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Breakup-fusion analyses of single-nucleon stripping to bound and unbound orbits
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A method is presented that is capable of describing on one footing stripping-type reactions, in

which the stripped particles are left in either bound or unbound states. The approach is to use the
breakup-fusion description even when the stripped particles are bound. Successful applications are
presented of this method to a few realistic cases, in which the spin-orbit potential for the stripped
particle is taken into account.

I. INTRODUCTION

The stripping-type reaction A (a, b)B, in which
a =b+x and the particle b is observed, has customarily
been treated differently according to the energy E of the
stripped particle x. Namely, it is treated as the usual
stripping reaction if E &0, but as a breakup reaction if
E„)0. It is well known that the former (which we shall
henceforth simply call the stripping reaction) can be
treated very well in terms of the distorted-wave Born ap-
proximation (DWBA). '

The simplest mode of the breakup-type reactions is
elastic breakup (EB) in which both b and x are emitted,
leaving the target 2 in its ground state. However, the
contribution from this EB mode to the total b-singles
cross section is small in general, the dominant contri-
bution coming from the so-called breakup-fusion (BF) re-
action (or the inelastic-breakup reaction as it is called
in Ref. 2). In the BF reaction x is fused with A and only
b is emitted. Baur et al. analyzed a number of deuteron
induced BF reactions, while we ourselves concentrated '

on h and n induced reactions. The formalism on which
our calculations were based can be found in Ref. 5.
Reference 4 gives further details of numerical calcula-
tions along with some numerical results.

Since x is captured during the BF reaction as it is in
the stripping reaction, these two reactions are very simi-
lar. In fact, the only difference is that in the former the
energy EI, of the emitted particle b is such that the corre-
sponding E is positive, while in the latter E is negative.
This strong similarity between these two reactions then
suggests that there must be a way to describe them on the
same footing, and to show that this is, in fact the case, is
the purpose of this paper. More precisely, we shall show
that the BF formalism which has been used exclusively
for Et, (Eb (E )0) can be used as it stands also for
EI, )Eb (E (0), where E& is the value of Eb correspond-
ing to E„=O. A preliminary account of the content of
this paper has been reported in Ref. 6.

In the BF method, the relative motion between x and
2 is described in terms of an optical potential, a concept
which is rather clear if E &0. The use of a BF method
for E (0 then requires us to extend the use of an optical
potential to negative energy particles. Such an extended

use of the optical model has, however, been made by
several authors in the past, ' and we shall take advantage
of what has been worked out by these authors. As shown
in Refs. 7 and 8, the use of a (complex) optical potential
gives rise to the spreading of the single-particle strengths.
The use of' the BF method in the E &0 case then gives
rise to finite widths of peak cross sections.

In Ref. 6, we analyzed the data of the Al(d, p) reac-
tion with Ed =25.5 MeV, and showed that the extended
use of the BF method did work nicely. Nevertheless, the
work of Ref. 6 was done by assuming that the optical po-
tential for x had no spin-orbit term and, in this work, we
want to remove this unsatisfactory feature. It will be
seen that once the spin-orbit interaction is explicitly used
the extended use of the BF method for E &0 begins to
provide a powerful spectroscopic tool.

In addition to reanalyzing the Al(d, p) reaction data,
we shall analyze other data as well in this paper. They
are the Ni(d, p) reaction with Ed=15 (Refs. 10 and 11)
and with 25.5 MeV, and the ' "Sm(a, t) reaction with
F =80 MeV. ' Among these examples we have picked
up, the data of the last, i.e., of the ' Sm(n, t) reaction,
has a characteristic feature in that a couple of bumps are
observed in the triton spectrum in the region in which
E„, i.e., the energy of the stripped proton, is positive,
rather than negative as in other examples. The authors
of Ref. 12 performed a spectroscopic analysis for this
bumpy spectrum by extending the use of the standard
DWBA method (for the E (0 region) to the E )0 re-
gion. With our approach, however, this is the region in
which our BF formalism can be applied as it stands, and
it will be seen that our straightforward calculation fits the
bump spectrum quite well. By combining this with re-
sults obtained by analyzing the above (d,p) data, in
which bumps appear in the E„&0 region, one indeed sees
that our method works consistently for both E &0 and
E & 0 regions.

In Sec. II A, we summarize the BF formulas that are to
be used for the present calculations, while in Sec. II 8 we
present a formalism through which the relation between
the present calculation and the usual DWBA stripping
calculation can be clarified. Analyses of actual data are
presented in Sec. III, and the paper is summarized in Sec.
IV.

