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The isoscalar monopole (EO) and quadrupole (E2) transition strength of ' 0 is used to study how
well the e+ ' C cluster model works for explaining the strength distributions observed up to the iso-
scalar giant resonance region. The cluster model reproduces 54% of the EO and 65% of the E2 en-

ergy weighted sum-rule strength. A symplectic basis, which naturally reproduces the sum rule, is
mixed with the cluster basis to see how much of the missing strength is accounted for. A mixed
basis calculation shows that the symplectic basis does not ruin the successful agreement of the clus-
ter model with experiment obtained in the low-energy region and increases the strength by 30% for
EO and 20% for E2 below E ~40 MeV. It is predicted that both of the EO and E2 strengths are
split into two peaks in the giant resonance region with a greater spread over the excitation energy
than expected.

I. INTRODUCTION

The microscopic cluster model has been developed to a
fully mature stage with many applications to both struc-
ture and reaction problems. In the cluster model the con-
stituent cluster wave functions are usually frozen to
ground states approximated with lowest shell-model
states, while the relative motion of the clusters carries ar-
bitrary excitations. The remarkable success' of the clus-
ter model when applied to light nuclei can be understood
by the fact that some of the most important shell-model
configurations can be expressed by exciting the relative
motion degree of freedom. The o.+' C cluster model '

for ' 0 is a very good example to show that this is the
case. In this model states of ' 0 are described with an a
particle orbiting around ' C. The Pauli principle restricts
configurations available for the relative motion of the
clusters. The relative motion function was obtained in an
orthogonality condition model approximation4 which
respects the Pauli principle. With the exception of the
10.96 MeV 0 level the calculation reproduced almost all
levels with isospin zero below 15 MeV in excitation ener-

gy and also reasonably reproduced the observed data of
electric transition rates and o. widths.

It is interesting to examine the cluster model at higher
excitation energy. For this we focus on isoscalar quadru-
pole and monopole strength. The quadrupole strength,
for example, is an important quantity associated with a
quadrupole collectivity of the nucleus and its distribution
has experimentally been investigated up to the giant reso-
nance region. Since the isoscalar quadrupole and mono-
pole operators are quadratic in nucleon position vectors,
they can be rewritten as a sum of three terms convenient
for the cluster model: two terms relevant to the respec-
tive clusters and a term for the relative motion. The
latter is responsible for changing harmonic oscillator
quanta of the relative motion by 2 fico and its efI'ect is in-
cluded in a basis of the cluster model. The part of the

cluster-internal operators, however, induces the excita-
tion of the clusters themselves, and its eftect is not usually
taken into account in the cluster model. A careful com-
parison with experiment of the E2 and EO strength is
therefore a good test of nuclear models, in particular, of
the cluster model regarding the validity of an assumption
of the frozen clusters. The energy weighted sum rule is
particularly useful for this purpose.

The symplectic group Sp(6,R) (Ref. 5) has recently
been developed as a microscopic theory of the nuclear
collective motion. The generators of the Sp(6,R) group
include all quadratic forms in nucleon coordinates and
conjugate momenta and thus contain the monopole and
quadrupole operators. The Sp(6,R) group is thus evident-
ly expected to reproduce the energy weighted sum rule
for their operators. The purpose of this paper is to inves-
tigate the extent to which the o.+' C cluster model of
' 0 works for describing EO and E2 strength up to high
excitation energy and to clarify the role of the symplectic
model when it is mixed with the cluster basis.

We do not repeat the details of the cluster model since
they are fully described in Ref. 3. In Sec. II we give our
basis wave functions for both models and remark on their
relationship through the overlap of the wave functions.
The overlap is needed to construct an orthonormal basis
in the cluster-Sp(6, R) mixed-basis calculation. First we
show the distributions of EO and E2 strength obtained
with the Sp(6,R ) model in Sec. III, and then compare the
results of the pure cluster and cluster-Sp(6, R ) mixed-basis
calculation with experment in Sec. IV. Section V gives a
summary and discussion.

