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A separable approximation T' ' to the two-body T matrix of the form (kT' '(E)k')
=(kVk')+g, , (kVI, (E))(1—y, ) '(1,(E)Vk') is examined, where Vis the Reid soft core po-
tential, I, are the Weinberg eigenstates of the operator Go(E) V for positive energy E, and y, (E) are
the corresponding discrete complex eigenvalues. General projection techniques which improve the
convergence of the sum above are considered. For the triplet state a nonlocal potential U is defined
which in the l =0 channel represents the effect of the tensor coupling to the l =2 channel. It is
found that the presence of U in the triplet state is responsible for the increased number of terms
needed in the separable representation of T, as compared to the representation in the singlet state,
where U is absent. The effect of U is largest for momenta less than 1 or 2 fm

I. INTRODUCTION

There is a long-standing puzzle concerning the number
of terms needed for the separable approximation to the
two-body scattering T operator. For uncoupled states,
such as the singlet 'So, a rank of order 4 is sufficient to
reach good accuracy, but for the coupled states, such as
the S, - D„a rank twice as large is required. ' Why is
this so?

The purpose of this paper is to compare the potentials
in both states as far as the separable expansion properties
are concerned. The analysis is made in terms of positive-
energy Weinberg states. The advantage of these states is
that they provide a natural separable representation of
the Green's functions Gz which are distorted by a poten-
tial V, which is valid both for a single or a coupled-
channel situation. These Green's functions occur in the
expression for the T operator

T(E)= V+ VGv(E) V

and also in the expression for the potential U which
represents the eff'ect of coupling -of a channel space Q to a
channel space P

Up~(E) Vt, g Gv(~~(E) Vgp . (1.2)

Another useful property of the Weinberg state formalism
is that the Weinberg eigenvalues y, which correspond to
a potential V are dimensionless quantities which provide
a measure of the strength of the potential at the energy E.
The method is thus suitable to provide a comparison of
the strengths of the potentials in the singlet and triplet
nucleon-nucleon states. Another purpose is to examine
the accuracy of the expansion of VG~ V. In the case that
the potentials are of a Woods-Saxon or Gaussian-type the
positive energy Weinberg state expansion converges quite
rapidly, ' but in the presence of repulsive cores the accu-
racy properties are as yet unknown.

There is a rich literature in the field of separable ap-
proximations to the nucleon-nucleon T operator or poten-
tials. ' One of the most popular representations is that

The Weinberg states ~I, ) are eigenfunctions of the
operator Go V and the corresponding eigenvalues y,

G„(E)Vil,(E))=y, (E)~I,(E)) . (2.1)

Near the origin these functions are regular, and asymp-
totically they are determined by the properties of Go, the

of the Graz group. It is based on the Ernst, Shakin, and
Thaler (EST) method, even though the latter is not
without difficulties, and uses analytic expressions for the
form factors. An interesting generalization of the EST
method to energy-dependent potentials has been given by
Pearee. A subtraction technique of the Noyes-
Kowalsky —type has been introduced by the Bonn group'
so that the separable part of the approximation to the l
operator is of rank 1. Positive-energy Weinberg states
have been used in the past for Hulthen, Yukawa '"
square well, ' Woods-Saxon, ' ' and Gaussian poten-
tials, but probably because of the computational
difficulty of treating complex eigenvalues and because the
eigenvectors and form factors are energy dependent, their
use is not widespread. Negative-energy Weinberg states
have been used extensively, ' ' as well as Gamow
states.

The methods based on Weinberg or Gamow stats give
rise to form factors which are numerical rather than ana-
lytic, but they can be cast into analytical form through
the use of Pade approximants. Variational methods
have also been employed, ' in which case the form fac-
tors are analytical.

In Sec. II of this paper the formalism of the representa-
tion of T in terms of positive-energy Weinberg states in
the full channel space is described and some pertinent
properties of the T operator are given. Numerical appli-
cations to the nucleon-nucleon singi=t and triplet states
using the Reid soft core potential are presented in Sec.
III. In particular, the effective potential which represents
the effect of the tensor coupling between the l=O and 2
channels is obtained. Section IV contains a summary and
general discussion.

II. FORMALISM
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free Green's function. In the present application Gp is
asymptotically outgoing, and therefore the Weinberg
states also have the same property. In the radial region
where V&0 the functions ll, ) have more and more
nodes as s increases. This follows from the fact that
V/y, are the potentials in the Schrodinger equation
which the

l 1, ) obey. The larger the value of s, the small-
er is the value of y„ the larger is the corresponding po-
tential V/y„and hence the more nodes the l1, ) have in
the region where V is not zero. The quantities y, are di-
mensionless complex quantities such that V/y, has the
appropriate "emissive" property which enables the lI, )
to be outgoing asymptotically. If V is purely attractive
then y, is positive. If V has a repulsive component then
some of the y's have negative real parts.

