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Shape transition and dynamical symmetries in the interacting boson model
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A geometric interpretation of effective interacting boson approximation Hamiltonians describing
series of isotopes is carried out. It is shown that a recently introduced SO{5) dynamical symmetry
Hamiltonian, which describes the Ru region with fixed parameters for all isotopes, gives rise to a
sharp shape transition from spherical to y-unstable nuclei. Moreover, it is shown that the SO{6),
SU{3), and U{5) interacting boson approximation symmetries may display transitional behavior
when studied as a function of boson number. A set of constraints in the parameter space are de-
rived, in order for the standard geometrical interpretation of these symmetries to hold.

I. INTRODUCTION

In recent years the use of dynamical symmetry Hamil-
tonians has brought about significant developments in nu-
clear structure physics. The original SU(5), SU(3), and
SO(6) dynamical symmetries of the interacting boson ap-
proximation (IBM) have played a pivotal role in these de-
velopments, given their simplicity and strong appeal aris-
ing from their group theoretical properties. ' Even if
these exact solutions are seldom manifested in nuclear
structure —and then only approximately —they have
provided reference points for calculations involving more
general Hamiltonians. ' This has been supplemented by
geometrical analyses, ' which by means of a suitably
defined coherent state basis, lead to potential energy sur-
faces (PES) associated to arbitrary IBM Hamiltonians
and to the dynamical symmetries in particular, which
have thus been related to certain nuclear shapes.

Dynamical symmetries (DS) have also been studied and
exploited in more complicated situations, where the sys-
tems under consideration often involve complex Hamil-
tonians with a large number of parameters, and a general
solution is a formidable problem, as is the case for the
proton-neutron interacting boson approximation (IBM-2)
(Ref. 5) and interaction boson fermion approximation
(IBFM) (Ref. 6) Hamiltonians. In these cases the DS
solutions play a very significant role and have given rise
to a wide range of applications. In a more recent devel-
opment, Wu et QJ. proposed a fermion dynamical symme-
try model (FDSM), where SO(8) and Sp(6) symmetries
are constructed in terms of fermion pairs, and the DS
concept used as the fundamental criterion for the selec-
tion of the nuclear Hamiltonian. Later on, evidence was
presented for the SO(7) DS in their model, in the region
of the Ru and Pd isotopes, where a fit to the energies and
8 (E2) electromagnetic transitions was carried out using
a single set of parameters. It was suggested that this
symmetry has a unique transitional behavior, and a
geometric interpretation subsequently made, ' stressing
the ability of the SO(7) Hamiltonian in describing spheri-
cal, vibrational-like nuclei for small number of valence
particles and deformed, y-unstable nuclei for large

valence particle number. '

The purpose of this paper is twofold. The first is to
give a geometrical interpretation of a recent IBM analysis
of the Ru isotopes, "' where an SO(5) DS Hamiltonian
with fixed parameters was used. To this end we first re-
view the concept of dynamical symmetry in order to
stress that SO(5) can be viewed as a bona fide DS, ' '
which, besides providing an excellent description of the
Ru data, "' involves a sharp shape transition with in-
creasing boson number. The second objective is to review
the geometric content of the traditional SO(6), SU(3), and
U(5) IBM DS, in order to show that these symmetries, as
mathematical entities, are able to describe a wider range
of geometries than usually believed, including the ability
of producing shape transitions when studied as a function
of boson number X. The traditional geometric interpre-
tation of these symmetries is shown to apply only when
certain N-dependent constraints in the Hamiltonian pa-
rameters are satisfied.