II. THE CLUSTER-SYMPLECTIC MIXED BASIS OF ' O

The normalized a + ' C cluster wave functions are
defined in an SU(3) coupled basis by
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l[(04) X(QO)](Ap)a) = [o [(04)Q;(Ap, )]I ' '4 j [P' '(~) XP'"'("C)]' "Xy'&0'(R) I'~~,

where the antisymmetrizer, A, handles antisymmetrization between the clusters. The properly antisymmetrized inter-
nal wave functions, P(a) and P(' C), of the a and ' C clusters are assumed to be lowest possible Pauli-allowed states
with SU(3) symmetry, (00) and (04), respectively. The relative motion function, y, is an oscillator function in the (di-
mensionless) relative distance vector R between the clusters;

R=&3[(r,+ . +r4)/4 —(r~+ . . +r,6)/12] .

It is assumed to have the same oscillator constant as the internal wave functions. The SU(3) symmetry of the total wave
function is the resultant of the coupling of (04) X (QO) and denoted by (kp) and its subgroup label a. The normalization
constant o [(04)Q;(Ap)] is given by )

o [(04)Q;(&p)]=(&+6)!(4—p)! g ( —1)"+"
mnp

(4—n)!(Q —n)! 1

n!(m — n)!(p —m)!(4—p)!(4—n —p)!(k+6—n)!(Q —m)! 3

Q —m

'm

(2)

The Pauli principle restricts the possible labels (Ap) for low Q: Every (Ap) state with Q (4 is Pauli-forbidden. Only
the (00) state is Pauli-allowed for Q =4, and the three states with (42), (31), and (20) are Pauli-allowed for Q =6. In the
calculations which follow we include all the a+ ' C cluster states up to Q =18 (14 A'co excitation). The dimensions of
the angular momentum subspaces for J =0+, 2+, and 4+ in the o, + ' C cluster model are 21, 46, and 57, respectively.

The normalized symplectic states based on the bandhead,
~

I =(00) ), of the 0 iii'co closed-shell configuration are given

by

%[(00)1„Iai =[i~ (I „)] ' [P "( A )X ~1" =(00))]"

=[ (I „)] ' 5 P "(A )~(00)), (3)

where P "( A ) is the raising polynomial of the raising generator, A, of the Sp(6,R) group. The normalization con-

stants, ir (I „),are determined by a simple recursion relation

IC '([/1 lii 2n 3 ] ) =
—,'[(4n, ) +(bn2) +(bn, ) ]+—,'(A, „+p„—1)bn, + —,'(p„—2)hn2 ——,'bn, +n3+22

i~ ([n, n2n3])

with the starting value of a ([000])=1,where nI+n2+n3=n, +n2+n3+2, bn; =n n;, A,„=n, n2, p—„=n2 n3——
%'e include the symplectic states up to 14 Ace excitation. The dimensions of the symplectic basis are 31, 39, and 34 for
J =0+, 2+, and 4+, respectively. The wave function of Eq. (1) with Q =4 and (A.p) =(00) is the same as the bandhead
of the Sp(6,R) model. The cluster model introduces excitations into the relative motion between the clusters with the
internal structure of the clusters being kept fixed. In the symplt:ctic model all the degrees of freedom are equally excit-
ed including both of the cluster-internal and cluster-relative motion. The cluster and symplectic wave functions of the
same SU(3) symmetry (NO) have overlap '7

( 4 I (00)[NOO](NO)a I i [(04)X (N +4,0)](NO)a ) =—1

9
31 (N+4)(N+6) 21!!(N+5)!!

3%+2 (N +1) (N +21)!!

For the 2 fico configurations of SU(3) symmetry (20) the overlap is 0.8076 and for configurations with large N it de-
creases rapidly.

The interaction matrix elements in the Sp(6,R) basis are evaluated by the method presented in Ref. 7. As also ex-
plained in Ref. 7, cluster-Sp(6, R ) coupling matrix elements are evaluated by reducing them to ones between the Sp(6,R)
bandhead and the cluster states, and the latter can be calculated by using matrix elements of unit SU(3) tensor opera-
tors. A part of the needed matrix elements of the unit tensor operators is given in Table II of Ref. 7. The evaluation of
matrix elements in the cluster basis is done in the orthogonality condition model approximation by transforming the
SU(3) coupled cluster wave functions of Eq. (1) to the angular momentum coupled basis

~[(04) X(QO)](Ap)xJM ) = Io [(04)Q '(Ap )]) y ((04)1;(QO)L ll(~JLi)&»~ I [«"(iz)y'"'("C)],'"'y', "(R)I