In the coupled-channel case Eq. (2.1) reads lx(Q) ) — y v
l

r(Q) )
m'EQ

(2.10)

where & ) indicates integration from 0 to ~ without
complex conjugation of any of the functions in the in-
tegral. According to this definition, the magnitude of I
is roughly proportional to (y, )' . This is difFerent from
the use of some other authors, who define Sturmian func-
tions X, which are equal to X, /( y, )'

In order to define the polarization potentials U one also
needs the Weinberg states

l
I'g') which are defined in the

restricted channel space Q, i.e., m EQ. These functions
obey the analog of Eq. (2.2) where, however, n and n' are
restricted to channel space Q. The corresponding chan-
nel Green's function G„'~' is given by the analog of Eq.
(2.6) with 1 and y replaced by I'~' and y'~), respectively.
The functions X'~' are given by

g G, (E, ) v.„ I r„,, (E) & =y, (E) r„,(E)&,
n =1

(2.2) where n is not restricted to belong to Q space. The polar-
ization potentials U„„.(E) are then given by

where the E„'s are the channel energies and Go„(E„)are
the corresponding free Green's functions distorted only
by the centripetal part of the potential for the angular
momentum I„which corresponds to channel n and
lI „,(E)) is the component of lI, ) in each channel n.
The incident wave is assumed to be contained in channel
1 and Tni represents the transition from channel 1 to
channel n. The channel coupling generalization of the
equation T = V+ VGpTis

U„„,(E)= y lxIp)),
,

&XI()l .nn ns
1 (Q)

(2.11)

V", '= V, +U11 11 11 (2.12)

In the triplet nucleon-nucleon case discussed below,
the P space is chosen to represent the l=0 channel (n = 1)
and the Q space contains only the l=2 channel (n=2). If
one defines the P-space potential

V

T„)(E)= V„i+ g V„„GO„(E„)T„,(E)
n'=1

(2.3)
then one can define the P-space Weinberg states

l I,' ') as
being the eigenfunctions of Gp V' '

whose solution is given by

T„,(E)= V„) g V„„G„„-(E)V„,(E) (2.4)

Go (E )VI))lrI;)(E))&=y",)(E )lrI;)(E))&,

and one obtains for T the expression

T11=V11+ U11+R11

(2.13)

(2.14)

which is also written as

T„i= Vn1+Rn1 . (2.5)

G„„,(E)= y lr„,(E)&,
yS

(2.6)

As a consequence the term R defined in Eq. (2.5) is given
by

R„,

=calx„,

&

' &x„l,
1 —y,

(2.7)

where the form-factors X are given by
N

lx„, &= g v„„,lr„., & .
n'=1

J

The normalization of the I"s is defined by

(2.8)

Here Vn„are the potentials which couple channel n to n'
and G„„. are the distorted channel Green's functions
which contain the effect of all potentials. It can be
shown' that these functions are given in terms of Wein-
berg states as

with

1R", ,
'= y(v„+U„)lrI;))

1

x&r",, 'l(v„+U„) . (2.15)

V„„(r)6(r,r') = g X„,(r) X„,(r'),1

S ys
(2.16)

The quantities R11 and R'11' differ in that the Weinberg
states and eigenvalues required for the expression (2.7)
are defined in the whole channel space, while the corre-
sponding quantities for R ' ' are defined in the restricted
P space, which in the presence case contains only the l= 0
channel.

If the sum over s in Eq. (2.7) is cutoff'at a finite number
S then one obtains a rank S separable representation of
R„„orequivalently of (T-V)„„and similarly for the ex-
pression (2.11) for U. The quantities T Vand U are both-
nonlocal, and hence separable representations are likely
to be useful. The potentials V can also be represented
b ''"

y &x„,r„,, ) =),li„, , (2.9) which follows from the completeness of the Weinberg
states in the region of the potentials. Since V is local,
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this expansion is not expected to converge as rapidly as
the expansion for R, and the resulting alternate expres-
sion for T,

1
ni X ns (I )

1s
ys ys

(2.17)

f„(z)=zj( (z), z =kr .
n

(2.19)

The momentum representation of T and V is defined ac-
cordingly as follows. If Q„,(r, r') is a general quantity,
then the momentum representation of Q is

(kQ„)k') —= J f„(kr)Q„1(r,r')f 1(k'r')dr dr' . (2.20)
0

Accordingly, the dimension of the momentum represen-
tation of V or T is energyXlength, which differs from
definitions given more commonly which use, for f„, an
expression similar to Eq. (2.19) divided by k. The result-
ing dimension for V or T is energy X (length) .

