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Calculation of the first-order s-wave optical potential in pionic atoms

C. Garcia-Recio* and L. L. Salcedo
Center for Theoretical Physics, Laboratory for Ãuclear Science and Department ofPhysics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

E. Oset
Departamento de Fisica Teorica, Facultad de Fisica, Uniuersidad de Valericia, Burjassot (Valencia), Spain

{Received 9 March 1988)

A microscopic calculation of the first-order s-wave optical potential in pionic atoms which allows
the inclusion of the off-shell dependence in momentum of the s-wave m.N amplitude is carried out.
Binding effects are also properly taken into account. The results obtained, together with those of
the second-order optical potential, are in disagreement with phenomenological optical potentials.
The results of the paper suggest the need of new and precise experiments on mN scattering at low
energies and other experiments which can provide precise values of the m.N scattering lengths.

I. INTRODUCTION

The local part (s-wave) of the optical potential of pion-
ic atoms has been studied repeatedly, ' trying to obtain
models in agreement with the semiempincal potential
which fits the pionic atoms data. But these theoretical
potentials, including the most complete of Ref. 4 are not
repulsive enough to explain the empirical results.

The s-wave part of the optical potential has been tradi-
tionally parametrized' on theoretical grounds as

=(I+a)[bop(r)+b, 5p(r)]

+ 1+—Bop (r),

where co is the pion energy, @=co/Mz, p is the whole nu-
clear density and 5p=p„—p„ is the difFerence between
neutron and proton densities. Such a potential can be ob-
tained within the scope of the crudest local density ap-
proach, i.e. ', taking for V,",(r) the value of the optical po-
tential computed in infinite nuclear matter at constant
density p(r). In this approximation, bo equals bo+5bo
and b& bl where the parameters bo and b& are the iso-
scalar and isovector mN scattering lengths, the 5bo term
takes into account the Pauli correction to the rescattering
term' and the Bop term accounts for m. nucleus pro-
cesses which involve two nucleons of the nucleus.

The potential in Eq. (1.1) has been fitted ' to numerous
experimental energy shifts and widths of pionic atoms,
providing empirical sets of parameters bo, b&, and Bo to
test the theoretical predictions. Despite the theoretical
e6'orts to calculate these parameters, mainly Bo, they do
not match with the empirical ones.

The current situation of the problem is the following:
If we take for bo the experimental isoscalar scattering
length (bo = —0.013m '

) and for 5bo the value
—0.014m ' from Ref. 4, then bo= —0.027m„'. The

Bo" = (0 030 . i 0.—039)m (1.3)

Thus while ImV,'„', is reasonably well understood mi-
croscopically, the same does not hold for the real part of
the s-wave optical potential. It should be pointed out
that bo and ReBO are not independently given by the fits
to the empirical data [Ref. 5 and Eq. (3.8)]. In a previous
work we did a thorough computation of the second-
order parameter Bo. In this paper we aim at studying the
first-order parameter bo beyond the simplest scattering
lengths plus Pauli blocking terms.

At least two other physical mechanisms will contribute
to bo. First, the nucleons in the nucleus are bound, im-

plying the m.% reaction is below the free threshold. One
should then expect that the efFective value of bo needed in
this situation will di6'er from that of the scattering length.
Second, the momentum is not a good quantum number in
the nucleus, so the pion in its propagation in the nucleus
can be off shell in intermediate situations due to the
momentum transfer. The isoscalar ~X s-wave amplitude
has large cancellations at threshold and increases quite
fast going to ofF-'shell situations. So the ofF-shell eA'ects

need not be negligible. As we shall see, each one of both
mechanisms gives a contribution to the real part of the
optical potential of the same order as other pieces which
involve two nucleons excitation and which are customari-
ly included in ReBo.

We must first clarify what is the precise meaning that
we give to the first-order optical potential. For us this is
the contribution to the optical potential from the interac-
tion of the pion with only one nucleon of the nucleus. In
this way this first order optical potential, together with
the mechanisms of Ref. 4 which involve two nucleons,

value of Bo which fits the pionic atom data is

Bo' =( 0 0—10 . i 0.—042)m

while the ReBO found theoretically has opposite sign and
is about"
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2coV, , (p', p;co)=II(p', p;co) . (1.4)

would provide the full optical potential. (Three-body
mechanisms seem to be already negligible for pionic atom
energies in base of the calculations of Ref. 19). The first
order then contains the usual impulse approximation,
with inclusion of binding energy and off-shell effects, and
the Pauli correction to the rescattering term 6bp. Note,
however, and it will become more clear later on, that this
definition does not imply that the first order only contains
terms linear in p(r) and the second-order terms quadratic
in p(r).

The ~-nucleus optical potential, in momentum space,
V,~, (p', p;co) is related to the pion self-energy II(p', p;co)
by

The self-energy of a pion interacting with a nucleus with
3 nucleons in states n =1,2, . . .3, is given in the impulse
approximation by

11(p',p;co)—:(p'lft(co) p)

= g (ir(p'), X(n)l 1 ')v(co+E„)le(p), X(n)),
n=1

(1.5)

where p, p', co are respectively the incoming and outgoing
momenta and energy of the pion in the pion-nucleus
frame, and T'& is the free ~N amplitude. This amplitude
is normalized in such a way that its on-shell value is relat-
ed to the S matrix as:

&p', q'l(& —&)lp, q)= —i(2~)5(p +q' —p —
q )QM /E (q')QM /E (q) &2'�(p' )&Zco( p )

i (2~—) 6 (p'+q' —p q) —QM~/Eiv(q')QM~/Eiv(q)

where T(p', q';p, q;E) is the rrN invariant matrix element. We are interested in the pion self-energy in coordinate
space, so using the normalizations of Appendix A, for the position and momentum eigenstates we find from (1.5) and
(1.6)

2' V,„,(r', r;co) = II(r', r;co)—:(r' A(co)lr)
3 3 3

Q ip. (r' —r)+ik (r+r')/2
(2ir )

k — k k k k kX g Q„Q—— Q„Q+— T P+ —,Q ——;P——,Q+ ;co+E +M—
2 " 2

(1.7)

Here E„ is the energy of the nucleon in state n ), its
mass excluded. We can see here that the optical potential
is local if and only if the ~N amplitude

k k k k
T P+ —,Q ——;P——,Q+ ;E—2' 2' 2' 2'

does not depend on P, i.e., T only depends on incoming
and outgoing pion momenta through its difference.
Indeed, if T does not depend on P, the integral of P in

(1.7) is 5(r' —r) and the remainder is a function of r, so
the potential is local.