47 1989 The American Physical Society



T. UDAGAWA, Y. J. LEE, AND 'f. TAMURA 39

II. FORMULATION OF
BREAK-FUSION CALCULATIONS

in (5) is the spectroscopic amplitude, while p(Eb ) is the
phase-space volume of the emitted particle b given as

A. Cross-section formulas P(Eb)=(A kb)/[(2n) Pb] . (6)

The breakup-fusion reaction may be written symboli-
cally as

a+ A —+b+x+ A ~b+8 .

In Eq. (1), the first step (indicated by the first arrow)
denotes the breakup of a into b +x, while the second step
stands for the subsequent fusion (or capture) of x into the
target A to form the residual nucleus B. We assume that
the particles (b, x, and A) produced in the first breakup
step are all in their ground states. This means that the
first step is assumed to be what is called the elastic break-
up. In the following, we intend to calculate the b-singles
cross section in the reaction in (1).

Let us denote the excitation energy of the residual nu-
cleus B by E,„. If the energy carried by the particle i
(i =a, b, and x) is denoted by E, E,„ is expressed as

Ex )~l„j„n1 ( ) pl„j„m (7)

d
h 2p„dr

l, (l„+1)
2

+U. I
.

r 'x x

The p&
. (r) on the rhs of Eq. (7) is the source func-

X X S

tion (for creating the particle x) and is defined as

In (6), kb and pb are the wave number and the reduced
mass of b, respectively.

Further in (5), U, is the incident velocity, while W„ is
the negative of the imaginary part of U„( = —V„i—W„).
The function u& (r) is the x-channel partial wave

X X X

function that describes the motion of x with respect to A.
It satisfies the inhomogeneous equation given as

E,„=E„+Q3—Qs =E, Eb ——
Qs . (2)

Here Qs and Q3 are the Q values, respectively, of the
stripping reaction A (a, b)B and of the three-body break-
up.

VA: shall call the systems consisting of a + A, b+8,
and x+ A the a, b and x channels, respectively. The dis-
torted waves yI

—' (with i =a, b, and x) in these channels,
are given as solutions of the optical-model equation V I

=U I
. +Ub —U, , (10)

Here Yl is the spherical harmonics, while yb„ is the
X Z

wave function for the relative motion between b and x in
a. Furthermore, V, .» is defined by'x x

(E, —T, —U, )qI+-'=0. (3)
where U„ I 1, which appeared also in (8), is defined by

BF d ul J
2 BF

O y X X

b b I j b b

(4)

where

d 2~F

dEbd Qb
' (2s„+1)(2l„+1)

= 2ir/AU,

xy[(u j ~w~u j )/ ]
m

(5)

is the partial cross section. In (4) and (5), l„and j„are,
respectively the orbital and total angular momenta of x.
[If we set j„=l„,and hence suppress j„entirely from (4)
and (5), these equations reduce to those in Ref. 5.] Cb„',

Here T, and U, are, respectively, the kinetic energy
operator and the optical-model potential.

In our formulation of the BF reaction given so far, we
have neglected the spin-orbit interactions in all the U;.
As remarked in the Introduction, we take into account in
this paper the spin-orbit interaction V„„in U„. Howev-
er, we still neglect the spin-orbit interactions in U, and
Ub.

The reformulation of the BF calculations required by
the introduction of V„„ is straightforward. Thus, we
shall just give formulas that are to be used for the calcu-
lation presented below.

The double-differential BF cross section is given as

(1 la)

mrm

(l mis„m, Jj„m, )i "Yi ~ yx . (lib)

2 EB
FB d oI JCT y X Z

b b
X X

OI J 2j +]2 EB

(E )
dEbd Qb fiu, (2s„+1)(2l„+1)

(12)

2

Xg Jg&, '(r)p&, ~ (r)dr . (13)
m„

Here y is the spin-isospin wave function for x.
The formulas given above can be used for both E & 0

and E„(0cases. However, in solving Eq. (7) to obtain
u&, the outgoing boundary condition is to be im-

X fit X

posed upon uI when E &0. On the other hand, the
X X X

exponential-decay boundary condition is to be imposed
when E &0.