IL

(6)
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where the SU(3) &R(3) Wigner coefficients are readily cal-
culated from the computer code of Draayer and Akiya-
ma. ' The reason we use the orthogonality condition
model approximation is that an exact calculation in the
cluster model, although possible, does not reproduce both
the binding energy of ' 0 and the o:+ ' C threshold ener-

gy at the same time. We have no two-nucleon potential
available which is suited for the Sp(6,R)-cluster mixed
basis calculation. The total energy curve of the closed-
shell configuration against the oscillator parameter
b = [fi/m i~]'~ reaches an energy minimum of —125
MeV at b = 1.51 fm for the Volkov No. 2 (V2) potential"
with the Majorana exchange mixture M =0.62, while the
corresponding values for the Brink-Boeker (Bl) poten-
tial' are —93 MeV and 1.74 fm. Compare these with ex-
periment (

—128 MeV and 1.76 fm), where the experi-
mental value of b is such that it reproduces the observed
charge radius of 2.71 fm. ' Apparently the V2 potential
does not predict the correct size of 0 and the 81 poten-
tial is too weak to reproduce the binding energy. In what
follows we mainly use the 81 potential in the pure
Sp(6,R) calculation and the V2 potential in the Sp(6,R)-
cluster mixed-basis calculation. The oscillator parameter
b is set to 1.51 fm when we use the V2 potential and to
1.74 fm when we use the B1 potential. The Coulomb po-
tential is taken into account in our calculation.

2'
0+
4+
24
0+

47.6
47.3
46.$
42.6
40.1

2
0+
4+

0+

59.3
58.0
57.6

30.5

24.3
21.4

0' —24.6—22.7 2+ 23.2

0+- 00 0'— 00 0' 0.0

Sp(6, R)

Bl

Sp(6,R)

V2

SO(3)xD

FIG. 1. The spectrum of ' 0 calculated in the Sp(6,8. ) model.
The SO(3) XD result is taken from Ref. 14. The two-nucleon
potentials used are the Brink-Boeker 81 potential {Ref. 12) and
the Volkov No. 2 potential (Ref. 11).

III. RESUI.TS OF CAI.CUI.ATIIS
IN THE Sp(6,R ) BASIS

Figure 1 shows the energy spectrum'of 0, 2+, and 4+
states in the pure Sp(6,R ) basis calculation. It also shows
the spectrum obtained by Vassanji and Rowe' in an
SO(3) XD version of the Sp(6,R) model. The Sp(6,R) and
SO(3)XD calculations using the Bl potential are very
consistent: The ground-state energy and root-mean-
square radius are —93.7 MeV and 2.63 fm, while in the
SO(3) X D model they are —89.7 MeV and 2.70 fm when
the Coulomb energy is estimated as 14.4 MeV. The spec-
trum is vibrational as expected, particularly for the B1
potential. As seen below, the 0&+ and 2&+ states are con-
sidered the isoscalar giant monopole (GMR) and quadru-
pole resonances (GQR). The Sp(2,R) model was applied
to the breathing mode of ' 0 (Ref. 15) and its energy of
22.9 MeV is slightly higher than the present value of 21.4
MeV. Five states lying above 40 MeV in excitation ener-
gy are the consequences of the monopoleXmonopole
(0+ ), monopole X quadrupole (2+ ), and quadrupole
X quadrupole (0+, 2+, 4+ ) excitations. The extent to

which these states of two-phonon nature are split de-
pends on the energy difFerence of the GMR and GQR. It
is 3 MeV for the 81 potential and 8 MeV for the V2 po-
tential.

Table I lists the properties of 0+ and 2+ states includ-
ing the monopole and quadrupole strengths and the spec-
troscopic factors to proton and cx emissions. It is clear
that the 02+ and 2,+ states can be interpreted as the iso-
scalar GMR and GQR. Inelastic scattering experiments
of a particles from ' 0 show that the isoscalar quadru-
pole strength is concentrated in the excitation energy of
16—28 MeV centered at 21 MeV. ' Harakeh et al. ' fur-
ther indicate from the analysis of angular distributions
that the state at 23.85 MeV may be a collective monopole
state. The 02+ and 2,+ states predicted by the Sp(6,R)
model with the 81 potential are very consistent with
these experiments. Of course, no single state is observed
to have such a concentrated strength because of both the
escape width to the continuum and the spreading width
due to the coupling with noncollective states. The spec-

TABLE I. Properties of the 0 and 2+ states of ' 0 obtained in the Sp(6,A) model.