II. DYNAMICAL SYMMETRIES

We start our discussion by reexamining the ideas con-
nected with the DS concept. ' We refer to the IBM sys-
tem in order to simplify our arguments, although the
same considerations apply for other cases. The dynami-
cal group of the IBM is U(6), in the sense that all opera-
tors in the system can be expressed in terms of powers of
its generators. ' An equivalent statement is that all states
in the system are spanned by a fixed irreducible represen-
tation of the U(6) dynamical group, which in this case is
the totally symmetric representation [%]. The symmetry
group of the IBM is SO(3), since only the angular
momentum generators commute with a realistic IBM
Hamiltonian. Thus, the IBM wave functions are in gen-
eral classified by N and L only. Intermediate groups are
used to construct complete bases, leading to the well-
known chains, conventionally identified by the largest
subgroup of U(6), i.e., the U(5), SO(6), and SU(3) chains.
In the general case the labels corresponding to these in-
termediate groups will be mixed by the Hamiltonian. We
can now define a dynamical symmetry of the system. ' If
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the one- and two-body matrix elements in the IBM Ham-
iltonian are chosen to take some particular set of values, '

one (or more) of the intermediate groups remains well
defined in the wave functions, i.e., the labels characteriz-
ing its representations are not mixed by the Hamiltoni-
an. ' We then say that the Hamiltonian displays a
dynamical symmetry. Consider the recent study of the
Ru isotopes carried out in Ref. 11. A simultaneous
least-squares fit to the energies of ' Ru —' Ru was made
and the converged Hamiltonian found to be"

II= 887nd 53N—Rd
—25'. 3Cz [SO(6)]

+30.8Cq [SO(5 )]+S.5L

where the C2 are Casimir operators of the indicated
groups and the parameters are in KeV. Although the
Hamiltonian is not diagonal in any of the IBM chains,
but is a mixture of the U(5) and SO(6) chains, it is ap-
parent that SO(5), being a subgroup of both U(5) and
SO(6), will remain well defined' for all Ru isotopes.
Note that, since L does not commute with all the gen-
erators of SO(5), the latter group is not a symmetry group
of the Hamiltonian. it is, however, a bona fide dynamical
symmetry, according to our previous discussion. ' ' Of

course, a higher dynamical symmetry will occur for U(5)
and SO(6) diagonal Hamiltonians, which include the
SO(5) symmetry as a subsymmetry. We conclude that the
IBM has four distinct dynamical symmetries, character-
ized by the groups SO(5), SU(3), SO(6), and U(5), where
we shall subsequently refer to the first one only when the
last two are not DS of the system.

III. SHAPE TRANSITION IN THE Ru ISOTOPES

Z„(P,y)=&N;/3) (a(N;/3) &,

where H is the IBM Hamiltonian and

(2)

The analysis carried out in Ref. 11 concentrated on the
spectroscopic properties of the Ru and Rh isotopes and
on the applicatiori of nuclear supersymmetry for a simul-
taneous description of these nuclei. Here we shall focus
on the geometrical interpretation of Hamiltonian (1) fol-
lowing the well-known prescription of Gilmore, Ginoc-
chio and Kirson, and others. The coherent state
method can be applied to an arbitrary IBM Hamiltonian
and information extracted about the potential energy sur-
face associated to it. An energy surface may be defined
as given by

X

lN;P)'&=,
&z 2 z s +P cosydo+ — (dz+d 2), 0},

(N ()1/2( 1 +P2)x
(3)

is the intrinsic state in the notation of Ginocchio and Kirson. The evaluation of (2) involves simple manipulations, and
for the details we refer the reader to the original papers. ' ' To assess the role of the ditferent interactions in (1), we first
write it in the general form

H =»n„aNnd ——k, C2 [SO(6)]+k2C~ [SO(5)]+k3L

and by application to (3), find the result

F&(P)=(» aN+4k, —+6k, ) N/' 3(/1 +/32)+ k, N(N —1)(1—/3')~/(1+@2)', (5)

where a term [ —k, N(N+4)] has been deleted from (5), since it only displaces the zero of energy.
This energy surface involves the competition of a "spherical" term [/3 /(1+P )] and a "deformed" one

[(1—P ) /(I+/3 ) ]. There is a characteristic N dependence of these terms, which go as N and N(N —1), respectively.
Since it does not depend on y, it corresponds to a "y-unstable" geometry. We note that the U(5) terms" '

(»—aN )nd =g (»—a)d d —a g (2L + 1)' [(d dt)' '(dd ) ]' ' —a&5[(d ~s ")' '(ds)' ']' ', (6)
m L =0,2, 4

together with the SO(5) and SO(3) interactions, contribute to the spherical shape, while the SO(6) term alone pulls to-
wards deformation. As can be seen from (6) [and was remarked upon in Refs. (18), (11), and (12)] the Nnd interaction is
a standard IBM term in which N does not appear explicitly. The role of this operator in (5) is to produce a sharper
shape transition as a function of X when compared with the case o, =0, as we shall proceed to show.