For the E„(0case, the BF cross section given by (4) is

by itself the b-singles cross section. For the E„)0 case,
however, the cross section for the EB reaction must be
added to the BF cross section. This EB cross section can
be given, by using notation already explained, as
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B. Remarks about the use of the BF formula for E (0 Inserting (18) into (5), we finally obtain

Actual numerical calculations to be given in Sec. III
are done for both Ez )0 and E &0 regions by using the
formulas already given in Sec. IIA. Therefore, for the
purpose of the calculations, it is unnecessary to continue
the discussion of the formalism any further. We, never-
theless, want to give a qualitative argument about the use
of the BF formula for the E &0 case. We do this be-
cause such a use is new in this paper, while the use of the
BF formula for the E„)0 case is now rather well under-
stood.

In the following, we in particular want to show that
the BF cross section obtained for the E (0 case is noth-
ing but an energy average of the usual DWBA cross sec-
tions of the stripping reactions. To do this, we make a
simplifying assumption that 8'„ is a constant, i.e., that it
is simply given as

W = —I/2.
Let us denote by h the optical-model Hamiltonian h

[defined in (8)], when W is set to zero in the latter. We
then consider a set of (real) eigensolutions [P;I of this
new Hamiltonian h:

(14)

(h„E,)P;=0—. (15)

Clearly h can be regarded as the radial single-particle
shell-model Hamiltonian, and g; and E, as the corre-
sponding single-particle wave function and energy, re-
spectively.

Under the assumption that W, is a constant, itj,. also
satisfies

(Ii E; )g; =0,—
with

E;=E,—iI /2 .

(16a)

(16b)

Note that the sum over i in the Eq. (17) is over the com-
plete set of states i, which includes not only the discrete
(bound) states, but also the continuum states with E )0.
Therefore, ui given by (17) includes continuum

X X X

effects.
By using (17), the matrix element in (5), is written as

&u, , i W. iu, ,

(18)

Namely, f; is an eigenfunction of the complex Hamil-
tonian h with the complex eigenvalue E;. The imagi-
nary part I then describes the spreading (decaying) width
of the eigenstate i. It is positive, because of the absorp-
tive nature of W . [In the time-dependent description,
the single-particle wave function in the potential with
such an imaginary part as given by (14) is a decaying
state. The reader may refer to Ref. 8 for more detail on
this point. ]

In terms of j P; ), one can expand ui as
X X X

ly;&&y;Ipl, & . ( 7)

l j lg„
dE„dQq, .

' d Qb

where

(19a)

dOI ~X X

drab

2m
p(Eg )

AU,

C(2)
(2s, + 1)(2l + 1) I C~...I I & @;IP & I

S r 1

2~ (E—E;) +I /4

(19b)

(19c)

u( ) (r) =p( ~ (y)/($ E), —

which is obtained by solving Eq. (7). This in turn clarifies
the physical significance of 8' present in the propaga-
tor. ]

The formulas given so far in this subsection were de-
rived by assuming a constant 8' . lt was also assumed
implicitly that V„was energy independent, because oth-
erwise the formalism would have been much more com-
plicated. In any case, what we have shown is that the re-
sult summarized by (19) (which may simply be written
down intuitively without derivation) can be obtained only
under these rather restrictive assumptions.

In using the formulas developed in Sec. II A, however,
it is unnecessary to make any of these assumptions. Both
V and 8' may depend on E„and r . Thus, the calcula-
tions done by using the BF formula of Sec. IIA do de-
scribe the reaction which is more sophisticated than what
is described by (19). Nevertheless, the fact that such cal-
culations result in energy-averaged cross sections, as
demonstrated by (19), may remain to be true to a large
extent.

We may finally remark on the validity of the use of our
BF formula at a very small excitation energy (E,„) re-
gion. This is the region, where we observe discrete state
transitions. There the measured cross sections are nor-
mally analyzed in terms of the standard DWBA method, '

deducing the spectroscopic factors S for the final states.
The values of the S factors thus determined often Auctu-
ate strongly from a state to another. As remarked above,
however, the BF approach describes only the energy
averaged behavior of the S factors. Therefore, it does not

The single-differential cross section given by (19b) is
nothing but the usual DWBA cross section of the strip-
ping reaction, in which x is captured into a single-particle
state i. Also, S,. given by (19c) is the single-particle
strength function. It is thus seen that the double-
differential cross section of (19a) is, in fact, an energy
average of the DWBA cross sections of (19b) that have S;
as their weight functions. In the limit of 8'~0, S;
reduces to a delta function 5(E E;). Equat—ion (19a)
then reduces to a sum of the usual DWBA cross sections
that are spiked at discrete energies. [We note that the
width I of the above energy average originates from 8'
in the propagator in
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We shall now report on numerical calculations. Below
we consider the partial BF and EB cross sections, given
by Eqs. (5) and (13), respectively, and also of their sum,
which we denote simply by o. 'I"