EO EWSR

S I', IL)

(00) (22)

Sp (jL)

0+
-+

55.2
10.0 88.7

0.29
0.08

1.45
0.35

2.07
0.18

4.15
0.35

B (E2;2,+ ~0) )

(e fm ) % E2 EWSR (02)
S (IL)

(20) (22) (24)

S2

( —.
' 3)

(jL)
( —,
' 1) (-,'-3)

0.05 0.02 0.04 0.20 0.05
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troscopic factors for a and proton channels show that the
GMR has large decay amplitudes to a+ ' C(I =2+ )

with the orbital angular momentum I. =2 and to
p+' N(j =

—,
'

) with L =1 and that the GQR has large
amplitudes to a+' C(2+ ) with L =4 and to p +' N( —,

'
)

with I. =3. The decay scheme of the giant resonances is
understood from the fact that the ground state is of al-
most pure closed-shell configuration (97%%uo) and that the 2

I

IIico Sp(6,R) state of SU(3) symmetry (20) is a dominant
component of the giant resonances. To confirm this we
derive formulas to calculate the spectroscopic factors of
the 2 i(io~ Sp(6,R) state of SU(3) symmetry (20) using the
overlap formula between the symplectic and cluster
states.

The reduced width amplitudes for a-particle emission
are

y(R)=( I[go '(a)pi '(' C)]iFL(R) j iM~ II'(00)[ 200](2 0) JMj }
= ((04)I;(60)L~~(20)J }I[7[(04)Q =6;(20)]j '"([(04)X(60)](20)JM~%'I(00)[200](20)JM j }g~oI(R),

and the spectroscopic factors are easily obtained as

S' =I [y(R)]'R'dR = ((04)I;(60)L ii(20)J }2 .
0 621

[NI/2, I/2 —I/2(P)(t'(I/ziii, I/2(/2( N)]iM T =o X U(
2 zII~S'J) & r' 7 2

2'
~
TO}[WI/2 I/2(+)&I/2, 1/2( ~ 15)](s I(iM, To~

ST

where PI/2»z(X) stands for the sPin-isosPin wave function of the nucleon and P'I/'2' I/2( 2 = 15) the OP-hole wave func-
tion of the nucleus with mass number 2 =15. Only the S =T=0 component contributes to the overlap with the
Sp(6,R ) state so that the proton channel is eff'ectively replaced with the state

' 1/2
(Ol) 15 j+1/2 2J + 1

[4 I/2, I/2 —I /2(p)4 (I/21ij, I/21/2( N )]IM, T =0~~i, I(
1

[9 I/2, I/2(~)0'I/2, 1/2( ~ 15)]IM

The spectroscopic factors for proton emission to the p»2 and p3/2 hole states of "N are calculated by transforming the
channel wave function to a spin-isospin coupled basis

(9')

where the symbol @ means the coupling of S =0 and T=0. The reduced width amplitudes for proton emission are
thus

1/2

y(R')= ( —1)'+' — — ((01)1;(30)L~~(20)J}6 v'2

X [a[(01)3;(20)]j(/2([(01) X(30)](20)JM ~% I(00)[200](20)JM j }y(3o'(R'), (10)

where R'=&l5/16[r( —(rz+ +r,6)/15] is the (dimensionless) relative distance vector between proton and ' N.
The spectroscopic factors are thus given by

S =
—,",, (2j+1)((01)1;(30)L~~(20)J }

Here ~[(01)X(QO)](l(M)a } denotes the ST =00 coupled, normalized cluster wave function of the nucleon+( A =15)
system

~[(01)X(QO)](A(M)a }= Io.[(01)Q;(/Ip)] j

XA I[/ (N)sf' " (/I =15)]' "Xy' "(R')j' ("

The normalization constant o. is given in Ref. 6:
o [(01)Q;(Q —1,0)]= 1 —( ——,', )~

