next, X-particle basis states are generated as the prod-
ucts of the low-lying neutron and proton eigenstates

These product basis states again in general will not
have good J and T values. However, a basis with good J
and T can be obtained from them by applying the projec-
tion operator I' "which is a product operator composed
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of independent J and T projection operators. (P
=P P .) The J-projection operator is defined by

max J —J (J +1)
J(J +1)—J'(J'+1)

min

where J;„andJ „arethe two limits of the triangular
coupling J=J„+Jz [see Eq. (3)]. The isospin operator is

J
defined similarly.

The basis states produced by projection, though having
good J and good T, are not orthonormal. Orthogonality
and normalization is obtained by an explicit Gram-
Schmidt procedure. The Gram-Schmidt procedure also
provides a check on linear dependence of the basis states.

The procedures just described are the natural mode of
operation for an m-scheme computer code such as
OXBASH which is designed to diagonalize in a good J and
T basis which has been projected from an I-scheme basis
defined in terms of J, and T, . The next step in our
method, as in the general OXBASH application, is to use
the orthogonal set of basis vectors with good J and T
values to construct the corresponding Hamiltonian ma-
trices, which can then be diagonalized, typically with the
Lanczos technique. We haved implemented this trunca-
tion concept by writing a set of supplemental codes for
OXBASH which accomplish the tasks of working with the
initial subspaces, truncating them, and then forming the
product-state model basis. In the following sections we
will examine some results obtained with these codes.

which the
~
0; ) vectors are expanded. The m-scheme

basis spans the complete space for X particles. Our trun-
cations are performed in the good-JT space of Eq. (9).

The Hamiltonian matrix is generated from the
~
0, ) as

H„=& O,
~

H
~
O, ) =y a,„&0, ~

P"II
~
I„&

k

=pa, ,&0, ~a I„)
k

=y „[&0,~I, )g,

+&0; IH., II. &1

=g, n„+pa,„&0,~H„,~I„),
k

where g; is the sum of the binding energies of the valence
particles shown in Eqs. (6) and (7). The same result
would be obtained by applying H to

~
ok ) rather than to

~
Ik ), but applying the Hamiltonian to

~
Ik ) speeds up

the calculation.

A. Applications to Ne

Ne is a good nucleus with which to test this method,
since the n-p interaction is known to be strong and to be
responsible for the rotational features of its spectrum.
This allows the truncation scheme to be inspected in an
unfavorable situation. The dimension of ' 0 (' Ne) in the

II. DISCUSSION

Application of this method to the sd shell commences
by expressing the model Hamiltonian in neutron-proton
notation,

H„i
q f) =ef

i
ef) (6)

H„„i q,"&=e,"
i e,"& (7)

where for Ne the neutron wave functions would corre-
spond to the eigenstates of ' 0 and the (mirror) proton
states to those of ' Ne. For 'Ne the neutron states
would instead correspond to the eigenstates of ' O.

The product-state basis is formed by

H =H +H„„+H„
Wave functions in the two subspaces are obtained by
solving the equations

)
QJ 9-
X

CT)
I

c 7
LLI

C
C3

Q 5-

LLI

0'
4

+

2'
0'

2'

4+
. 0

4
2'

4+

6

2'
0'

2

21&2$
2)x0g

—2) x4)

O)x2p
2)~2),0)xOp
Gg 4)

[ q;," & =
j I„&=

]
~& & X

[ q,"& . (8) 0 0

B.E.= 40.49 MeV 39.63 MeV 24.02 MeV
The projection operator is then applied to these product
vectors

~
Ik ) to generate (after orthogonalization) the

new orthonormal basis states
~
0; )

l

~0, )= g a,„P"~I„). (9)
k=].

At this stage, there are two bases: the good-JT basis,
the

~
0, ) vectors, and the oxBASH m-scheme basis over

FIG. 1. Excitation energies of states of Ne. The first
column shows the results obtained in the full sd-shell space, the
center column shows the results obtained after truncating in the
neutron and proton spaces and then rediagonalizing in the prod-
uct space, and the third column shows the energies associated
with the product basis vectors. The binding energies of the
ground states are shown below each column.



A. ETCHEGOYEN, M. C. ETCHEGOYEN, AND B. H. WILDENTHAL 39

TABLE I. Comparisons of state dimensions in the full and truncated shell-model spaces.