I g

g2 EB g2 BF
I j„ I j„

/Ebs Q, b /Ebs Qb
(20)

(As noted above the EB cross section is zero for E„(0.)
We also consider the sum over partial cross sections, and
denote it by o'", Thus,

th ~ th0 —~ 0 I j
Ix~x

(21)

We performed BF calculations for four reactions.
They are the Al(d, p) Al reaction with E =25.5 MeV,
the Ni(d, p) Ni reaction with E&=15 MeV (Refs. 10
and 11) and with E& =25.5 MeV, and finally the

Sm(a, t)' Eu reaction with E =80 MeV. ' All the

make much sense to apply such a description to a very
small E„region, where the level density is very low and
the S factor fluctuates strongly. Thus, we shall not at-
tempt in this paper to fit data at very low E„.

Even in the excitation region where states are still
discrete, we may still apply the present method, if the
density of the states is high. Some of the experimental
data we have picked up to analyze have been given in the
form of discrete state cross sections, and we shall fit these
data after averaging these cross sections over appropriate
energy bins.

III. APPLICATIONS

calculations were carried out by taking into account
finite-range effects exactly. Since our cross section for-
mulas use the prior-form interaction V, I ~

[see Eq. (10)],
it is indispensable to carry out finite-range calculations
exactly. ' The details of how we perform such calcula-
tions were given in Ref. 4.

The parameters involved in the present calculations are
mostly those of the optical potentials, and the values that
are used are summarized in Table I. As seen, those for
the (d,p) reactions were taken from Percy and Percy, '

while those for (a, t ) reactions were taken from Ref. 12.
On the other hand, the parameters used for the potentials
for x are those that were obtained by slightly modifying
those found in the literature, so that the energies of the
single-particle states become consistent with experiment.
(This is essentially the same as what is done in the well-
known separation energy method. ') As for W for
E (0, there is essentially no information available in the
literature. We fixed its value so that the widths of the
single-particle states are appropriately reproduced in the
E (0 region, and then increased linearly in the E )0
region untile E becomes sufTiciently high so that 8' is
known from optical-model analysis.

In fixing the wave function yb, we used the Hulthen-
type wave function when the projectile was d, while we
generated yb for the t psystem [need-ed in describing the
(a, t ) reaction] by assuming a Woods-Saxon potential be-
tween p and t with Vo=66.2 MeV, ao=0.67 fm, and
ro =1.2 fm. This potential reproduces the correct separa-
tion energy of 19.8 MeV. It also gives the zero-range
constant parameter of Do =309 MeV fm, which is very
close to that used in the usual zero-range calculations. '

TABLE I. Optical-model potential parameters.

Reaction (MeV) Particle (MeV) (fm) (fm)
W

(MeV)
ar

(fm) (fm)
WD

(MeV)
aD

(fm)

Al(d, p)

Ni{d,p)

' "Sm(o., t)

25.5

15.0

25.5

80.0

d

p
n

d
p
n

d

p
n

p

103.60
51.80
58.30
91.84
52.30
55.00
89.54
50.92
55.00

158.40
125.40
59.40

1.02
1.29
1.25
1.15
1.25
1.25
1.15
1.21
1.25
1.32
1.18
1.25

0.85
0.48
0.65
0.81
0.65
0.65
0.81
0.75
0.65
0.62
0.86
0.65

8.6

30.02
17.20
1 —3'

1.29

1.35
1.55
1.25

0.48

0.85
0.77
0.6S

11.82

2—9'
18.00
14.60
2—9
20.52
13.08
2—9

1.413

1.25
1.34
1.25
1.25
1.34
1.32
1.25

0.695

0.65
0.68
0.47
0.65
0.68
0.46
0.65

Spin-orbit parameters
Vs, ~so a so

"Al(d, p)
Ni(d, p)

'44Sm(a, t)

6.00
6;20
6.40

1.01
1.01
1.10

0.75
0.75
0.65

'WD =2.0, 9.0, for E„&0,) 6.0 MeV, and W&=2. 5+E, for O~E„~6 MeV.
WD =2.0, 5.5, and 9.0 MeV for E„&0.3, =0.3 and )0.3 MeV.

"W= 1.0, 3.0 for E ~ 2.7, )2.7 MeV.