III. NUMERICAL RESULTS

The numerical evaluation of the eigenfunctions I and
eigenvalues y is performed by expanding the I 's in terms
of a set of basis states P„., j = 1,2, . . . , M, defined in each
channel n. These functions are denoted as "primitives, "
and they are defined as

P„(r) (x f„(K„.r), (3.1)

where the f's are defined in Eq. (2.19) and the K's are
complex wave numbers defined such that at a matching
radius R the logarithmic derivatives of the P„s are equal
to the logarithmic derivatives of outgoing Hankel func-
tions which correspond to the energy and angular
momentum of the scattered particle in channel n. In the
same channel these functions are orthogonal in the radial
range from 0 to R. They are normalized as described in
previous work. ' ' The real parts of K„are such that
as j increases by one unit the corresponding p„acquires
one additional node in the interval 0 to R.

The expansion of the I 's in terms of the P's is

)(M) —y (M)
~y ) (3.2)

Expansion (3.2) is essentially a momentum representation
in discrete complex momentum space. ' The sum over j
is truncated at the upper limit M, and hence it represents
an approximation to the functions I, as well as to the
other quantities such as the y's, X's, and T's. The
coefficients c' ' are the eigenvectors of the matrix V'
whose elements are defined by

(V' ')„~ „~ =I P„J(r)V„„.(r)P„., (r) dr, (3.3)
0

is not expected to converge as well either.
The momentum representation of the various quanti-

ties defined above is obtained in terms of the form factors

X„,(k) = (k„~X„,) =—J f„(kr)X„,(r)dr, (2. lg)
0

where the functions f„are defined in terms of the spheri-
cal Bessel functions j&(z) as

and the corresponding eigenvalues y' ' are M approxi-
mants to the Weinberg eigenvalues y.

In the numerical applications described below, approx-
imations to the integrals in Eq. (3.3) are obtained by set-
ting the upper limit R to ~,

(3.4)

This enables one to use analytic expressions for the re-
sulting definite integrals and also to include the effect of
the potential tail beyond R. In the case of the Reid soft
core (RSC) potentials these expressions are obtained by
extending the results given by Haftel and Tabakin to
the complex momentum space, as is described in Appen-
dices A and B. A discussion of the numerical accuracy is
given in Appendix C.

The nucleon-nucleon potentials have strong repulsive
cores, which generate substantial Fourier components for
large momenta. As a result the Weinberg eigenfunctions
also have large momentum components, which in turn re-
quires that the upper limit M in the summation over s in
Eq. (3.2) be quite large, of the order of 50—80. This is
shown in Table I which illustrates the convergence with
M of the momentum representation of T for the triplet
case. For a matching radius of R=15 fm a value of
M=75 is needed to achieve stability in the third
significant figure, while for R=7.5 approximately half as
large a M value is required. This is not unreasonable,
since a few expansion functions should have more than
one node in the region of the repulsive core, which ex-
tends to about 0.5 fm. For R=15 fm the value of j for
which the first zero of (I)) occurs at 0.5 fm is equal to 30.
Hence, a value of M twice as large is not unexpected. For
j=30 the real part of the wave function K1 equals 6.2
fm '. Hence, a value of K twice as large is still expected
to play a role, and the momentum representation of V or
of T for k=15 fm ' is also expected to be non-negligible.
This is indeed found to be the case, as is illustrated in
Figs. 1—3. Most of this effect is due to the contribution
from the repulsive core, whose effect is illustrated by the
dash-dotted lines in Figs. 1—3. The repulsive core part of
the potential is obtained by replacing the central, spin-
orbit, and tensor parts of the RSC potential by one Yu-
kawa term, respectively, so that for small values of the
radial distance r each such terms equals the correspond-
ing full potential to order r ' and r . Further details are
given in Appendix A.

The core part of the potential also has a large effect on
the eigenvalues, as can be seen from Table II. In this
table the negative values of y are separated from the posi-
tive ones. The results for the core part of the potential
for the triplet state are also shown. One sees that the
latter are entirely negative, and their values are in close
correspondence with the negative values of y for the full
triplet potential. For the singlet potential neither the
negative nor the positive eigenvalues are as large in mag-
nitude as the corresponding values for the triplet poten-
tial (in fact, they are smaller by about a factor of 2). But
this result cannot directly be interpreted as evidence that
the triplet potential is larger than the singlet one, since
the matrices V™which define the eigenvalues are not of
the same dimension. For M=50, for example, the size of
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TABLE I. (k'~TI~ '~k &' as a function of M.