Calculating the P derivative of (5) we find that the energy surface has always a minimum, located at P=O, if either

(» aN+ 4k 2+ 6k 3 ) )4(N ——1)k, ,

or

(» aN+4k2+6k3) =—+4(N —1)k, )0,
or at a deformed

po= [ [4(N —1)k, —(» —aN+4k2+6k3 )]/[4(N —1)k, +»—aN+4k2+6k3 j j
'~
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FIG. 1. Potential energy surrace corresponding to Hamil-
tonian (1). Gn top of each curve the boson number X is indicat-
ed.

-0.6 -0,4 -O.P. 0 O, P 0,4 0.6
l.

FIG. 2. Potential energy surface corresponding to the SO(6)
Hamiltonian (7), with k l =0.012, kq =0.065, k3 =0.010, in
MeV units. Qn top of each curve the boson number X is indi-
cated.

—4(X —1)k, &(c—a%+4k, +6k,, ) &4(X —1)k, .

In addition, there is a minimum at P-~ oo, when

(e a%+4k-, +6-k-3) & —4k, (X —1) .

Substituting the value of the parameters as in (1) we ar-
rive at the results shown in Fig. l. The condition for the
shape transition from spherical to deformed (y unstable)
turns out to be X & 7, which is clearly seen in the figure
for %=8, which corresponds to the PES associated to

Ru. The minimum value of /3 denoted by po, moves
slowly as a function of N, from Pa=0. 26 for %=8 to
$0=0.74 for %=13 and tending to /3=1 for X~~,
which is the "classical limit" quoted for the SO(6) sym-
metry in the literature. The SO(5) DS is hence an intrin-
sically transitional symmetry, able to reproduce the spec-
troscopic properties and the shap'e transition occurring in
the Ru isotopes, solely as a function of the boson number
~V, with no change in the parameters in the Hamiltonian
(1). The shape transition predicted by this study for the
Ru isotopes is consistent with the spectroscopic data foI
these nuclei. In fact, ' Ru is the first isotope in the
group which displays a clear departure from vibrational
behavior. ' ' I believe that the geometrical interpreta-
tion presented here constitutes additional evidence for
the consistency of the IBM analysis of this re-

n 11,12, 18, 19

Returning to the general question regarding the
geometrical content of dynamical symmetries, it could be
argued that SO(S) is a somewhat special symmetry of the
IBM, since the other three DS, namely SO(6), .SU(3), and
U(5), are diagonal and perhaps more restrictive in their
geometrical content. In fact, it will be shown in the next
section that without imposing restrictions on the parame-
ter space this is not so, and that they too may display
transitional behavior when studied as a function of X.

». S«PE TRANSITION IN THE SO(6),
SU(3), AND U(5) DYNAMICAL SYMMETRIES

From the results of the last section for the SO(5) sym-
metry, it becomes immediately clear that the SO(6) DS
has also a complex structure when studied as a function
of its parameters, and includes the capability of produc-
ing a shape transition. This is so because the SO(6) Ham-
iltonian corresponds to e=a=0 in (4), which in turn im-
plies that the minimum in the PES occurs at /IO=O for ei-
ther

4k~+6k3 & 4(X —1)k, ,

OI

4k~+6k3=+4(% —1)k( &0,
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/lo= j [4(N —1)k, —4k2 —6k3]/[4(N —1 )k, +4k~+6k3]] 'i

—4(N —1)k, &4k, +6k, &4(N —1)k, .

Likewise, there is a minimum at P~ ~ for 4kz
+6k3 & —4k, (N —1).