+—((6, (3Q+8)( —
—,', )~

(13)
(T[(01)Q;(Ql)]=1—

(
—

—,', )~—
—,", Q( —

—,', )~

Table II lists the spectroscopic factors of the Sp(6,R ) (20)
state. Comparing Tables I and II confirms the domi-
nance of this (20) state in the Oz and 21+ states. Although
the decays of the GMR and GQR seem to proceed with

the greatest probability into the C(4+) state with L =4
and 6, respectively, the penetration factors for this chan-
nel are so strongly suppressed that they are not the main
decay modes of the giant resonances. Since the po chan-
nel does not have a large spectroscopic factor and also
the p +' N( —,

'
) channel is energetically unfavored, the

a1 channel with I. =2 and 4 is most favored in the decays
of the GMR and GQR. Knopffe et al. ' measured the
charged particle (c) decay of the GQR in an ' O(a, a'c)
coincidence experiment and found that the dominant de-
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TABLE II. Spectroscopic factors of the 2 A'~ Sp(6,R) state of SU(3) symmetry (20).

(20) 0+
(00)

S (IJ )

{22)
S~ (jI.)

(-'1) (-1)
0.090 0.43 0.31

(02) (2o) (22)
S (IL)

(24) (42) (44) (46)
Sp (jL, )

( —,'3) ( —', 1) ( 33)

0.054 0.021 0.044 0.018 0.044 0.50 0.025 0.13 0.049 0.26

cay of the GQR proceeds through the aI channel. An
analysis including both the spectroscopic factors and the
transmission coe%cients was done in Ref. 19 to account
for the large a- vs proton-decay ratio of the GQR in ' O.

IV. ISQSCALAR MQNQPQLE AND QUADRUPQLK
STRENGTHS IN ' (0

The ca+' C cluster model succeeds in reproducing the
energy spectrum, electric transition rates, and o. widths
up to the excitation energy of 10—I5 MeV. In Sec. III
we have shown that the Sp(6,R) model predicts states
that exhaust almost all of the monopole and quadrupole
strengths. This naturally leads us to ask a few questions:
(1) Does the cluster model work well for explaining the
monopole and quadrupole strengths at the giant reso-
nance rcglon7 (2) What lnilucncc docs tllc IIllxlng of thc
symplectic states have on the results of the cluster model' ?

To clarify these points we have done a cluster-Sp(6, R)
mixed-basis calculation for J"=0+ and 2+. As noted in
Sec. II the V2 potential does not reproduce the size of ' 0
correctly leading to some drawbacks in the mixed-basis
calculation. To compensate for these defects we intro-
duce an artifice by hand: (1) We shift down all the ener-
gies of the Sp(6,R) states with J =2+ by 6 MeV since
the GQR predicted with the V2 potential is located too
high as seen in Fig. 1. (2) The matrix elements for mono-
pole and quadrupole strengths are sensitive to the size of
nuclei. %'e correct the calculated matrix elements by
multiplying by a factor proportional to the ratio,
1.76/1. 51, of the harmonic oscillator size parameters fol-
lowing the reason mentioned in Sec. II. (3) The calculat-
ed excitation energies of the 0 and 2 states are read in
such a way that the Oz and 2& states calculated fit the
observed values when we calculate the percentage of
monopole and quadrupole strengths compared to the en-
ergy weighted sum rule (EWSR).

Figure 2 compares the isoscalar monopole strength ob-
tained using the V2 potential in the pure cluster, Sp(6,R)
and cluster-Sp(6, R) mixed calculations. The EWSR for
the isoscalar monopole strength is given by

Experiment

0
Cluster Model

lh 4-
C.

E 2

gp o 1 1

hJ
Sp(6,R) ~odel

~~
L

5-
X 0.

-20
- 10

-10

- 100
C)
LU-50

O
O

O
CL

X

Cluster —Sp(6,R) Hodel -40

-20

mixed with the higher excited configurations (50.0%%uo) of
SU(3) symmetry (40), (60), (80),. . . . The accumulated
energy weighted sum of the cluster model amounts to
50% of the EO EWSR below 40 MeV in excitation ener-
gy. The cluster-Sp(6, R) mixed basis calculation shows
that the energy spectrum below 20 MeV does not change
very much and that the Sp(6,R) components increase by
30% the percentage of the energy weighted sum existing
above the excitation energy of 20 MeV compared to the
case of the pure cluster model. This seemingly small in-
crease is due to the large overlap of the cluster and
Sp(6,R) states of SU(3) symmetry (20) as noted in Sec. II
and due to the near degeneracy of the two levels lying at
22 MeV. The mixed calculation suggests that a large per-
centage of the EO EWSR spreads over the region of
20—30 MeV in excitation energy.