R'=15 fm, E=5 MeV

35
45
55
65
75

Re
5.027
5.315
5.466
5.501
5.504

(o.s~r'„, '~o. s&
Im

.
—25.18
—25.09
—25.04
—25.02
—25.02

&o. s~ T(™~4. s &

Re Im
—9.30 62.88

—10.44 65.00
—10.94 65.50
—11.04 65.52
—11.05 65.52

Re
238.7
233.3
234.7
235.0
235.1

&3.5IT„l4.s&
Im

—163.9
—171.3
—172.6
—172.6
—172.6

M
45
55
65
75

Re
1.256
1.261
1.261
1.262

&o.sIT'„, 'lo. s &

Im
—1.455
—1.429
—1.424
—1.422

&o. sir„, 'l4. 5&

Re Im
—10.01 3.834
—10.13 3.804
—10.13 3.796
—10.14 3.791

(3.5/T' 'f4 5&

Re Im
9.997 172.9
8.782 174.3
8.553 174.5
8.488 174.4

M
20
35
45
55

Re
5.189
5.508
5.486
5.512

& o. sir~„ lo. s &

Im
—25 ~ 10
—24.99
—24.94
—24.96

R=7.5 fm, E=5 MeV

&o. slT, ", 14.5&

Re Im
—9.93 63.94

—11.02 65.28
—11.02 65.28
—11.09 65.24

Re
232.8
234.4
234.6
234.3

(3 sl T '14. s &

Im
—167.1
—170.9
—171.0
—170.6

M
20
35
45
55

Re
1.251
1.261
1.266
1.264

(o.sir„ lo. s &

Im
—1.453
—1.399
—1.410
—1.401

&o. sir' '14. 5&

Re Im
—9.77 3.693

—10.05 3.644
—10.09 3.648
—10.05 3.633

(3 5IT 14.5&
Re Im

11.802 169.0
9.163 172.8
9.103 173.0
9.364 172.7

'The values of the momenta k' and k are in fm '; the value of (k'~ T~k & is in MeV fm. The center-of-
mass energy is 5 MeV. The momentum representation is defined in Eq. (2.20).
M is the size of the space of the primitive functions P.

'R is the radius where the boundary condition is imposed on the Sturmian primitive functions.

the matrix for the triplet case is 100X100 while for the
singlet case it is 50 X 50.

In order to compare the strengths of the singlet and
triplet potentials it is necessary to first project the triplet
potential onto the l=0 channel. This is accomplished by
introducing the polarization potential U» which
represents the effect of the coupling to the 1=2 channel.
The result is shown in Table III. The column for V»
lists the eigenvalues for the central part of the triplet po-
tential in the absence of coupling to the l=2 channel.
These eigenvalues are considerably larger than the ones
for the singlet potential, indicating that the former is
significantly larger than the latter. When U» is added to
V» the eigenvalues become less negative, which shows
that the effect of the tensor coupling to the 1=2 channel
has an attractive effect in the l=0 channel. This is to be
expected since without the tensor coupling the deuteron
would not be bound. The eigenvalues of V»+ U» are
still somewhat larger than those for the singlet state. The
difference is not very large, however: in both cases only
three eigenvalues lie outside or near the unit circle. Also,
the convergence of the corresponding R terms, i.e., R for
the S state, Eq. (2.7), and R' ' for the triplet state, Eq.

(2.15), is approximately the same, with three or four
terms needed in order to achieve an accuracy of 1%. Ac-
cording to Eq. (2.14) the representation of T» also re-
quires the evaluation of U». The latter is represented by
Eq. (2.11) for which the sum over s converges much more
slowly than the sums for the terms R discussed above, as
is shown below. Thus, the presence of the tensor cou-
pling is identified as the main reason why the separable
representation of the T matrix for the triplet state re-
quires considerably more terms than that for the singlet
state.

The relative importance of the terms V», U», and
R

& ] is described in Table IV. For low momenta such as
0.5 fm ', the three terms are comparable and they cancel
each other so that their sum, T, is an order of magnitude
smaller than V. For larger momenta U becomes small
compared to V or R. The number of terms required in
the sums over s for the various terms in order to achieve
stability in the third significant figure is indicated in the
table. That number is largest for U. As the relative im-
portance of U decreases, the number of terms needed to
calculate T also decreases. In Fig. 4 the rate of conver-
gence of the sums over s required to obtain T is illustrat-
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I three-body problems which use as input the two-body T
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~ ~
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' d, 11 d R makes only a small contribution

to the three-body results in the cases which have been ex-
amined t us ar.h f ' These cases do not include explicit y
the effect of the tensor coupling, and a study of R un er
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APPENDIX A: THE CORK PART
OF THE REID SOFT CORE POTENTIAL

Y, (m, x) =exp( —mx)/x,

Y2(m, x)=(m/x+1/x )Y, (m, x),
Y (m x)=(m +3m/x+3/x )Y, (m, x),3 7

(A1)

(A2)

(A3)

where x is related to the radial distance r by

(A4)

=,0 7 f '. The central and spin-orbitand where x=, . m
parts of the Reid soft core potential for the triplet case
are given by

6

Vc(r)= g A (m)Y, (m, x),
m =1

(A5) .