Mass 20 Mass 21

Full shell-model dimension
Truncated dimension
Reduction factor

0+

21
9
2.3

2+

56
14
4

4+

44
14
3.1

6+

17
7
2.4

2

109
24
4.5

3+
2

188
42

4.5

5+
2

223
51
4.4

2

209
47
4.4

m scheme is 14 for the sd space, split into three 0+, two
1+, five 2+, two 3+, and two 4+ states. For any particu-
lar total JT combination the product basis will therefore
consist of 196 (14X 14) states. When T projection is ap-
plied it can be seen that the number of independent states
is reduced to 105=n (n +1)/2. From each product state
one can project, in principle, as many good-JT states as
allowed by the triangle rules. If a J =2 state is taken for
both the ' 0 and ' Ne states, states with angular momen-
tum 0, 1,2,3,4 and with isospins 0, 1,2 could be obtained in
mass 20, that is, a maximum number of 15 states from
only a single product wave function.

We choose as a truncation for Ne to restrict the
A = 18 states used in forming the product basis states to
the lowest two states each of spins J =0, 2, and 4. The
product basis therefore has dimension 21 = (6 && 7 ) /2.
The effects of thus truncating the basis will be studied by
comparisons of energy levels, B (E2) values and overlaps
with both exact shell-model wave functions and with the
product wave-function vectors

~

Ik). Energy-level com-
parisons are displayed in Fig. 1. The first column of Fig.
1 shows the results of the exact shell-model diagonaliza-
tion. The third column of Fig. 1 shows the energies cor-
responding to the original simple product wave functions;
these wave functions have neither good J nor good T.
The spectrum is quite different from the exact calcula-

tion, clearly showing the importance of the H„ interac-
tion. This is further reaffirmed by comparing the
ground-state valence-particle binding energies: 24.34
MeV for the simple product wave function and 40.49
MeV for the exact calculation, that is 16.65 MeV of extra
binding is produced by the np interaction. The center
column of Fig. 1 shows the result diagonalizing in the
projected and orthonormalized product space after trun-
cating each of the neutron and proton subspaces to only
two states each of J=0+, 2+, and 4+

~ The ground-state
rotation band (0+,2+,4+, 6+) is reproduced and so are
other states up to =10 MeV of excitation energy. In
Table I the full shell-model and weak-coupling truncation
model dimensions are shown for different J values.

A better test of the effectiveness of this truncation
might be a comparison of E2 transition probabilities,
since these features emphasize the configuration mixing
and collectivity in the Ne wave functions. Table II
shows such a comparison for B(E2) transitions. The
correspondence is quite satisfactory and it seems that the
collective natures of the full-space states emerge largely
undiminished through the truncations. The B(E2) re-
sults are refiected in a direct examination of the wave
functions themselves. Overlaps between the truncated
and untruncated wave functions are shown in Table III.
For a nontruncated weak-coupling basis this overlap ma-

TABLE II. Comparison of B(E2) values as calculated with the full and truncated wave functions for Ne and 'Ne. (Integer
spins correspond to transitions in Ne and half-integer spins to transitions in 'Ne. )

Full space
B (E2) (e fm )

Truncated Full space Truncated

21+ ~0i+

2+ 0+

4+ 2+

4+ ~2+

61+~4+

+ 3 +

21 21
5 + 3 +

22 21
5 3 +

23 21
+ 5 +

21 21

60.6

17.0

72.2

7.2

55.9

110.5

1.8

2.8

74. 1

57.8

16.5

71.3

7.8

57.2

110.6

0.2

0.9

71.0

7 + 5 +

22 21
+ 5 +

21 22
+ 5 +

22 22
7+ 5+
21 23

+ 5 +

22 23
7 3

21 21
+ 3 +

22 22
+

1
+

22 21
5+ 1+
23 21
3 + 3 +

22 21

0.5

7.1

32.5

1.9

31.0

46.0

5.1

31.9

20.2

4.1

0.8

7.0

21.5

2.0

41.4

44.2

3.5

36.0

15.0

4.7
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TABLE III. Overlap values of the wave functions of 0+, 2+, 4+, and 6+ states in Ne as calculated in the truncated space (lowest
nine states of each J) and the full space (lowest two states of each J). The elements of the overlap matrices are labeled by the excita-
tion energies of the states.