39 BREAKUP-FUSION ANALYSES OF SINGLE-NUCLEON. . . 51

lOO

Al (d, p j

E& = 25.5 MeV

Bp=20

~ io

LLI

~b

1

20
Ep(MeV)

FIG. 1. Experimental and calculated energy spectra for the
Al(d, p) reaction at E& =25.5 Mev and 6 =20. The data

were taken from Ref. 9. The solid line includes all the contribu-
tions, while the dashed line includes only f7/2 p3/g and p, /2
contributions. The arrow shows the energy where E, =0.

I

IO

A. The Al(d, p ) Al reaction with Ez —25.5 MeU

We first consider the Al(d, p) Al reaction with
E& =25.5 MeV (Ref. 9) which is the reaction also con-
sidered in Ref. 6. In this reaction, we have a =d, b =p,
and x =n, and the energetics are given by E +E„=21.5
MeV (in c.m. ). The spectrum given in Ref. 9 shows a
bump at E =24.5 MeV (E„=—3 MeV) (see Fig. 1), and
in Ref. 6 we ascribed it to a resonance due to the f7/z
single-particle state. ' In Ref. 6, however, we neglected
the spin-orbit interaction (for x =n), and were forced to
subtract rather artificially the fs/~ strength in fitting the
calculated spectrum' to the data. We repeat here the
same calculation, but including the spin-orbit interaction
this time.

The result of the calculation is presented in Fig. 1

(solid line) and is compared with experiment. In present-
ing the theoretical cross section o'", an overall normali-
zation constant N=0.9 which is very close to 1 was used.
Also, in obtaining u'", we used 8, =2 MeV for E )21.5
MeV (i.e., for E„&0). The value of W„was then in-
creased linearly up to 9 MeV as E was decreased from
21 to 16 MeV. For E„&16 MeV (E„)5. 5 MeV), W„was
fixed to 9 MeV, which is the value determined from the
neutron elastic scattering data. '

As seen in Fig. 1, o'" fits the experimental cross section
o'" very well in both E )0 and E„(0regions, except at
two extremes of very high and low E ~ The highest E
region is not where we intend to apply the present
method; see the remark at the end of Sec. IIB. The

discrepancy seen in the lowest E region may simply be
attributed to higher-order processes (including compound
nuclear processes) that have not been taken into account
in the present calculation.

It is remarkable that the calculations reproduce the
resonance observed at E =24. 5 MeV very well. As
remarked above, this resonance was attributed in Ref. 6
to that of the f7/z single-particle state. According to the
present calculation, however, the peak actually consists
of many components, being dominated by the f7/p (at
E =24.3), p3/2 (at E =23.3 MeV), and pi/2 (at E =22
MeV) components. The dashed line shown in Fig. 1

represents the sum of the f7/p p3/2 and p&/2 contribu-
tions and it is indeed seen that the observed peak cross
section is dominated by these three. It is also remarkable
that now we do not need to artificially suppress the fs/2
contribution. The fs/2 strength has been shifted to
higher energies due to the presence of the spin-orbit in-
teraction. In this sense, the present calculation is much
more straightforward than that in Ref. 6.

B. The Ni(d, p) 'Ni reaction with Ez ——15 and 25.5 MeV

As the next example, we consider the Ni(d, p) Ni re-
action with the incident energy E& = 15 (Refs. 10 and 11)
and 25.5 MeV. We have again a =d, b =p, and x =n,
and in the c.m. they are E +E„=12.3 and 22.5 MeV, re-
spectively. .For the E& =15 MeV case, data were taken
by Fulmer and McCarthy' up to E„=6.5 MeV with
very high resolution. Thus, cross sections resulting in
about 40 individual final states were obtained and for all
these cross sections the DWBA analyses were done to ex-
tract the spectroscopic factors and the l, values. The re-
sults of these analyses and also the measured peak cross
sections were tabulated in Table II of Ref. 10.

For the E& = 15 MeV case, data were also taken of the
p-singles cross sections over a wide range of E
(E =5—19 MeV) including the breakup peak region.
Here we consider both sets of data. For the E&=25.5
MeV case, similar data are available and we also analyze
them.

1. Ez =15 MeVcase

In Figs. 2(a) —(c), using 1-MeV-step histograms we
present the measured peak cross sections separately for
(a) I, =0, (b) l„=-2, and (c) l„=4 transitions. The peak
angles of the l„=0, 2, and 4 cross sections are 8=9, 23',
and 37, respectively, and the spectra shown in Figs.
2(a) —(c) are those at these angles.

The solid lines shown in Fig. 2 are for the calculated
partial cross sections O. I"—o.'" &+0'" &, where o.'"