The paper is organized as follows. Section II summa-
rizes the model of Londergan, McVoy, and Moniz
(LMM) for the nX amplitude comparing it with other
models in the literature. The calculation is done in three
steps. Section III analyzes the momentum transfer effect
on bp by assuming a local mN amplitude. Section IV de-

velops the standard impulse approximation including
both momentum transfer and binding effects. Section V
shows that the use of the free ~N amplitude plus binding
effects in the standard impulse approximations runs into
inconsistency and a modified impulse approximation
without this drawback is proposed. The definitive results
are obtained in this section, but use is made of the results
obtained in the former sections. Finally, Sec. VI summa-
rized our conclusions.

II. s-WAVE mN OFF-SHELL EXTRAPOLATION

The s-wave isoscalar and isovector scattering lengths
b p and b „respectively, have experimentally the values

bp = —0.013m

b, = —0.092m
(2.1)

Note that bp is about one order of magnitude lower than

bi. This fact is not accidental, indeed the soft pion model
provides a bp exactly null. Due to this fact, the first or-
der in p of the optical potential, the term bop(r) in (1.1),
is quite small and other corrections, such as the Pauli
corrections, and higher-order terms, such as the Bpp
term of the potential, are important.

Let us look at the off-shell behavior of the s-wave iso-
scalar T matrix for three different models in the litera-
ture.

In the first model, due to Hamilton, the mN s-wave in-
teraction has an inner structure based on particle ex-
change. It is assumed that the isoscalar ~N coupling
comes from the vrvr coupling to a "cr-meson" (0+0) and
from a m.NN coupling.

The explicit expression for the isoscalar invariant am-
plitude, in this model, is
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2

T+(t) = 4—vr(1+@) a,„+a
m —t

(2.2)
I

' 1: I

jpcAC
: HAMILTON

with a =0.220m ', ' m =550 MeV, and a,„= —0.233m ' in order to reproduce the on-shell value at
threshold, and t is the squared four-momentum transfer.
In this model T (t) shows a partial cancellation at t =0,
but it increases very fast for t & 0.

Now we summarize the hereafter called LMM model. "
The LMM model assumes a separable T-matrix for each
partial wave, which reproduces the on-shell values and
provides a well-defined off-shell extrapolation. For the
mX elastic channel in a partial wave a(a=L2J2r) the T
matrix is given by

O
O

fa

2

[q/ [m ]
T (p', p;E)=A, u (p')U (p)ll)+(E) (2.3)

1
5' (x)

23+(E)= exp —f dx
7T M~™ E x +LE

1 —gtan6' = tan5 1+
2ga sin ~a

A, U (k) =X)+(E(k) ) T (k, k;E (k) ),
A, =+1,
E (k) =(M'+ k')'"+(m'. +k')'" .

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

Note that 2) is defined such that the right-hand side of
(2.4c) is real, because the phases of 2)+ and T are equal
but of opposite sign. So U is always real choosing for A,

the appropriate sign.
The isoscalar (isovector) s-wave matrix, T+(T ', are

related to the partial waves n =S
& &

and a =S
&3 by

T+ =
—,'(Ts +2' ),

(2.5)
T = ——'(T —T ) .Sl ) SI3

Note that the LMM model provides a nonlocal T-matrix.
We compare the LMM and Hamilton models in the

case at threshold E =M&+m, where all the particles
are on shell with the exception of outgoing pion, which
has momentum q. This kinematic situation is depicted in
Fig. 1.

7T' ~E

(o,o)

2M N

2
q
2M N

FICx. 1. Half-ofT'-shell kinematic variables for m% scattering
at threshold; only the outgoing pion is allowed to be ofF-shell.

here E =Vs is the total c.m. energy and p', p are the
rnoduli of the incoming and outgoing c.m. rnomenta.
These functions U and 2)+ can be obtained from the ex-
perimental phase-shifts 5 and the inelasticity parameters

by means of

FIG. 2. Comparison of isoscalar-half-off-shell extrapolations
for difFerent models.

The T+ values as a function of ~q~ are depicted in Fig.
2 for the Hamilton, LMM, and PCAC (partial conserva-
tion of the axial current) models. This last model is con-
structed through an interpolation between known points
from current algebra and has been taken from Ref. 12,
choosing the parameters such that they reproduce the
empirical on-shell T matrix at threshold (see Ref. 13 for
details).

For off-shell values of q near q =0 all the models show
an important rise of 1 +. Note that the q —+0 behavior of
T+ agrees quantitatively for all the models. On the other
hand, for higher momenta the discrepancy between
different models is expected not to be very relevant due to
the finite momentum transfer allowed in finite nuclei.