Full MeV

0.0
6.8

Truncated MeV

J=0
0.0

95.0%
0.1%

6.6

O.O%%uo

95.8%

11.9

0.0%
0.1%

15.1

0.0%
0.0%%uo

16.0

0.0%%uo

0.0%%uo

16.5

0.0%
0.0%

20.3

0.0%
0.0%

23.9

0.1%
0.0%

28.1

0.0%
0.0%

Full MeV

1.8
7.3

Truncated MeV

J=2
1.6

96.2%
0.0%

7.0

0.0%
96.4%

10.3

0.0%%uo

0.0%%uo

12.7

0.0%
0.1%

13.9

0.0%%uo

0.0%%uo

14.4

0.0%
0.0%

16.3

0.0%
0.0%

17.9

0.0%
0.0%

18.1

0.1%
0.0%

Full (MeV) Truncated (MeV)

J=4
4.2

10.0

3.8

96.8%%uo

0.1%

9.6

0.0%
93.8%

10.7

0.0%
0.0%

12.3

0.0%
0.4%

13.6

0.0%
0.0%

16.0

0.0%
0.2%

17.0

0.0%
0.1%

19.3

0.0%
0.0%

19.7

0.0%
0.1%

Full (MeV) Truncated (Mev)

J=6
8.5

7.9

97.8%

13.0

0.0%

14.4

0.0%

16.6

0.0%

18.3

0.0%%uo

20.1

0.0%

27.2

0.0%

trix would be the identity matrix. It is observed that the
wave functions resulting from the truncation closely
reproduce the full-space results up to approximately 10
MeV, with all overlaps greater than 0.97.

In Table III it can be seen that the lower full shell-
model states are seen to have little overlap with any of
the higher-lying weak-coupling model states, and this
gives rise to the question of whether the present weak-
coupling basis could be truncated further. This is as-

sessed by looking at the overlaps, shown in Table IV, of
the weak-coupling wave functions with the nonorthogo-
nal

~
Ik, J, T ) =P

~
Ik ) good- JT product basis states. It

appears from Table IV that the basis could be truncated
by at least a further 20%. Note that, since

~
Ik, J, T ) is a

nonorthogonal basis, the percentages shown in Table IV
are strictly valid only within a row, that is, when

Ik, J, T) is expanded in terms of JT weak-coupling
wave functions, whereas they would be upper limits when

TABLE IV. Overlaps of the wave functions of Ne obtained from diagonalizations in the truncated
space with the basis vectors of the product space. The product states were projected into good-JT form
before the overlaps with the eigenstates were evaluated.

Truncation
eigenstates

Product states (J, T)

Oi

(0,0)

02 2i

(2,0)

22 4i

(4,0)

42 6i

(6,0)

Oi XOj
Ol X2l
Ol X4l
Ol X02
2i X2l
O, X2,
2i X4i
2i X02
2i X22
4l X4l
4l Xo2
4i X2,
O, xO,
O, x2,
22 X 22

o, X4,
2i X42
4, X4,
O, x4,
2, x4,
4, x4,

58.2%%uo

1.1%%uo

42.4%%uo

6.6%
8.9%

0.9%

2.6%

7.4%

1.4%

7.1%

70.2%
0.4%%uo

37.1%%uo

6.5%%uo

3.1 %%uo

0.4%

3.7%

1.1%

64.5%

18.4%
4.8%

21.9%
1.5%
5.3%
2.3%

2.5%

0.9%
0.1%

6.4%
2.2%

1.0%
0.4%

12.9%

17.1%%uo

61.4%
0.0%%uo

8.3%
7.8%
3.2%

3.6%

0.1%
0.6%

0.8%
5.4%%uo

1.5%
1.7%

35.7%

35.9%

23.2%

5.8%
3.3%
0.0%
0.1%

1.2%
11.9%
8.4%
1.8%
0.0%
0.1%
0.3%

0.5%

45.9%

10.6%

6.2%
0.5%
3.4%

42.9%

0.0%
10.2%
4.2%
0.5%
1.7%
7.8%
0.6%

79.4%

5.1%

2.9%

12.0%
3.6%

1.4%
0.9%
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any given weak-coupling wave function is expanded in
terms of the

~
Ik, J, T) basis set. As an example, the

weak-coupling Ne ground-state total percentage adds
up to 129.5%%u~, a clear indication of the nonorthogonality
of the product basis.

Note that the
~

0~+ XO~+,J =0+, T=0) basis state
(i.e. , the product of ' Ne and ' 0 ground states) has a
58% overlap with the weak-coupling Ne ground state,
7% with a second 0+ state, and therefore 35%%uo with the
remaining 0+ states of Ne, which lie above 10 MeV of
excitation energy. This is a considerable splitting of the
strength and it reaKrms the importance of the neutron-
proton interaction. These overlaps are of further interest
in order to gain insight into the structure of Ne as a
function of ' 0 and ' Ne. None of the weak-coupling
states has a single main component from the nonorthogo-
nal basis, but the mixing from this basis set typically does
not extend beyond two or three major components.