& and
rt ~n& ~n &' ~n&

o.'"
& are the cross sections with j, = l„+—,

' and~n&

j,&=I, ——,', respectively. The o.'"& and o.'"& are also~n& ~n&

presented separately in Fig. 2 by dashed lines. In calcu-
lating these cross sections, the strength of 8'„was fixed
at 2 MeV.

As seen in Fig. 2(b), the experimental l„=2 cross sec-
tions are rather well reproduced by our calculations. It is
also seen that our calculations explain the o."'. ","-. ;=,rved cross
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20r NiId, p) Ni

Fd = i5Mev
Bp= 9
3=0

(b)

p-25
3=2

Bp =57
Q=4

(c)

cL iQ
C~

C3

b
CV

q!.
6 4 2 6

E,„(Mev)

9v,

FIG. 2. Experimental and calculated partial cross sections
for the Ni(d, p) 'Ni reaction at Ed = 15 MeV, and (a) at 8p 9'
for l„=0, (b) at 8p =23' for l„=2, and (c) at 6p =37 for 1„=4.
The experimental data are given in the form of a histogram with
a 1 MeV bin in the range of 2 —6.5 MeV of the excitation energy.
The solid curves represent the sum of the j & and j cross sec-
tions where j, = l„—

2
and j, = l„+1. The dashed curves are

for partial cross sections with definite j values. The experimen-
tal data were taken from Ref. 10. (See text for the dotted histo-
gram shown for l„=0case. )

tion agrees rather well with these newly constructed
data. "

In Fig. 3, we present o''" at 6 =23 and compare it
with o." of Ref. 11 that ranges from E„&0to E„)0 re-
gions. In obtaining the o'", we used 8„=2 MeV for
Ez & 13 MeV (E„(0),but increased 8'„ linearly from 2
to 9 MeV as E decreased from 13 to 11 MeV. For
E (11MeV, 8' was fixed to 9 MeV, which is the value
determined from the analysis of the elastic scattering
data. ' The original data in Ref. 11 were taken with 0.5
MeV bins. In plotting the data in Fig. 3, however, we in-
creased the size of the bin to 1 MeV. We simply averaged
the cross sections of the successive bins in doing this.

The fit of o''" to 0'" is good. It is remarkable that the
broad peak observed at E =13.7 MeV (E,„=5.3 MeV) is
well reproduced in the calculation. This peak is due to
the d3/2 state discussed above. On the other hand, we see
a discrepancy for E =16 MeV (E,„=3 MeV) where we
achieved good fit to data in Fig. 2(b). This discrepancy
has been caused by an unfortunate inconsistency between
the data of Refs. 10 and 11. In Fig. 3 we see a dip at
E =16 MeV which corresponds to E,„=3.0 MeV. In
Fig. 2(b), however, we see a d~zz peak there.

section in the E„=2.0—4.5 MeV region as essentially
due to the d~/2 contributions, and that in the E„)4.5
MeV region as due to the d3/p contributions. It is
worthwhile to remark that the l„=2 states for E„~4.4
MeV were identified as d»2 states, from an experiment
which measured asymmetry. ' The result of the present
analysis is in line with this experimental information.

Previously the position of the d3/2 states was not
known. The good fit of the calculated d3/2 cross section
to the data for E„=4.5 —6.5 MeV will permit us to con-
clude that the l, =2 strength in this region is, in fact, due
to the d 3 /2 state. The centroid of the d 3/2 state is deter-
mined as 5.5 MeV.

It is notable that the width 1,&2 (=2.2 MeV) of a5&2
turned out to be larger than the width I »2 (=1.7 MeV)
of 0 3/p As seen in Fig. 2(b), to have this inequality
I 5/p ) I 3/2 was vital in obtaining the good fit to the data
there. We want to emphasize that the curve in Fig. 2(b)
was obtained as a'result of the straightforward BF calcu-
lations that used formulas of Sec. II A, and that the I »2
and I 3/2 values quoted above were simply read oA' from
this curve.

Let us now tun to the l, =0 and 4 cross sections. -The
fit of the calculated cross section to the experimental data
is fairly good, but is not as good as it was with the I, =2
case. This may have been caused partially by a less accu-
rate determination of the experimental strength for these
cross sections. In any case the l, =4 transitions are very
weak (for the incident energy considered here). It also
appears that there is an experimetnal difhculty in separat-
ing the l„=O transitions from the l, =2 transitions. For
instance, the transition to the -4.1 MeV state was as-
signed as that of l„=2 in Ref. 10, but as that of l„=0 in
Ref. 17. The dotted line shown in Fig. 2(a) is the experi-
mental l„=O cross section obtained when the above tran-
sition is assigned as that of l„=O. Our l, =0 cross sec-

2. Ed =25.5 MeVcase
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FIG. 3. Experimental and calculated energy spectrum for the
'-Ni(d, p) Ni reaction at Ed=15 MeV and 6 =23'. The data

are taken from Ref. 11. The arrow shows the energy where
E„=0.