III. AMPI. ITUDK DEPENDING
QN THE MOMENTUM TRANSFER

Let us suppose that the s-wave isoscalar mX interaction
amplitude depends only on the momentum transfer, as in
the Hamilton model. We can include the t dependence in
a function b~(t), such that bo(0) equals bo

T+ (p', q', p, q; E)= 4'(1+e)bo( t)—,

t =(co—co) —(p' —p) =——k
(3.1)

Then Eq. (1.7) provides the following local optical poten-
tial

2' V,",(r', r;co) =5 (r' —r)F(r),

F(r) = —4m(1+@) f 3
e'"'bo( —k )p(k),

d k
(2rr )

(3.2a)

(3.2b)

where p(k) is the Fourier transform of the nuclear densi-
ty, and Eqs. (A10) and (Al 1) have been used. Expression
(3.2) shows that in the impulse approximation one must
replace bop(r) by F(r) in order to account for the off-
shell effects in the n.% amplitude.

A different way of writing the potential F(r) is

F(r)= —4m(1+@) f d r'bo(r —r')p(r'), (3.3)

where bo(r) is the Fourier transform of bo( —k ):
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bo(r)= f e' 'bo( —k ) .
(2n )

(3.4) PRB
(3.8)

We can interpret Eq. (3.3) as a way of taking into account
the finite range of the interaction.

We can easily see that for a constant density p, F(r)
coincides with bop; however, for a finite nucleus, p(r) is
not constant and F(r) can differ appreciably from bop(r)
especially at the nuclear surface.

The effect of the off-shell extrapolation in the optical
potential for an amplitude depending only on the momen-
tum transfer was studied in detail Ref. 13. We summa-
rize the results here since they will be used in the next
sections.

In this reference bo( —k ) was parametrized in the fol-
lowing way:

bo( —k )=bo (1+13,k +P~k +P3k ) e (3.5)

—4m. 1+—B p (r)0 (3.6)

with 5bii = —0. 14m ' (see Ref. 4), and a best fit to the
pionic atom data of ' C and ' 0 with 80 as a free com-
plex parameter was carried out. The Bo value obtained
by using (3.6) is then'

ReBO = —0.030m

(3.7)

ImBo = —0.042m

If there is not extrapolation included, the parameter bo
is given by bo+6b~ = —0.027m ' and the best fit to the
same data gives ReBO = —0.010m

The parameter Re80 obtained by using the potential
{3.6) to fit the data is more negative than that obtained
without oF-shell extrapolation. This shows that the off-
shell effect is attractive, being necessary more repulsion
in the p term in order to balance this new attractive
effect.

The former discussion shows that the effect of the off-
shell extrapolation can be simulated by an increase in the
ReBo parameter of 5 Re80=0.020m . However, since
we include these ofF-shell effects in the first-order optical
potential it is useful to express that in terms of an
equivalent change in the parameter bo. This is easily ac-
complished by means of the linear correlation between
Re80 and Rebo established in Ref. 5,

with the parameter values P, =4.98 fm, P2= —0.726
fm, P3=0.203 fm, and P=0.462 fm . The function (3.5)
allows one to get an analytic expression for the optical
potential F(r) in (3.2) using harmonic oscillator densities:
for the nuclei.

The function F(r) is a complicated function of r.
However, it would be very useful to find an equivalent
optical potential written in the standard form (1.1) which
would give rise to the same results as using the function
F(r). To that purpose the following was done: the s-
wave optical potential was taken to be

A@V~'it(r) =F{r)—4ir{1+e)5boio{r

6b"" =0.005m„' . (3.9)

Since
~ bo( —k ) ~

)
~ bo ~

for k&0, one would naively ex-
pect that F(r) would yield an effective Ibo~ bigger than
before, hence the extrapolation effect would be repulsive
in contrast to the numerical result in Eq. (3.9).

In order to understand better the attractive effect of
the off-shell extrapolation, let us remark that the spacial
average of the difference between the potentials with and
without extrapolation is zero, i.e.,

2m 5V, ,(r) =F(r)—4~(1+e)bop(r),

f 2m 5V,„,(r)der=0 .
(3.10)

We plot 2m„5V, ,(r) r vs r in Fig. 3. 5V, ,(r) is posi-
tive for r &3.4 fm and negative for bigger values of r.
The pion density in a pure Coulomb potential for a 1s lev-
el would be monotonously decreasing and it would weigh
more than the repulsive part of 6 V, , and the net effect of
6V p, on the pion would be repulsive. However, the s-
wave vr nucleus strong interaction is repulsive and it
pushes the pion outside the nucleus. The pionic density
in the level ls of an ' 0 pionic atom, ~tt)'(r) ~, is depicted
in Fig. 3. We see that, due to the strong repulsion, the
pion feels more the attractive part of 5V, , and the net
effect of the off-shell extrapolation is to produce attrac-
tion in the potential. These conclusions are in agreement
with the findings of Refs. 5 and 15.

It is worthwhile to note that the consideration of
momentum transfer in intermediate steps in the pion-
nucleus interaction, not only does not solve the problem
of the missing repulsion but makes it worse because it in-
troduces an extra attraction.

[dimensionless]
0.5—

0.4—

0.3

0.2

O. I

pt (r) r

0.Q

-O. I

FIG. 3. Off-shell extrapolation correction to the optical po-
tential, 2m 5V,~, (r)-r, compared to the pionic density for the
level ls in ' 0 ~P"(r)~ . Due to the s-wave repulsion the pion
sees a net attractive efFect.

p a p0~2.

Hence the effect of the off-shell extrapolation would be
simulated with an increase of the Rebo parameter



39 CALCULATION OF THE FIRST-ORDER s-%AVE OPTICAL. . .

IV. AMPLITUDE DEPENDENCE ON ENERGY
AND MOMENTA

T,+(p', p;E) = —4m [bo+b2(p +p' )
N

+b~(E —M~ —m )], (4.1)

where p', p, E refer to the ~N c.m. frame and the parame-
ters are

bo =——0.013m

b = —0.017m„

b~ =+0.055m„2 .