Again there is an N dependence, which is less pro-
nounced than the one occurring for the SO(5) DS, but
sufficient to cause a shape transition for particular values
of the parameters. In order to illustrate this point we
choose a slightly modified SO(6) Hamil'ionian of the form

0=k, P 8+k C2[2SO(5)]+k,L (7)

where the operator P .J' corresponds to a pairing opera-
tor, ' related to the SO(6) Casimir operator through

4P .P=N(N+4) C2[SO—(6)] . (8)

0= —K g @+KL' (9)

can be seen by comparing Figs. (1) and (2), SO(6) gives
rise to a smoother shape transition. Qne should keep in
mind that the parameters chosen in Fig. (2) give rise to
peculiar spectra and that no claim is made here of physi-
cal relevance of the corresponding SO(6) Hamiltonian.
Rather, the inequalities

—4(N —1)k, &4k2+6k3 &4(N —1)k,

should be viewed as an additional N-dependent constraint
on the Hamiltonian, for the standard interpretation of
SO(6) as corresponding to a y-unstable geometry to be
valid.

Consider next the SU(3) Harniltonian

In Fig. 2 we show the results of a schematic calculation,
where the parameters were chosen to produce a shape
transition at %=7 and where the potential curves are dis-
placed for the sake of clarity. As remarked before, and The calculation of the energy surface (2) leads to

(10)

Ez(/3, y)= —Kd [N(5+11/3 /4)/(1+/3 )+N(N —1)[(g'/2+2&2/3 cos3y+4/3 )/(1+P ) ]] +K,6N(3-'/-(1+/3 ),

a~ = 1 + ( 2K, /Kd + —,
'

) /( N —1 ) . (12b)

The cubic equation (12a) has no positive roots for
values of 0.& greater than a critical one given approxi-
mately by 0.', =2.52224405. %'e And the following re-
sults.

(a) There is a unique minimum of the energy surface
(11), situated at /l=0 for a~ )u, .

(b) For —',- &0.'~ & G.„there are two minima, one at f3=0
and one at P&0. The spherical minimum is the global
minimum (the lower of the two) for —,'&a& &a„while
the deformed minimum is the lower one for 3

The minima become equal at e& =
—,'.

(c) For az & —', , thee is a unique, deformed minimum.
We note that for N~ ~ the minimum occurs at /l=-&2.

Since K, /Kd =(a&—1)N /2 —az/2+ —,', the above ine-

qualities give rise to N-dependent conditions on the ratio
of the SU(3) Hamiltonian parameters, in order for a de-

which in the physical range P) 0, 0& y & vr/3, gives
minima in @=0 and y=n/3, for Kd )0 and Kd &0, re-
spectively. These minima correspond to prolate and ob-
late configurations. With no loss of generality, we choose
Kd )0 in what follows. To find the extrema in P one
needs to solve a cubic equation of the form

3 , 3 7&2
/l + —a~(3 —3/3+ —a~ — =0,v'2 2 2

where

formed minimum to exist. In particular, for a given
K, /Kd a shape transition occurs (from spherical to de-
formed shape), for a critical value of N arising for a& =

—,',
or

N = ,' + ", ( K, /Kd )—. — (13)

H=e&„aNnd+k, n d+k—2C-2[SO(5)]+k3L ' .

The energy sul face tulns Out to be

(14)

E~ ((/, y ) = ( K —aN )N/3 /( 1 +/3 )

+ki N(N —1)g'/( I+/3 )

It is interesting to note that for X, /Kd = —
—', , which cor-

responds to Hamiltonian (9) being proportional to the
SU(3) Casimir operator, relation (13) gives N, = 1, which
implies deformed shapes for a11 Ã.

In Fig. (3) we show a schematic calculation with pa-
rameters chosen to give X, =7. In this case, it is evident
from (13) that for the boson numbers and typical SU(3)
parameters used in physical applications, the nucleus is
well within the deformed region. Equation (13) gives a
constraint of the form K, /Kd (3Ã/4 ——', , for Hamiltoni-
an (9) to correspond to a deformed rotor. Again, the
SU(3) spectra associated to spherical nuclei do not have a
physical counterpart.

Finally, we look at the U(5) DS. The most general
Hamiltonian in this limit has the form
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