In Fig. 4 a similar analysis as done in Fig. 3 for the
Ed =15 MeV case is extended to the Ed =25.5 MeV case.
We used the same W„(as a function of E,„) as used for
Fig. 3. As seen, the At of o'" to o." is very good. Note
that in the calculated spectrum for Ed=15.0 MeV (see
Fig. 3), we observed a dip at E = 15 MeV that corre-
sponds to E„=4.5 MeV. Such a dip, however, does not
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IO 5FIG. 4. Experimental and calculated energy spectrum for the
Ni(d, p ) 'Ni reaction at Ed =25.5 Me V and 8 =20 . . The data

are taken from Ref. 9. The arrow shows the energy where
E„=0.

appear at Ed =25.5 MeV. This resulted because the rela-
tive importance of the l=4 cross section has increased.

E „(MeV)

FIG. 5. Experimental and calculated energy spectra for the
'" Sm(a, t )' 'Eu reaction at E =80 MeV and 8, =4 . The solid
line represents the total theoretical cross section. The dotted
lines represent the f7/2 /l9/p and i,3/2 partial cross sections,
while the dot-dashed line represents their sum. The data were
taken from Ref. 12. The arrow shows the energy where E~ =0.

C. The ' Sm(a, t)' Ku reaction with E =SO MeV

As a final example, we take the ' Sm(a, t)'" Eu reac-
tion with E =80 MeV, the data being provided by Gales
et al. ' In the case of this reaction, we have a =a, b =t,
and x =p, and in the c.m. , E, +E„=58.0 MeV. In the
measured triton spectra, two broad bumps were observed
in the continuum (E =E~ )0) region at E,„=5.9 and
7.6 MeV. (E,„=3.4 MeV corresponds to E =0.) By first
subtracting the background components, Gales, et al. '

extracted the resonance cross sections, and determined
the widths of the resonances at E,„=5.9 and 7.6 MeV as
1.2 and 4.0 MeV, respectively. The DWBA analysis of
the cross sections was also done' by using Gamov func-
tions' as form factors for the unbound proton. The re-
sult of the analysis showed that the peaks at 5.9 and 7.6
MeV were those of the h9/2 and i, 3/2 single-particle
states, respectively.

In Fig. 5, we present our cr'" calculated at t) =4 (solid
line) and compare it with o'" . ' There, we also present
by dotted lines the f5/2 /19/p and i &3 p/partial cross sec-
tions. In obtaining these cross sections, we used 8 =1
MeV for E,„&6.0 MeV (Ez & 2.7 MeV), and W =3 MeV
for E„)6.0 MeV. In plotting the theoretical cross sec-
tions, we introduced a normalization factor of %=0.8,
which is again sufficiently close to 1. It is remarkable

that the observed spectrum, including the bumps are well
reproduced by the calculation.

It is seen in Fig. 5, that the observed resonance at
E„=5.7 MeV is explained essentially in terms of the sum
of the h9/2 and f7/p partial cross sections, both contrib-
uting almost equally with about the same positions of the
peaks. Note that in Ref. 12, the centroid of the f7/z state
was located at E„=4.3 MeV, which is lower than 5.5
MeV located in the present calculation.

In the analysis of Ref. 12, it was concluded that 43% of
the total f, /2 strength was in the region of E,„=2—9
MeV, while 75% of the h»2 strength was in the
E,„=3—12 MeV region. According to the present calcu-
lation shown in Fig. 5, however, their full strengths
should be found in these regions.

These different conclusions about the transition
strengths were drawn, because there is a difference in
handling the background in Ref. 12 and here. In Ref. 12,
part of the observed cross section was somewhat arbi-
trarily assigned as the background (which amounted to
about a quarter of the observed cross section at E„=5.7
MeV). With our calculations, on other hand, no corre-
sponding subtraction was done and the cross section
which may be called the background cross section (the
sum of the EB plus the BF partial cross sections other
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FIG. 6. Experimental and calculated angular distributions
for the ' Sm(u, t)' Eu reaction at E =80 MeV and E,„=5.6
MeV. The experimental data plotted are an average of the cross
section over E,„=5—6 MeV. The data were taken from Ref. 12.

than from f&/z, h9/2, and i &3/Q states) turns out to be only
5% of the observed cross section (at E„.„=5.7 MeV).
Note that the calculated EB cross section was found to be
extremely small, being less than 1% (at E,„=5.7 MeV)
even including the Coulomb breakup. This is due to the
efFect of Coulomb repulsion upon the emitted protons.