The Reid potential is composed of a central, spin-
orbit, and tensor part, which in turn are given as a com-
bination of three types of functions:
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TABLE II. Weinberg eigenvalues, yz, F.= 5 MeV, R = 15 fm, M=75.

'S, -'D,
Full potential

Im

So
Full potential

Re

Si- D1
Core potential

Im
S

1

2
3
5

6
8

9
10
11
13

7
12
14
16
18

—27.02
—5.65
—2.66
—1.15
—0.84
—0.42
—0.24
—0.20
—0.12
—0.07

1.13
0.26
0.12
0.07
0.04
0.03

—2.32
—0.18
—0.09
—0.05
—0.06
—0.07
—0.02
—0.00
—0.01
—0.01

0.35
0.05
0.02
0.01
0.01
0.00

—14.91
—1.86
—0.19

0.77
0.11
0.04
0.02
0.01
0.01

—0.96
—0.04

0.00

0.38
0.03
0.01
0.01
0.00
0.00

S

1

2
3

5

6
7
8

9
10

—28.73
—6.06
—3.19
—1.81
—0.97
—0.55
—0.32
—0.16
—0.12
—0.04

—2.94
—0.30
—0.16
—0.00
—0.06
—0.00
—0.02
—0.00
—0.00
—0.00

6

Vso(r) = g 8 (m) Y, (m, x),
m=4

(A6) APPENDIX 8: ANALYTIC INTKGRALS
FOR COMPLEX WAVE NUMBERS

and the tensor part is of the form

Vz(r)= g . C(m) Y, (m, x)+ G[ Y3(l,x)—3 Yz(4, x)],

(A7)

where A (m), 8 (m), C(m), and G are constants given by
Reid and I assumes integer values from 1 to 6.

In the limit in which mx &( 1 the exponential in

Y, (m, x) can be expanded in a power series in x, and the
terms in the various potentials can be regrouped in
powers of x ', x, and x. These terms can be reex-
pressed in the form A (A, )Y&(k, x) and by, in turn, ex-
panding the exponential in Yi(A, , x) and identifying
coefficients of x ' and x, one obtains the value of A (X)
and k. No problems arise in the tensor term since in the
term in square brackets the powers of x and x can-
cel exactly. One obtains

V,'"=~,(z, )Y, (z„x), i=c, SO, r,
where the values of 3; and k; are given in Table VI.

The evaluation of integrals of the type

f fI (K2r)r 'exp( A, 'r)fL (Kir—)dr

=I~~"~ (K~, A.,K, ) (Bl)

i =1,2, 3 . (B3)

The function Y, have been defined in Eqs. (Al) —(A3).
The notation is similar to that of Haftel and Tabakin,

will be described in this appendix. The functions f are
defined in Eq. (2.19) and the wave numbers Ki and Kz
can be complex provided that the integral exists, i.e., if

(Im(K' ))+ [Im(K', )[ (A, ' .

By expressing the wave numbers Kz, K&, and the decay
length A.

' in units of i~ [see Eq. (A4)], K, =K,'!v (i = 1,2)
and A, =X'/K, the integral above becomes the i =1 version
of the general type of integrals discussed in this appendix:

IL"i (K2, A, ,K, )=f fL (K2x)Y;(A, , x)fr (K,x)dx,

TABLE III. Weinberg eigenvalues y, in the space I=O for E=5 MeV.

3 3Si- Dl
'S, Vl 1 + Ul l

Re
—14.91
—1.86

0.77
—0.19

0.11
0.04

Im
—0.96
—0.04

0.38
0.00
0.03
0.01

Re
—26.00
—4.19
—0.76

0.32
—0.12

0.04

Irn
—2.25
—0.22
—0.01

0.15
—0.00

0.01

Re
—20.90
—1.81

1.15
0.14
0.10

—0.10

Irn
—1 44
—0.02

0.63
0.01
0.03
0.00
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E,

X Real

TABLE IV. Relative importance of terms U and R.'