(4.2)

Note that the value quoted here for b2 differs from that
of Ref. 13 due to the use of different values for the empir-
ical phase shifts and inelasticities. We are now using
Amdt's phase shifts. ' However, at small energies these
phase shifts do not match the measured scattering length
of Ref. 8. Hence, in order to be consistent with the value
of bo that we are using we have done a smooth extrapo-
lation from T„=50 MeV to threshold of those phase
shifts in order to match the scattering lengths. The effect
of the energy dependence of the ~N amplitude is deter-

We have considered in Sec. III that the ~N interaction
in a pionic atom is a process at threshold. This is, evi-
dently, an approximation. The nucleons of the nucleus
are bound and, therefore, the ~N interaction takes place
below the free ~N threshold.

In order to take into account the binding energy of the
nucleons, we need a model which provides us with the in-
teracting ~N T matrix below threshold.

The Hamilton model is constructed to reproduce only
the scattering lengths and does not give the energy
dependence. The models based on PCAC give the T ma-
trix around ~ =0 and we want an expansion around
cu =m„. We choose the LMM model which provides the
energy dependence of the T-matrix and reproduces the
right on-shell amplitude for any energy. As we have
seen, the invariant amplitude T of (2.3) depends, in this
model, on the incoming and outgoing momenta and the
total energy of the system mN in the c.m. frame.

Here we are going to consider the off-shell and ofF-

threshold effects by expanding the amplitude around
threshold in first order of the energy variable and the
momentum squared. Hence we make an expansion
of T(p', , p, ;E, ) around p', =p, =0, E,
=M~+ m

There are some reasons to stop at this order in the ex-
pansion: (1) The different off-shell models agree quite
well in the momentum transfer dependence until second
order hut not further. (2) Higher orders in momentum
are expected not to be very relevant because large
momentum transfer are severely suppressed in not too
light nuclei. (3) The variation of the energy is of the or-
der of the kinetic energy of the nucleons and keeping first
order in this is consistent with the first order in squared
momenta.

Thus we shall fit the LMM T-matrix below threshold
with the following form

mined by the parameter bz, which gives a term of the
same sign as bo to the amplitude T,+. Strictly speaking,
an expansion of T,+ around threshold, done in Appendix
C, yields not only a term going as E —M& —m but also
another one as QMz+m E—, which above threshold
gives the imaginary part of the T matrix required by uni-
tarity. We shall use here only a linear term in E which
should account effectively for the two terms at an average
nucleon binding energy. In the next chapter, however,
we shall make modifications to account for medium
corrections to the T matrix arising from the binding ener-
gies of the nucleons and we shall see that the term with
the square root will not provide any modification to the
optical potential. We use the amplitude in (4.1) to get the
s-wave isoscalar part of the pion-nucleus optical potential
for pionic atoms. The explicit calculation has been done
in Appendix B. The result found for the potential is:

2' V,",(r, co)

4~(1+e)
=[bo+b~(co —m )]p(r)

+b~ V(r)p(r)

3 kF(r)
+b, e —p(r)

(4.3a)

(4.3b)

(4.3c)

8 M~+co

(4.3d)

bq
2b2(1 —2e)—

2 M~+co

X V.p(r)V, (4.3e)

V(r) = —54 MeV p(r)
Po

(4. 4)

where co is the pion energy and V(r) is the one-body aver-
age potential which one nucleon feels in the point r due
to the other nucleons in the nucleus.

We see that this optical potential, associated to the mN
interaction in the s-wave, is not local but it has a term of
the type Vp(r)V. This part comes from the nonlocality
of the separable LMM model used for the amplitude.
The bop(r) term corresponds to the case of interaction at
threshold.

The terms with the parameter bz are related with the
fact that the ~N c.m. energy differs from that at thresh-
old, so there is a term with V(r) which takes into account
the binding energy of the nucleon and the other terms
with b& account for the kinetic energies of the pion and
nucleon. The terms with bz come from the dependence
in momentum of the amplitude and take care of the pion
and nucleon momenta.

Let us apply our potential (4.3) to the pionic atom case,
co = m „, neglecting the binding energy of the pion which
is less than 1 MeV in most cases and is quite smaller than
the nucleon binding energy. We take the nucleon poten-
tial V(r) to be proportional to the nuclear density at each
point,
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with po being the normal nuclear matter density,
pa=0. 483m . This potential is consistent with infinite
nuclear matter results. ' Using it, the term (4.3b) be-
comes

(4.5)

b3 co e
b2(1 —e}+ e —

2
—V p(r)8(M~+m„) (1+E)2 2

=+0.026m V p(r) . (4.11)

where

N 0 048~ —4

This term turns out to be quadratic in density although it
was generated in a process involving only one nucleon.
This is because the potential energy V(r) is due to the ex-
istence of other nucleons. As a consequence, we interpret
this term as a correction to the second-order parameter

(VN) .
Bo [see Eq. (1.1)] in (4.6). Note that 5BO " is of the same
order and opposite sign as ReBO" coming from processes
involving two nucleons of the medium, Eq. (1.3).

The local term of the potential (4.3c), which goes as
k~(r)p(r), is very small due to the factor e and we shall
neglect it. As far as the term (4.3d) is concerned we will
postpone its discussion until the introduction of the ATT
(angular transformation term) correction, which has the
same V p(r) functional form.

The remaining term is the nonlocal one of (4.3e). This
can be interpreted as a change in the linear density pa-
rameter co of the nonlocal part of the optical potential
(the p-wave part). The result is:

5c',"' = —0.04m.-', (4.7)

T+(p', , p, ;E, ) = —4~(1+@)cop', p, , (4.8)

where co is the scattering volume in this channel,

co =0.20m (4.9)

with the parametrization of the p-wave optical potential
of Ref 6.