The analysis of Ref. 12 assigned the broad bump ob-
served at E„=7.6 MeV to the resonance of the ii3/2
state. The present calculation predicted a broad reso-
nance shaped ii3/2 cross section, with its peak located at
E,„=7.5 MeV, agreeing with the assignment made in
Ref. 12. Our calculation predicted the width to be about
4.0 MeV, which again agrees with what was extracted in
Ref. 12. In Ref. 12, however, only about 54% of the to-
tal E i 3/2 strength was assigned in the E„=2 —12 MeV re-
gion, while the present calculation located about 95% of
the total strength in this region. The difference again
originates from the way the background is handled. The
background cross section was found in the present calcu-
lations to be 30% of the total o'" at the peak region
(E„,=7.6 MeV), while in Ref. 12 50% of the measured
cross section was assigned to the background.

In Fig. 6, we present an example of fitting the angular
distribution. As seen, the calculated angular distribution
(at E,„=5.S MeV) agrees very well with the data' . A

similarly good fit to the observed angular distribution was
obtained in Ref. 12.

IV. CONCLUDING RFMARKS

The breakup-fusion description was applied to calcu-
late spectra of the Al(d, p), Ni(d, p), and ' Sm(a, p)
reactions leading to both bound (E„(0) and unbound
(E )0) regions, where E„ is the energy of the stripped
particle [neutron for the (d,p) reaction and proton for the
(cz, t ) reactionj. We showed that the calculated spectra fit
the data in both regions very nicely.

It was also demonstrated that our BF method can be
used for obtaining information about high-lying single-
particle states. In fact, we were able to locate the f7/2
state in Al, the 13/p state in Ni and the f7/2, h9/2 and
l i 3 states in ' Eu. Note that these single-particle states
in ' Eu are all in the continuum region.

As we stressed in the Introduction, the application of
our BF description has largely been concentrated on h
and o; induced reactions, and thus the present work is re-
garded as the first detailed application of our method to
the analysis of the (d,p) reactions. In this sense, it is
rather pleasing to find that our method works rather well
not only for the E„(0region (which is new in this pa-
per), but also for the E„&0 region, where the application
of our BF formula is much more straightforward.

Actually there has been a reason why we have been
somewhat hesitant in the past in performing a BF
analysis of the (d,p) data, the reason being the lack of
sufficient knowledge about the neutron potential to be
used when E, was rather close to zero. In the present
work, however, it has become possible to perform a con-
sistent analysis of data with E, & 0. The approach that we
took was to perform the analysis of the E, &0 data first,
which permitted us to fix the neutron potential rather
severely, because it must let several single-particle states
be located at the right energies. We then used the same
potential also for the E, )0 region, and it became possi-
ble to perform the BF calculation there with a rather
high confidence. The fact that we were able to fit several
(d,p) data with normalization factor X very close to unity
(iV=0. 8 —0.9) may be regarded as an a posteriori
confirmation of the validity of our method to describe the
(d,p) reactions in the BF way.

Regarding the ' Sm( t )o
' Eu reaction, we have com-

pared our analysis with that in Ref. 12, which utilized the
standard DWBA method in the E )0 region. In princi-
ple, there is nothing wrong in doing this, but it appears
that this method encounters in practice a difficulty in
handling the weak contributions from nonresonant par-
tial waves. Because of this, the authors of Ref. 12 were
forced to make an arbitrary subtraction of the back-
ground. With our approach, however, the background-
like and the resonancelike partial waves are treated on a
completely equal footing, thus leaving essentially no
room for ambiguity of the calculations due to subtrac-
tion. We thus believe that the spectroscopic information
extracted in our way can be taken rather seriously.

The method of using an optical potential to describe
bound particles, as in this paper, may be extended to de-
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scribe other reactions as well. Consider, for instarice, an
inelastic excitation of a target nucleon from an occupied
orbit to an unoccupied orbit. We may describe the final
(single-particle) states by means of the optical-model po-
tential. This means that a unified description of inelastic
excitations into the bound and unbound orbit is possible.
The inelastic excitations into unbound orbits were suc-
cessfully described as a knockout-fusion process. ' This

process can now be extended to describe inelastic excita-
tions into bound orbits as well.
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