Figure 3 displays the isoscalar quadrupole strength cal-
culated with the V2 potential. The EWSR for the isoscal-
ar quadrupole strength is given by

5

equi

s, =—y (z„—E, )a(E2;2„+ o)= — ~ &r'&, .
16~ m

s, —= y(z„—z, )~&o~ y r,'~n &~'= a&r'&, .
tl

(14)
0-

0 10 20 30

Excitation Energy (MeV)

0
40

The cluster model reproduces the observed monopole
strength of the two low-lying states at 6.05 and 12.05
MeV except for the state at 14.03 MeV. It is remarkable
that the cluster model predicts a level with large mono-
pole strength at about 22 MeV. The wave function of the
level consists of the 2 A'co (20) and (42) states (34.5%), ad-

FICx. 2. The distribution of isoscalar monopole strength in
' O. The experimental data are taken from Ref. 13. The bold
lines denote the monopole matrix elements and the open rectan-
gles denote the percentages of the energy weighted strength to
the FO E%'SR.
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Experiment -20 l(olllg Ile [(oo)[200](20)]&I'=138
16m

(16)

Cluster Model

-10 where Q =g; r, Y2 (r; ) is the quadrupole operator and
the triple bar means SU(3), R(3) reduced matrix element.
The a+ ' C cluster state of the same SU(3) symmetry has
8 (E2) strength to the ground state

—20
1&olllQ III[(04)x(60)l(20) & I'=90 '

(17)

CD
+ p

20
C4

10—U3

CQ

tll a

Sp(6,R) Mode~

—10
LU

C4
0 QJ

—100
O

—50

Cluster -Sp(6,R) Model
-40

-20

0
0 10

I

20
I

30
p

40

Excitation Energy (Mev)

FIG. 3. The distribution of isoscalar quadrupole strength in
' 0. The experimental data are taken from Ref. 17. The bold
lines denote the B(E2) values and the open rectangles denote
the percentages of the energy weighted strength to the E2
EWSR.

The observed energy weighted sum below 15 MeV accu-
mulates to 30% of the E2 EWSR. The cluster model
nicely reproduces the excitation energies of the low-lying
2+ states, although the 8 (E2) values are smaller than ex-
periment for the states at 11.52 and 13.02 MeV. The
cluster model further predicts that a large percentage
( -40%) of the EWSR exists in the excitation energy re-
gion of 20—30 MeV, giving 60% of the E2 EWSR in to-
tal. The cluster-Sp(6, R) mixed-basis calculation shows
that the 8 (E2) strength of the low-lying 2+ states is re-
duced compared to the pure cluster model calculation but
the accumulated energy weighted sum increases by 20%
of the EWSR. The 8(E2) strength observed experimen-
tally shows diverse results, depending on the type of ex-
periments as listed in Table VII of Ref. 17. The present
result is not in contradiction with the (a, a ) experiment.
It is noted that, as in the case of the monopole strength,
there exist two peaks with large quadrupole strength at
23 and 29 MeV. The cx and proton spectroscopic factors
of these states have been calculated and it is confirmed
again that these states mainly decay through the a& chan-
nel. The needed overlap matrix elements of a+' C and

p + ' N cluster wave functions are given in the Appendix.
The splitting of the isoscalar giant resonances is caused

by a mixing of the Sp(6,R) and cluster states. To under-
stand this we consider the simplest model. Assume that
the ground state is described with a closed-shell
configuration. Then the 2 A'co Sp(6,R) state of SU(3) sym-
metry (20) has maximum 8(E2) strength to the ground
state