Now we calculate the optical potential in the impulse
approximation associated to the p-wave ~N interaction.
Because of the transformation of the reference frame it
will give a contribution of order e to the local part of the
optical potential. Remaining in second order in the c.m.
momenta, in order to be consistent with the previous cal-
culation, the ~N isoscalar amplitude in p wave around
threshold is

This term is local, but it is not easily interpreted in terms
of the usual parameters bo and Bo since V p(r) is a func-
tion without defined sign. The method to interpret such
a term as a variation of an effective bo was described in
Sec. III. Actually, a Laplacian approximation (as done
throughout all this section) in Eq. (3.10) yields

2co5 V,p, (r) =0.029m V p(r) . (4.12)

The coe%cients in Eqs. (4.11) and (4.12) are close enough
to use the result in Eq. (3.9) as an estimation of the effect
of the Laplacian term of (4.11). Hence we can take into
account this Laplacian term, in an approximate way, by
means of a correction to the bo parameter given by

5b o'~ =0.005m (4.13)

—2' V,",(r, co) =bop(r }+5b o'~ p(r )

We have shown the effects of the allowed pion momen-
tum transfer due to the nucleus finite size and of the bind-
ing energy of the nucleon which places the mN processes
under threshold for the s-wave optical potential associat-
ed to the pion interaction with only one nucleon of the
nucleus. One can ask how these corrections will affect
the processes which involve two nucleons of the nucleus,
i.e., how the theoretical results for the parameter Bo, Eq.
(1.3), coming from two-nucleons processes would be
affected by the inclusion of these facts. The answer is
simple: in the calculation of the Bo", off-shell effects for
the intermediate pions are included. However, inclusion
of the off-shell effects in the external pions, as we have
done here for the lowest-order terms, would not change
the results appreciably because, as shown in Ref. 4, Bo"
goes approximately as I ho+bob&+ —,'b

& I and the largest
contribution comes from the b, term, which is not much
affected by the off-shell extrapolation.

Summarizing the results of this section we have ob-
tained, for pionic atoms, from the impulse approximation

The impulse optical potential associated to this ampli-
tude [see Appendix B] is:

(~„~ (1+a/2)
(1+@)

(4.14)

(1+@)2' V,'~', (r;co) = —coV p(r)V4~
(4.10a)

+ —coV p(r) (4.10b)

The term (4.10a) is usual in the p-wave optical poten-
tial. The local term (4.10b) is known as ATT in the litera-
ture ' and has an attractive effect for pionic atoms. It
has the same form as (4.3d), and its inclusion, together
with the term (4.3d) gives

with 5bo'" and 5BO given by (4.13) and (4.6), respec-
tively. In addition, we have obtained a correction to the
p-wave optical potential coming from the off-shell extra-
polation of the s-wave mN scattering amplitude while at
the same time we have included in the term 6bo'~ a
correction coming from the c.m. to laboratory transfor-
mation of the p-wave mN amplitude. However, we should
not take these results as definitive yet, since as we shall
see in the next section, the medium corrections to the T
amplitude will modify the numerical results of (4.14) al-
though not its structure.
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V. MODIFIED IMPULSE APPROXIMATION

In the previous section we have developed a strict im-
pulse approximation as stated in Eq. (1.7), where T stands
for the free ~N T matrix. Among the difterent pieces ob-
tained, the one due to the nuclear potential energy in Eq.
(4.3b), plays a special role for it goes as p rather than as
p. Actually it turns out to be of the same order of magni-
tude as the second-order pieces of the s-wave optical po-
tential. One can ask whether such a big correction, unac-
counted for in previous calculations, is a genuine one or
rather an artifact due to an over-simplistic application of
the impulse approximation.

A clue is given by the Pauli blocking piece of Fig. 4(b),
which is computed in nuclear matter (Appendix A of Ref.
4). This Feynman diagram produces an imaginary part
corresponding to the quasielastic process p+q~p" +q',
where q and q' are below the Fermi surface and
p =(m, O) for pionic atoms. In the absence of any nu-
clear binding energy, this imaginary part exactly cancels
the one coming from ImT in Fig. 4(a). This is as it
should be because the quasielastic process is forbidden,
due to Pauli's principle, for pions at threshold. Above
threshold the exact cancellation would not hold.

Now, if we switch on the nuclear potential in the hole
line in Fig. 4(a), as was done in Sec. III, we should do the
same in the hole line q in Fig. 4(b). Furthermore, in nu-
clear matter the one particle Hamiltonian can depend at
most on the momentum, and the line q' runs over the
same set of momenta as q, then we must include the nu-
clear potential also in the "particle" line q'. Both shifts
in their energies partially cancel leaving the Pauli block-
ing piece essentially unchanged. This is not so for the im-
pulse approximation graph of Fig. 4(a): once the binding
energy is included, the mN collision is below threshold
and any imaginary part disappears. The previous cancel-
lation between graphs no longer exists and the combined
imaginary part turns out to be positive.

The way out of this puzzle is to take into account that
the T matrix is not an elementary vertex and is renormal-
ized in the nuclear medium because of the binding of the
nucleons. Indeed the m.N T matrix will contain, among
other pieces, the iterated rescattering of the ~N pair, as
depicted in Fig. 5. For consistency we should put in the
intermediate nucleon lines the same binding as we put for
the external lines.

To this end we need a definite model for the m.N T ma-
trix and we shall take the LMM model. " The basic as-

FICx. 5. A typical term in the expansion of the free vrX T ma-
trix in elementary processes is shown. The boxes stand for in-
termediate states other than ~X.

A,;;. u;. (s)
X.+(E)= I —y f (2~)' E E,(s)+—ir) ' (5.2)

where E, (s) is a generalization of Eq. (2.4e) for other
channels, namely, the relativistic energy of the two parti-
cles of channel i with momentum s. It was already point-
ed out in Sec. II that u (s) are given by the model once
5 (E) and g (E) are provided. The other u, . (s) vertices
for nonelastic channels are not determined in this way,
but they are not separately needed.