B. Application to 'Ne

The truncation for 'Ne was chosen differently from
that used for Ne. Instead of a fixed number of subspace
states, an upper limit of 10 MeV excitation energy was set
on the product-state energies. All possible spins were
thereby included in the product basis, i.e., —,'+, —,'+, —,'+,
—,'+, —', +, and —", + for mass 19 and 0+, 1+, 2+, 3+, and 4+
for mass 18.

A comparison of energy spectra for 'Ne is shown in
Fig. 2 and the dimension-reduction factors from the trun-
cation are listed in Table I. The difference in binding en-
ergy of the valence particles between the full and truncat-

5-)
4-

CA
L

c 3-
LLJ

C
O

2
U

QJ

7/2+

3/2+
5/2

5/2'

1/2+

7/2'

7/2

3/2'
5/2+

5/2+

1/2+

7/2

5/2+ 5/2
3/2+ 3/2+

B.E.= 47.20 HeV 46.39 HeV

FIG. 2. Excitation energies of states of 'Ne. The first
column shows the full-sd-shell results and the second column
shows the neutron-proton truncation results.

ed calculations is 800 keV. The B(E2) transition rates
from the two calculations are shown in Table II. Transi-
tions between the second and the third —,

' states and the
second —,'+ states show the most difference between full
and truncated results. These differences are about 30%,
although the sums of the two transition rates are approxi-
mately 63 e fm for both models.

The weak-coupling truncation approximation in 'Ne
is seen to yield energies close to the full-space results up

TABLE V. Overlap values of the wave functions of the —+, —'+, —+, and —+ states of 'Ne as calculated in the truncated space
and the full space. The presentation is the same as that of Table III.

Full (MeV) Truncation (MeV) 0.0 4.9 6.2 7.3 8.1 9.4 10.2 10.8 11.8

0.0
4.8

J 3
2

95.1%%uo

0.0%
0.0%%uo

88.1%
0.0%
0.6%%uo

0.0%%uo

0.8%
0.0%%uo

1.1%
0.0%
0.6%

0.0%%uo

0.0%
0.0%%uo

0.0%
0.0%%uo

0.0%

Full (MeV) Truncation (MeV) 3.3 7.0 7.9 9.8 10.7 10.9 14.2 15.0

2.9 89.7% 0.1% 1.2% 0.1% 0.0%%uo 0.1 %%uo 0.0% 0.0%%uo 0.0%

Full (Mev) Truncation (MeV) 0.4 4.1 4.7 7.4 9.0 9.3 10.2 10.5

0.2
3.7
4.6

J=—5
2

92.9%%uo

0.3%
0.5%

0.1%
90.3%

1.1 %%uo

0.3%
0.9%

90.9%%uo

0.0%
0.1%
0.3%

0.0%
0.1 %%uo

0.0%

0.0%%uo

0.0%
0.1 %%uo

0.0%
0.0%
0.1%

0.1%
0.0%
0.2%

0.0%%uo

0.0%%uo

0.0%%uo

Full (MeV) Truncation (MeV) 1.6 5.3 6.2 7.4 8.0 9.4 9.7 10.2 10.4

1.8
5.4

J 7
2

95.5%
0.4%

0.2%%uo

93.5%%uo

0.0%
0.3%

0.0%
0.1%

0.0%
0.0%%uo

0.0%%uo

0.1%
0.0%
0.0%

0.0%
0.0%

0.0%
0.1%
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TABLE VI. Overlaps of the wave functions of 'Ne obtained from diagonalizations in the truncated space with the basis vectors of
the product space. The product states were projected into good-JT form before the overlaps with the eigenstates were evaluated.

Truncation
eigenstates

Product states (J, T)