These state have a large overlap, however, and the cluster
state orthogonalized to the Sp(6,R) state has exactly van-
ishing B(E2) strength. [It is easy to check this by using
Eq. (5).] The splitting of B(E2) strength must therefore
be a consequence of the coupling of the Sp(6,R) and clus-
ter states. The actual calculation shows that the ground
state is not a pure closed-shell configuration but contains
the excited configurations appreciably and that the clus-
ter configurations with higher oscillator excitations con-
tribute to building up the 8(E2) strength. However, ex-
periments'6 ' ' done up to now to study the isoscal-
ar GQR of ' 0 do not indicate clear evidence for its split-
ting, presumably because the energy region investigated
is too limited to low energies. A recent experiment has
shown that the GQR of Ca, the doubly magic nucleus,
is split into two parts, one lying at 13.5+1.5 MeV with
40% strength of the EWSR and the other at 18+2 MeV
with 50% strength. Shell-model'9' and RPA (Ref. 25)
calculations predict only one peak at about 18 MeV. We
think that an argument similar to ' 0 can be applied to
explaining the splitting of Ca. In fact, the overlap of
the corresponding states, the Sp(6,R) and a+ Ar cluster
states, of SU(3) symmetry (20) in Ca is as large as
0.7577, and the ratio of their 8 (E2) strengths to the Ca
core is 1:0.57.

V. SUMMARY AND DISCUSSION

An a+' C cluster model has been worked out for ' 0
to investigate the distribution of the EO and E2 strength
up to the giant resonance region. We have used the
orthogonality condition model approximation as a practi-
cal means for solving the equation of the relative motion
of the clusters. We have used the Volkov No. 2 potential
to obtain the u —' C potential via the folding procedure.
Since the Volkov potential does not reproduce the satura-
tion property of the nucleon density, we have corrected
the calculated EO and E2 matrix elements using a factor
which is determined by the size parameter of harmonic
oscillator functions. The cluster model nicely reproduces
the EO and E2 strength in the low-energy region as
shown in a previous calculation and accounts for more
than 50% of the sum rule value below 40 MeV in excita-
tion energy. An Sp(6,R) model is a microscopic collec-
tive model for monopole and quadrupole degrees of free-
dom. An Sp(6,R) basis has been mixed with the cluster
basis in order to see how much it affects the results of the
cluster model and how much it increases the EO and E2
strength. A mixed-basis calculation has shown that the
effect of the Sp(6,R) basis is not very large at low excita-
tion energy and that the Sp(6,R ) basis increases the
strength by 30% for EO and 20% for E2 below 40 MeV.
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These are in contrast with the case of Ne. The a+' 0
cluster model for Ne predicts a small percentage of the
sum rule and its extension to include the excitation of ' 0
as done in Ref. 27 accounts for, at most, 30%%uo of the sum
rule. The Sp(6,R) basis, however, greatly enhances the
EO and E2 strength, and the a+ ' 0 cluster-Sp(6, R )

mixed-basis calculation exhausts the sum rule. The
reason for this contrast seems for one thing that, as ex-
pected from cluster model study, the ground state of ' 0
contains admixtures of components from other symplec-
tic bands more than the ground state of Ne and for
another the difference of the overlap of the cluster and
symplectic wave functions with 2 A'co excited con-
figurations: The overlap is 0.808 for ' 0 but 0.686 for

Ne. - It is also interesting that the distributions of the
energy weighted strength in the mixed-basis calculation
for ' 0 extend over higher excitation energy than expect-
ed and show two strong peaks at 20 and 32 MeV for EO
arid at 23 and 29 MeV for E2, respectively. No experi-
ment has so far given evidence for the splitting of the iso-
scalar giant resonances of ' 0, but the report that the dis-
tribution of the E2 strength of Ca is found to be split
encourages experimental efFort to study that point.

The cluster-symplectic mixed-basis calculation raises
an important question about the choice of appropriate
effective interactions. In the cluster model we require
that the effective interaction reproduce the binding ener-

gies of the constituent clusters and give a reasonable in-
tercluster potential as inferred from phenomenological
potentials. The appropriate effective interaction in the
symplectic calculation must predict correctly the size and
compressibility of the nucleus which are essential to the
properties of the giant resonances. As shown in Ref. 8
and in this paper neither the Volkov nor the Brink-
Boeker interaction satisfies both the requirements. Prob-
ably no such effective interaction is available in so far as
it is state independent. We have to introduce a state or
density dependence in the effective interaction as implied
by G-matrix calculations.

This work has been done as a part of the annual
research project "Molecular Aspects in High Excitation
Energy Region and Mechanism of Heavy-Ion Reactions,
1987" supported by the Research Institute for Funda-
mental Physics, Kyoto University.