5 MeV
(o.s ix„ io. s)'

Im

50 MeV

Im

V
U
R

70.14
—42.48
—21.83

5.47

11
4

12

0
—0.08

—24.96
—25.04

V
U
R
T

70.14
—48.71
—33.07
—11.64

12
5

12

—8.16
—4.50

—12.66

X Real
(o.six„ i4. s)'

Real

V
U

T

489.3
—78.43

—421.8
—10.94

9
6

12

0
0.01

65.49
65.50

489.3
—77.17

—396.89
15.30

8
6

10

0.72
28.76
29.48

X Real Im Real Im

V
U
R
T

2953
—471.87

—2247
234.70

0
0.045

—172.6
—172.59

V
U
R
T

2953
—473.9

—2333
145.8

—0.10
—110.8
—110.9

'The terms U and R are defined in Eqs. {2.11) and (2.15). The value of T is given by the sum of the two
results. The momentum representation is defined in Eq. (2.20). The number of terms in the real part of
the sums (2.11), (2.15), and (2.14) needed to achieve stability in the third significant figure for the
momentum representation of U, R, and T, respectively, is denoted by S. The matching radius R is 15
fm. The number of primitives is M= 55.
X denotes either one of the quantities V, U, R, or T; the numbers indicate the values of the momenta k

and k' in units of fm, the result ( k ~X~ k') is in units of MeV fm. Only the channel-1 to channel-1 transi- '

tions are included in this table.

ILI'(K2, A, ,K, ) = —,
'

QL (z),
where

z =(Ki+K2+A, )/(2KiK~), (8s)

I (K2o~~A)Ki )= I 6Ki /K~+K2 [3A 3K i +K]2Q(o)z

where

+ 3i kK, K2 lnz2 I /4, (86)

z~=[(X+iK2) +K, ]/[(k iK2) +K, ]— (87)

and the Q's are the Legendre functions of the second
kind. Equation (86) replaces Eq. (A8) in Ref. 27, other-
wise all other equations remain the same.

The procedure to arrive at the results above consists in
decomposing the integrals I for low values of L in terms
of exponential integrals of the type

f x "exp(Ax)dx =E "+'E„(eA),
0

with the exception that the integrals I defined in that
reference have to be multiplied by the factor E, XK2 in
order to become equal to the I' s defined here.

The recursion relations between the I's for various L
values, given in Ref. 27, are still valid for the case that
the wave numers K are complex, but the values for spe-
cial cases of L, needed to obtain the results for general L,
have to be revised. The results needed are as follows:

where E„(z) is defined in Ref. 33 and A is A. +iK, +K&.
By making use of the recursion relations between E, for
various values of n, and by taking the appropriate limit
for c—+0, explicit expressions for Ioo I22 and I2O' were
obtained. The first two of these results served to verify
the validity of Eq. (84). In the limit that the wave num-
bers are real, Eq. (86) agrees with Eq. (A8) of Ref. 27. A
further check consisted in calculating the integrals

I fI (K', r)V (r)fL (K2r)dr

for the Reid potentials defined in Eqs. (AS)—(A7) with
X =C, SO, or T for the 5& - D

&
case numerically on a ra-

dial mesh from r=0 to A=15 fm with complex wave
numbers K', and Kz, and comparing the result with the
analytical expressions developed in this appendix. Excel-
lent agreement between the two methods was obtained.

APPENDIX C: NUMERICAL INFORMATION

The calculation is performed on an IBM 3084K at the
University of Connecticut Computing Center in double
precision. The eigenvalues and eigenvectors are obtained
by the EICOS CC subroutine from the International
Mathematical and Statistical Libraries (IMSL) Library,
in double precision, and the solution of algebraic equa-
tions is performed by LEQ2C also from IMSL. A run
which calculates the representations of T both via the
projection method P and by means of Eqs. (2.5) plus (2.7),
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Significant Figures
FIG. 5. Same as Fig. 4 for the 1~2 transition. The (k, k')

combinations are indicated in the figure next to each line in
units of fm . Only projection method P is illustrated.

0

Significant Figures
FIG. 4. Accuracy of (k~ T» k') at E, =5 MeV for various

combinations of k and k' in fm '. The horizontal axis indicates
the number of significant figures for which stability in T is
achieved, after rounding, and the vertical axis indicates the cor-
responding number of terms needed in the sum for T-V. The
shaded rectangles connected by the dashed lines indicate the re-
sults for the uncoupled 'So case. The other shaded rectangles
indicate the results obtained in Ref. 25 by a variational analytic
method for the 'So elastic phase shifts. The points marked P
and 0 are obtained by the projection methods P and 0 de-
scribed in Appendix D. Method 0 involves the nonlocal poten-
tial U. The boundary condition radius R equals 15 fm, the re-
sults for 0 are obtained with a size of the primitive basis of
M= 65, and for all other results M=75.

using a basis of 75 primitives, takes approximately 70 s of
CPU time. If M is reduced from 75 to 35, the CPU time
reduces to 32 s.