In order to get the medium modified T matrix due to
nucleon binding we shall assume, rather naturally, that
the elementary vertices u, . (p) are not affected by the nu-
clear medium. Also, we shall suppose that the only chan-
nel feeling a nuclear potential is the elastic one, mainly
due to our ignorance about how the nuclear medium can
alter other, far oA shell, particles. Under these assump-
tions the binding energy e6'ects are easily accounted for
by modifying the nucleon dispersion relation. For the
sake of simplicity we just shift the nucleon mass by its (lo-
cal) nuclear potential, M)v —+M)v+ V, thus keeping the
formal relativistic invariance in the formulae. Equation
(2.4e) changes to

sumptions of this model are that the nonelastic channels
mixing with AN in s-wave (depicted as boxes in Fig. 5)
correspond to two particle states, and that the elementary
interaction vertices are separable

&;„„(p',p)=&;, v;, (p')u, (p),
where i,j denote both pairs of reacting particles,
a =L2J 2~ and p,p' the moduli of the incoming and outgo-
ing momenta in the c.m. system.

The explicit T matrix as predicted by this model was
already given in Eqs. (2.3) and (2.4) where u (p), A, refer
to that of the elastic channel. On the other hand, by per-
forming the implicit summation of graphs in Fig. 5, one
easily establishes the relationship"

(a)

E '(s)=(m„+s )' +[(M)v+ V) +s ]'

Similarly, the medium corrected T matrix will be

A. v (p')u (p)7„(P)
(

~ E) cx (1 cx

~+( P')( E)

(5.3)

(5.4)

T
p

FIG. 4. (a) Lowest-order graph of the optical potential in nu-
clear rnatter. (b) Pauli's correction to graph (a).

&.+("«)=&.+(E)—~.")(E)
l =o+ 'i~.'"(E)

with gX' '(E) the V—corrected elastic part of 2)

(S.5)

A, v (s)
W.("(E)= —f (2~)' E —E("(.)+i&

In principle as u (s) is known, so are .)Y'"), 2) ' '', and
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ho+ Av' —6'+b36+0(6' ),
@=E—M —mN

(5.12)
2' V,"„(r,co)

=bop(r)+5bo p(r)

Above threshold the optical theorem directly relates the
(imaginary) second term to the scattering lengths, imply-
ing that such a term has a purely elastic origin. As a
consequence, with the prescription of the modified im-
pulse approximation of including the binding in external
and internal nucleons in the T matrix, the potential ener-
gy should be included both in E and Mz in (5.12) and
hence there are no changes from this square root term.
The linear term in 8, however, would contain contribu-
tions from intermediate inelastic channels and hence
would lead to some correction since no binding has been
associated to these inelastic channels.

With the new value of b3 of (5.11), the new optical po-
tential would be given again by (4.14) but 5BO is now

(v~ ~

1v 0 0~9m
—4 (5.13)

instead of —0.048m which we get in the previous sec-
tion.

If we had taken also the same binding in the inelastic
channels as in the elastic one we would have obtained

(v„)
once more Eq. (4.14) but with 5BO " =0. We would like
to see these two results as indicative of the intrinsic
theoretical uncertainties of our approach.

VI. SUMMARY AND CONCLUSIONS

We carried out a thorough study of the lowest order s-
wave optical potential for pionic atoms in order to in-
clude the effect of the off-shell extrapolation and binding
effects. All the efforts have been concentrated in the iso-
scalar part of the optical potential since the isoscalar mX
amplitude is very much affected by the off-shell extrapo-
lation, which is not the case for the isovector nX ampli-
tude.

We.have proceeded in three steps. In the first one we
have worried only about the off-shell extrapolation in
momentum. In the second step we have also taken into
account the nuclear binding. However, a closer look at
the T matrix and its internal structure shows that a
straightforward inclusion of binding effects in the vari-
ables of the T matrix is inconsistent and such binding
effects have to be incorporated simultaneously in the vari-
ables of any theoretical model for the T matrix. We have
done so in the context of the LMM model and have
found that the results depend somewhat on the nuclear
binding of the baryonic states of the inelastic intermedi-
ate states in the T matrix expansion. While this binding
is obviously dificult to assess for all the possible baryonic
components, two limiting assumptions have been done:
First, no binding for these baryonic components, other
than the nucleon; second, the same binding for these
baryonic components as for the nucleon. We take these
two results as an indication of the intrinsic theoretical
uncertainties of our study.

The results that we obtain for the first-order s-wave op-
tical potential in pionic atoms are given by

(6.1)

where the last two terms are coming from the off-shell ex-
trapolation and binding effects (part of 5bo'~ also comes
from the angular transformation term of the m.N p-wave
amplitude).

Our numerical results are the following:

ho= —0.013m '
( experiment, Ref. 8),

5b 0
——0.014m

5bo'~ =0.005m

( v~)case (a): 5BO = —0.020m

(with no binding energy for inelastic states),
(v„)

case (b): 5BO " =0

(6.2)

5bo'" =0.005m
—(v~) —1case (a): 5bo = —0.0045m
—( V~)

case (b): 5bo =0,
(6.3)

—(v&) . ( v~)where 5bo is the corresponding term to the 5BO . In
addition, we can also write in terms of 5bo the theoretical
result from the second order calculation of Eq. (1.3),
which corresponds to

5b,'"=0.OO67m „-' . (6.4)

Note that in case (a) the two effects from the off-shell ex-
trapolation and nuclear binding roughly cancel each oth-
er. In case (b) we get a net attraction from the off-shell
extrapolation, making the problem of the missing repul-
sion mentioned at the beginning even worse.