APPENDIX

We need to know the overlap of a+' C and p +' N
cluster wave functions for the calculation of the spectro-
scopic factor to the p+' N channel. As the n+' C clus-
ter wave function is spin-isospin scalar (ST =00), only
the ST scalar part of the p +' N cluster wave function
contributes to the overlap as shown in Eqs. (9) and (9').
The needed overlap

gg(zP) ( [ [y (N)@y(01) ( g 15)](01)X~(Q —3,0)(R ) I(zP) ~~
~ {[y(00)( ) X y(04)(12C)](04) X~(QO)(R) )

(zP) ) (A 1)

can be derived from the generating function

F, (K,K*)=([(I))&z)&z(N)PP&'z')&z(A =15)]' ')A(K, R')*~A ~[/' '(a)X(t( "'(' C)]( 'A (K*,R)), (A2)

where

A (K,R)=g ~ exp[ —
—,'K K+&2K R —

—,'R.R]
= gP'~ '(K)[y'~ '(R)]*

Qa

(A3)

is the kernel function which generates the Bargmann transform, P(~ '(K), of the harmonic oscillator function,
y'~ '(R), in the space of the single three-dimensional variable R. By including the center-of-mass motion degree of
freedom and converting the matrix element of Eq. (A2) to one involving integration over all A = 16 variables it is possi-
ble to convert F, (K, K*) to the calculation of the standard form involving the Slater determinants,

F (K,K*)= exp[ —v'1/45K. K*](2 (&16/15K, r, )*[/(~z )~z(N)PI)z~ ) ~z( 3 = 15)]'."~

XA
~

A(V1/3K*, X )[P' '(a) XP' '(' C)]' '), (A4)

where X =(r)+ +r4)/&4 is the center-of-mass coordinate of the a particle, and the functions P are the shell-
model wave functions centered at the origin. The subgroup labels u and e' can be chosen arbitrarily but the choice of
a' = 1 —,

'
—,
' and a =422 in the Elliott SU(2) X U(1) labels (eAM~ ) makes the calculation of Eq. (A4) simplest and leads to

F ~ (K,K*)=2(—,') ~ (K*) exp(V1/5K. K*)— 1+ —(K K*—K K~*) exp( —v'1/45K. K*) (AS)

The key to the calculation of the overlap (Al) involves the expansion of F ~ (K,K*) in terms of K and K*-space po-
lynomials. Substituting Eq. (A3) into (A2) and using SU(3) recoupling techniques
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F (K, K*)=
g{~+o)ao

[P'~ ' '(K) XP' ~'(K*)]
aO

& (~~ )a„(01)a'~(04)a )

]. /2
d (A,gp, p)

X %dip,
(q„) d (10)d (40)d (QO)

X U((0, Q —3)(Ap)(@pip)(40); (01)(QO) )0~' ~', (A6)

(K*) (K K*)~
d(30)

1/2

where d (Ap) =(A.+1)(@+1)(A.+@+2)/2 is the dimension of the SU(3) representation (Ap), and the SU(3) Racah or U
coefficients' are given in unitary form. Possible SU(3) labels in Eq. (A6) are (Q —3, 1) and (Q —4, 0) for (Ap), and (03)
and (14) for (Aoup). On the other hand, the expansion of F (K,K ), in the form (A5), is carried out in a Cartesian
basis using the following formulas (see, e.g. , Ref. 7),

1/2

[P'~-' "(K)XP" '(K')]'"'

Q!(Q —3)!d(Q —3,0)
d ( 10)d (40)

[d (A~p)]' {(A(yap)ap, (01)a'~(04)a )
{A, yso)ao

X U(( Q —3,0)(0, Q —4)(k(pp)(04); (10)(OQ) )

X [P'~-'"(K)XP"~'(K*)] ~" .ao

Combining Eqs. (A5) —(A7) leads to a linear equation with two unknowns 8~'~ "and O~'~ "' '. With explicit ex-
pressions for the U coefficients involved we get

0~ ~ ' '= —'[—'Q(Q+1)(Q+2)]' '[1—9( —
—,')~ '](—')" '"~

gg(Q —3, 1) & [ ) (Q + 1)(Q +2)(Q +3)]1/2[1+(4Q 13)( J )Q
—3]( I )(1/2)(Q —3)

(A8)
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