—X 015
2 1

—X 013
2 1

—' X012 1

—X 21
5
2 1

— X 21
3
2
—X 017
2 1

—X 015
22
—X 211

2 1

—X 41
5
2 1

—X 013
2 1

—X 413
2 1

—X 21
9
2 1

—X 21
7
2 1

—X 21
5

22
—Xo13
23
—X 21
3
22
—X 017
22

3
2

60.0%

51.0%
18.2%

0.1%
1.6'Fo

1.4%

12.0%%uo

3.0%
0.1%%uo

0.9%

3
22

0.5'Fo

6.8%
0.9'Fo

30.3'Fo

0.6%%uo

30.0%%uo

7.0'Fo

7.4%
15.7%
7.4%

1

2

66.5%
1.0%

11.1%

34.1%

10.5%%uo

5
2 1

50.4'Fo

0.1'Fo

37.1'Fo

2.1'Fo

0.0%
11.6%

1.8%
8.6%%uo

11.9%%uo

0.7%%uo

1.2%%uo

5
22

12.4%

29.5'Fo

3.3'Fo

36.3%
19.5%
3.7%

0.0'Fo

2.9%
2.1%
1.4%

2.7%

5
23

0.6%

19.7%
7.3%

15.6'Fo

24.5%
14.0'Fo

4.0'Fo

1.2%
7.3%%uo

15.2%

1.0%%uo

7
21

34.2%
24.8%
31.1%

4.8%%uo

12.8%%uo

5.9'Fo

4.7'Fo

1.4'Fo

0.9%
3.3%%uo

7
22

11.2%
11.9%
14.8'Fo

25.9%

10.7%
23.8%

1.4%
2.2%

0.1%
10.0%%uo

to approximately 5.5 MeV. This is not as large an energy
interval as for Ne (10 MeV), probably due to the level
density being larger for odd-even nuclei. There are seven
shell-model states in Ne in 10 MeV of excitation while
there are ten T= —,

' states in 'Ne in 5.5 MeV of excita-
tion. (There are 45 T= ,' shell-model sta—tes with excita-
tion energies below 10 MeV in 'Ne. )

The overlaps between the truncated and the full-space
shell-model wave functions for 'Ne are shown in Table V

and, in Table VI, the overlaps of weak-coupling wave
functions with good- JT product basis states are
displayed. As for Ne, these overlaps serve a double
purpose: First, they give information on the structure of
'Ne in terms of ' Ne and ' 0; second, they assess wheth-

er or not the product basis can be truncated any further
without substantial loss in the weak-coupling wave func-
tions. Again, only a few expansion coeKcients are large,
indicating that a further truncation might be feasible.

TABLE VII. Comparison of energies and state dimensions of states of Ne and 'Ne as obtained in
the full space, the truncated space with good-JT, values and the truncated space without good-JT
values. The values for the ground states are binding energies. The values for excited states are excita-
tion energies.

Full space
(MeV) Dim

Good T
(MeV)

Truncation
Dim

Bad T
(MeV)

Truncation
Dim

0+

2+

4+

3 +
2

1+
2
5+
2

7+
2

40.49
6.76

1.78

7.32

4.21

9.98
8 ~ 52

47.20

4.79

2.87

0.25

3.73

4.57

1.79

5.37

21

56

44

17

188

109

223

209

39.63

6.56

1.57

6.97
3.82

9.57

7.88

46.39

4.88

3.26

0.41

4.11

4.73

1.63

5.34

14

14

7

42

24

39.31

6.56

1.45

7.00
3.59

9.36
7.57

45.79

5.01
3.55

0.47

4.34

4.77
1.47

5.27

12

12

42

24

47
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III. WEAK-COUPLING WAVE FUNCTIONS

Weak-coupling calculations in which no T projection is
performed can be found in the literature. ' The T-
projection techniques used in this work allow an assess-
ment of such an approximation. The results obtained for
the two different calculations are shown in Table VII.
The weak-coupling dimensions change for ' Ne from an
average reduction factor of 2.95 to 1.83. This is to be ex-
pected since ' 0 and ' Ne states will now be distinguish-
able. Therefore the complete product basis is needed,
rather than the lower (or upper) triangular matrix, as
used in the previous sections. The difference in energies
is typically 5 —10%, which is not negligible for low-lying
states.

IV. CONCLUSIONS

A truncation scheme has been applied to Ne and
'Ne within an sd-shell valence space. A versatile m-

scheme method has been applied which allows different
choices for the starting basis. The building blocks chosen
in the present study were the shell-model eigenvectors of
neutrons and protons diagonalized separately as distin-
guishable particles. Product wave functions were formed
by directly multiplying the neutron and proton eigen-

states and subsequently projecting to obtain good values
of J and T for the resulting basis states. Afterwards, the
np component of the Hamiltonian was applied to this
projected basis to couple the neutron and proton sub-
spaces. The overlaps with shell-model wave functions
were larger than 0.94 for all the states studied. Although
the neutron-proton interaction is strong for these nuclei,
it was found that typically only two or three of the over-
laps between the eigenstates resulting from the coupling
diagonalization and the initial product basis vectors were
large.

We note that the present method, based on good-JT
bases as building blocks, allows a variety of different ini-
tial product bases, not only those generated by solving
protons and neutrons separately. It would also be in-
teresting to try other different types of building blocks
rather than maximum isospin blocks.
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