For the sake of comparison and assuming that the
problem lies in the experimental value of bo, if we take
the theoretical values that we have obtained from our cal-
culations and the one of 5bo, we would need a value of
the parameter ho=( —0.022 ——0.027)m ' in order to
fit the pionic atom data [the present value, used here is—0.013m ', given in (6.2)].

We carried the analysis in the LMM model, which pro-
vides the coeKcients b2 and b3 of the off-shell extrapola-
tion and energy dependence, respectively, but we should
mention that the results are quite model independent.
Indeed, the parameters b2 and b3 are not independent

I

since a linear combination of them [see Eq. (C6)] is relat-

(with same binding for inelastic states and nucleons) .
(v„)

We take these last two values of 5BO as indicative of
the intrinsic theoretical uncertainties of our approach.
We can bring the results of Eq. (6.2) in a more handy
form by means of the correlation between the bo and Bo
parameters of Eq. (3.8). We obtain
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ed to the behavior of the mA phase shifts around thresh-
old. On the other hand we saw in Sec. II that difterent
models gave similar oA'-shell extrapolations.

We have seen that we have some theoretical uncertain-
ties, but the discrepancies with the present experimental
values of bo remain in any case. %'hile one cannot disre-
gard the presence of some other nuclear corrections not
taken into account in the present work, together with the
work in Ref. 4, we should call the attention to the fact
that the quantity bo is very small, coming from the can-
cellation between two scattering lengths one order of
magnitude bigger, i.e., a 15% error in these would result
in a 100%%uo change in 60.

It is clear to us that a more precise determination of
the ~i% phase shifts at low energy and of the scattering
lengths is needed. Some recent results from the analysis
of ~ p atoms give a m p scattering length in disagree-
ment with the results of Ref. 8. The present values of the
scattering lengths might also be at the heart of the prob-
lerns with the o.-term, as noted in Ref. 21. In summary
we believe that the time has come for a serious reanalysis
of the low energy ~X data before more efT'orts are devoted
to the nuclear problem.
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APPENDIX A: WIGNER TRANSFORMATION

Let us suppose a nucleus with A nucleons. Its state is
described in the independent particle model by 3 single-
particle eigenstates ~n & with n =1,2, . . . , A. For such
systems the one-body density operator is:

&rlq&= (2' )
(A4)

In this representation the states ~n & are given by the
wave function g„(q) and the p matrix is

pg(q' q) =—&q'lflq&= g 4.(q')4.*(q),
n=1

it„(q)—:&q~n & .
(A5)

With the normalization (A4), the wave functions in coor-
dinate and momentum representation are related by

iq r

g„(r)= f d'q g„(q) .
(2~) ~ (A6)

There is a hybrid representation in coordinate and
momentum space for the p matrix, it is given by the
Wigner transform pii, (R, Q) defined as follows:

pii(R, Q)—= f —e "~ R+ —
p R ——s; . s s

(2'�) 2 2
(A7)

This Wigner transform pii, (R,Q) contains the whole in-
formation of the p operator.

This representation has some advantages. For any
one™bodyoperator 0 we define its Wigner representation

0(R,Q)= f d se "'~ R+ —0 R——
2 2

(A7')

which is a real function if 0 is Hermitian.
So the expectation value of this operator 0 in this sys-

tern is

&0 &= f d Rd QO(R, Q) pii (R,Q) . (A7")

This expression is totally similar to the expectation value
of a classical observable 0(R,Q) for a classical system
with a probability p~(R, Q) in the phase space of the sys-
tem. A difference between the classical case and the
quantum case is that pii, (R,Q) is not necessarily positive.

Some other interesting properties of the Wigner trans-
form are

p= g ~n &&n~,

&n~n'&=5„„, .
(Al)

This operator p allows one to calculate the expectation
value of any one-body operator 0 as & 0 &

= Tr(Op). Let
~r & be an eigenstate in coordinate representation, with
the normalization

pii(R, Q)= f e' ' Q+ —p Q ——,(A8)ik-R

(2' )

f pii (R, Q)d'Q= g itj„(R)it„*(R)=—p(R), (A9)

which is equivalent to the definition given in (A7). It also
verifies that

& r ~r' & =6'(r —r'), (A2)
where p(R) is the density of particles in coordinate space.
And

the density matrix is f p ii (R,Q)d'R = g P„(Q)f„*(Q):—r(Q), (A9')

p (r', r)=&r'~p r&= g Q„( ')Q„*(r),

We will also use the momentum representation. The
eigenstate ~q & with eigenvalue of momentum q is defined
by f piv(R, Q)d Qd R=A . (A9")

where w(Q) is the probability density of particles in
momentum space. The integration of pii, (R,Q) over the
whole phase space is the total number of particles in the
system.
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One approximation to the Wigner transform which is
often used is the Slater approximation given by

p (R,Q)= 9[k (R)—Q~],(2'�)
being kF(R) defined by

p(R)= kF(R),= 2

(A12)

(A 12')

Another magnitude we are interested in is the Fourier
transform of the density in coordinate space, p(k)

p(k)—:f d re ' 'p(r) . (A 10)

This quantity p(k) is related to the probability of a
momentum transfer k in the system and can be written as

T

p(k) = f d Q g g„Q+—g„* Q —— . (Al 1)
2 " 2

where a factor of 4 has been introduced to account for
the spin and isospin, so we are already supposing that the
fermions of the system are nucleons and the system is sa-
turated in spin and isospin.

APPENDIX B:EXPLICIT CALCULATION
OF THE OPTICAL POTENTIAL

IN THE IMPULSE APPROXIMATION

We use the expression (1.7) which provides the optical
potential in the impulse approximation from the invari-
ant amplitude T expressed in the laboratory frame kinetic
variables.