Checks on the code are as follows.
(a) The accuracy of the subroutines which produce the

wave numbers E„. for the primitive functions has been
tested in a previous accuracy test of the positive-energy
Weinberg expansion method for solving coupled equa-
tions, and internal accuracy to better than 10 significant
figures was achieved.

(b) The consistency between the results obtained for the
T matrix using Eq. (2.5) plus (2.7) and (2.17) is a
confirmation that no programming errors are present.
The agreement between the two methods shows that Eq.
(2.17) is numerically satisfied in the range of momenta ex-
amined. Similarly, the good agreement for T between the
projection method P and the eA'ective potential method 0
is another internal consistency test which checks the code
for Eqs. (2.10)—(2.15). The fact that Eq. (2.17) is not nu-
merically as stable as Eq. (2.5) plus (2.7), is an indication
of the presence of numerical errors connected to the
higher eigenvalue indices s, for which the eigenvalues y,
are small. In the projection method the results are more
stable than for the full channel space, and the quantities

TABLE V. Accuracy summary. Number of terms in sum' needed to achieve a relative error in

( k~ T k') equal to or less than 1%.

cm energy 3 3Si- D,
5 MeV

'S, Sl- Dl
50 MeV

'S,

&o. slT„lo. s &

(o 5IT» 4.5)

&o. siT„o.s&
&o.s~T„4.5&

&3.51» 14.5)

Re
7
6
5

7
4
8

Im
5

5
5

6
6

Re
3
4
4

Im
3
3
3

Re
8

9
7
7
9
6

Irn
8
8
7

10
14
6

Re
5
5

3

Im
5
3
4

'For the singlet case Eq. (2.5) plus (2.7) are used. For the triplet case the projection method P is used,
as defined in Appendix D. The boundary condition radius is R = 15 fm, the number of primitive func-
tions is M=75.
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Given an operator 0„& which acts to the right on func-
tions in space 1, and to the left on functions in space n,
one can construct a separable representation of 0 by in-
troducing a set of functions y", and potentials V" in
each of the two spaces i (i=1 or n), with r =1,2, . . . ,
such that the functions g are V orthogonal

(+(i)y(i)+(i) ) —g (Dl)

from the full channel space are weighted by a factor y„
i.e., the high s values are deemphasized.

(c) Comparison with the T-matrix results of a code
developed at the University of Maryland, to be denoted
as EFR.. The comparison was made at a center-of-mass
energy of 50 MeV, for which the value of the on-shell
momentum is 1.098 fm . EFR's code solves the
Lippmann-Schwinger Eq. (2.3) for Tin momentum space,
for a mesh of momentum values k ranging from 0.030 to
23.983 fm '. Qur results (GR) use a boundary condition
radius R = 15 fm, the number M of primitives is 75, EFR's
momenta k and k' for which the (k~ T~k') values are to
be compared with GR's were read into CR's program.
The comparison was made for T» for the full triplet po-
tential, for a range of momenta ranging from 0.152 to 11
fm '. The agreement between the two codes was better
than 1% for most combinations of k and k', with a few
exceptions where the agreement was better than only 2%.
These few points did not, however, show a systematic
trend. Values for T2& or T22 were not available for com-
parison.

APPENDIX D: THE PROJECTION METHOD P

TABLE VI. The values of A; and A,;.

Type

C
SO
T

W; (MeV)

6831.505
—2004. 19
—1567.6105

k; (dimensionless)

6.879 168
6.707 428
5.934 862

0 = V'"' '"')J"""( '"V"' (D2)

In view of Eq. (Dl), the elements of the matrix P are
given by

P(a) (~(n)g ~(1) ) (D3)

where the symbol a Is used to denote the combination
(n, 1). the expansion (D2) has the nature of a projection
of 0 onto the space of the functions y. In the application
of this projection method to the S&- D, case the opera-
tor 0 is set equal to R defined in Eq. (2.7), and the po-
tential V" are the diagonal potentials V,, in channels
i = 1 and 2. The corresponding functions y" are propor-
tional to the single-channel Weinberg functions I,"
which correspond to V":

g', "=I',"rQy„ i =1,2 . (D4)

and such that they form a complete set in the regions of
space where the operator 0 is nonzero. The desired ex-
pansion is

TABLE VII. Q and P Weinberg eigenvalues' and projection eigenvalues' p and p for the full 'S, -

D& case at E,m =5 MeV.