This invariant amplitude T is given in Eq. (1.6) as a
function of the m.X c.m. variables. Neglecting the binding
energy of the nucleon against its mass and carrying out
the change of ~ nucleus to ~N frame in a non relativistic
way (which is consistent with the amplitude expansion up
to energy variation and squared momentum), we get for
the amplitude,

T P+ —,Q ——;P——,Q+ —;M&+E„+co= —4'(1+ )e. bo+2b2 (a&P —a2Q) +k k k k k
2

+b3 (ro m)+E„——(P+Q)'
2 M~+ro

with a, =—Mz/(M~+co) =(1—e); a2=co/(Mz+ro) =ro/M~ =e.
Substituting (Bl) in (1.7) and using the Appendix A we can easily obtain

V,",(r', r;ro)= [b +0b ( 3—ro m ) jp(r)5(r' —r)47r(1+e)—
+ b3 Q E„p„*(r)g„(r)5(r'—r)

(81)

(82a')

(82a")

d k+ ,'b2 f —ke'"' (k)5(r' —r)
(2m)

(82b)

+ 2b2a2z— f d QQ p~(r, Q)5(r' —r)
2 M~+co

b 3 I

+ 2b2z~&
i P.(r' —r)p2 +

2(M~+ ro) (2~)3
e p 2

b3 A3p

M~+ ro (2~)3

(82c)

(82d)

X f d'QP Qpw
r'+r

2
(82e)

The term (82a') already has the phenomenological optical potential form. The integral in (82b) is —V p(r). The (82e)
term is null. The terms (82a'), (82a"), (82b), (82c) are local. The term (82d) is nonlocal because the separable T-matrix
of the LMM model used is nonlocal. The integral of the (82d) term can be formally written as (

—V 5)(r' —r), and it is
easy to show the following relationships:

I +I d p2 i p. (r —r)

(2~)
r'+r

2
—V 5 (r' —r)

=5(r' —r)[ —V p(r)V —
—,'(V p(r))] .

The term (82a") needs a bit of work before showing a density dependence form. Let us do it:

(83)
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p2
g E„g„*(r)g„(r)= g g„*(r) V(r)—

= V(r)p(r) — lim V, ( r
~

pir' ) .
1

2MN r' r
(B4)

By using the Wigner representation introduced in Appendix A we get
A

g E„1i)„*(r)g„(r)=V(r)p(r)+ f d QQ p~(r, Q) — —V p(r) .
2MN 8MN

So we can write the impulse approximation to the pion-nucleus s-wave optical potential, corresponding to processes
where only one nucleon of the nucleus interacts with the pion, as follows:

V, , (r', r;cu) =5(r' —r) V,„,(r;(u);

-V(,'), (r;co)=[bo+b, (cu m)]p—(r)+b, V(r)p(r)+b e3f d'QQ p~(r, Q)
2MN

b3
bz(1 —e)+ . e V p(r)8(M~+ a) )

(B7)
b3

2b2(1 —2e) — V p(r)V,
2(MA" +a) )

where we have neglected the terms in e~ = (cu/M~ ) = —,', .
The term with the integral in Q is multiplied by the factor e which is small. We shall use the Slater approximation to

evaluate it. By means of Eq. (A12), we obtain immediately

k~(r)
bate f d QQ pw(r, Q)=b3e —p(r) . (B8)

The actual numerical calculation of this term gives a result of around one order of magnitude smaHer than the other
corrections and we shall neglect it.

Now, let us take as the isoscalar p-wave AN amplitude the one given in Eq. (4.8). By repeating the same steps done
for the s-wave case,

(1+e)2' (~)V~, (r;co) = —coVp(r) V+ —cobp(r)+ e co—', k~(r)p(r),
E'

2 '

where we see that the change from AN c.m. frame to the
laboratory frame gives a local contribution to the optical
potential of the order of e, associated to the ~N interac-
tion in p-wave. We will also neglect here e terms as usu-
al' and take Eq. (4.10) as a result.

As the nucleus is very heavy in relation to the pion we
will use the laboratory frame instead of the pion-nucleus
c.m. frame, this is equivalent to neglecting e/3 terms,
where A = mass number.

APPENDIX C: EXPANSIQN AROUND THRESHOLD

The phase shifts around the threshold, for any I. =0
channel, go as

5(q) =-aq [1+Aq +0 (q )], g(q) = 1 .

These expressions together with the LMM model, allow
one to analyze the behavior around threshold of all the
functions u, gl, &, . . . involved in the off-shell extra-
polation used in this paper.

Instead of the energy in c.m. , E, we will use, for the
sake of simplicity, the variable E defined as

I

Above threshold but near it, E is the squared on-shell
momentum.

We obtain for the extrapolation in momentum:

u(q)
u(0)

=1+Bzq +O(q ) . (C3)

For 2)+(E) and T(p', p;E) above threshold, the results
obtained from (2.4a) and (Cl) are

=[1+B3E+O(E )]e' '

&+(E)
2

1+ B3— E+O(E )
2

+i [aE' +0 (E )];
(C4)

? (p'p;E)=a 1+B2 P P +B3E+O(E( I2+ 2)

a. 1+B (p +p )+ B ~ E2 2 3 2

+O(E ) +i [aE' +O(E )]
E=(E —M~ —m )2m M)v/(M~+m ) . (C2)
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+ B3—
2

E+0(( E—)3r )
2

Below threshold one gets:

2)+(0)
1 —a( E—) 1/2

2)+(E)

(C5)

Indeed Eq. (C5) is the analytic extension of (C4) by taking
for (r E the value i tr E—when E (0.

The parameters B2 and B3 are constrained by the be-
havior of the phase shifts around threshold by the follow-
ing relationship:

('+ ')
T(p' p 'E)=a 1+82 —a ( E)—'

2

282+B3 =A, — (C6)

a E+0(( E) r—)
2 which is obtained by putting the T matrix on-shell.
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