E, =5 MeV

Re
—3.39
—0.82
—0.16
—0.08
—0.03—0.02
—0.01
—0.01
—0.00

Im
4.6 ( —4)
2.7 ( —4)

—1.0 ( —5)
—1.7 ( —3)
—5.8 ( —4)—1.0 ( —3)
—6.1 ( —4)
—3.7 ( —4)
—2.4 ( —4)

Re
—20.90
—1.81

1.15
0.10

—0.10
0.03
0.14
0.01
0.00

(P)
S

Im
—1.44
—0.02

0.63
0.03
0.00
0.01
0.01
0.00
0.00

Re
12.52

—0.75
—1.27
—0.83

0.71
0.39
0.27

—0.17
0.18

Im
—0.17

1.56
—0.08
—0.01 ( —4)

0.03
0.06
0.02

—3.6 ( —4)
—6.0 ( —3)

Re
—2.29

2.13
—0.96

0.72
—0.86—0.77
—0.45

0.42
0.25

ps
Im

4.02
0.09

—3.1 ( —3)
0.02

—4.8 ( —3)—1.3 ( —3)
—1.1 ( —3)

0.03
0.01

E, =SO MeV

—3.49
—0.87
—0.17
—0.06
—0.02
—0.02
—0.01

—1.8 ( —3)
—5.5 ( —3)
—6.8 ( —3)
—9.4 ( —2)
—1.8 ( —2)
—2.7 ( —3)
—6.3 ( —3)

—20.59
—1.97

0.13
—0.10

0.06
0.02
0.01

—5.06
—0.15

0.95
0.00
0.06
0.01
0.00

9.50
—1.23
—0.82

0.05
0.80
0.42
0.26

—0.34
—0.07
—0.02

0.67
0.18
0.10
0.06

1.56
—0.05
—0.96

0.75
—0.87
—0.78
—0.46

2.68
1.93

—0.01
0.28

—0.01
—6.7 (

—3)
—49 ( —2)

'The meaning of the operators and eigenvalues is described in Appendix D.
The matching radius R has a value of 15 fm for all cases. The results in the first three columns are cal-

culated with M=55. For the last column (p ), M=75. The negative quantities in the parentheses indi-
cate the power of 10 by which the entry is to be multiplied.
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20
0 (r, r')= gF' '(r)G' '(r') .

q

(D&)

10
Since the matrix P is not symmetric in the indices t if
n&1, the right and left eigenvectors of P, R, and L, re-
spectively, will not be the same. In terms of these and of
the eigenvalues p, the form factors F and G are given by

—10
F(n, 1)(r) y y(n)( r)+(n) (r) R(n, )Q

q tq q
(D6)

—20 and

—30
5

40 [ $ I I

i

I

10 15

G(, 1)(r)—y y(1)(r)y(1)(r)L(, 1)+p
q t qt q

(D7)

I ma g.

—20

lI

0 5 10 15

k (fm )

FIG. 6. Form factors of the projection method P, described
in Eqs. (D6) and (D7) for the 1 —+1 transition for the S~-'D
RSC potential, and a center-of-mass energy of 5 MeV. The ei-

genvalue index q is written next to the curves; the dash-dotted
curves represent the results for the positive eigenvalues pq; the
dotted lines show the result for the seventh eigenvalue. The ei-
genvalues are listed in Table VII.

They are normalized by the square root of the eigenval-
ues y't' in order to satisfy the normalization conditions
(Dl). The matrix P,'",'" given by Eq. (D3) is then diago-
nalized and the resulting eigenvectors and eigenvalues en-
able one to calculate the form factors F and G in terms of
which the representation of O~ is obtained

The eigenvalues p are listed in Table VII, where they
are denoted as p' '. Also listed are the quantities p'
They are defined in a way similar to p '), with the excep-
tion that the projection functions g" are the Weinberg
eigenfunctions for the potential V11 = V11+ U11, and the
quantity 0 in Eq. (D3) is equal to U»+R Ii, '. For com-
parison, the quantities y'~' and y' ' are also listed. The
former are the eigenvalues of the matrix V'~' defined by
Eq. (3.4) in Q space. They enter in the calculation of the
polarization potential U, Eq. (2.11). The quantities y' '

are the Weinberg eigenvalues for the potential V'

defined in Eq. (2.12), and they enter in the calculation of
R' ', Eq. (2.15). The form factors F and G obtained in
the projection method by Eqs. (D6) and (D7) are identical
to each other in diagonal case where n = 1. They are il-
lustrated in Fig. 6.

The advantage of the projection procedure P or of the
polarization potential method 0, as compared to the rep-
resentation R defined by Eq. (2.7) in the full channel
space, is that the size of the matrices which have to be di-
agonalized are much different. In the P or 0 methods the
size is MXM, while for the full channel space it is
(NXM)X(NXM). This advantage should be especially
apparent when the number of channels to be eliminated is
large. An example could be the calculation of the
nucleon-nucleon potential within a channel space which
includes various nucleon excited states. The latter then
can be represented in terms of a efFective potential U
which is nonlocal but which is given entirely in the space
of the elastic nucleon-nucleon channels.
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