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The neutron-**Kr mean field is formulated in terms of a dispersive optical model potential in
which the real part contains dispersive contributions derived from the imaginary part by the disper-
sion relation. The dispersive contribution is added to the Hartree-Fock potential, which is assumed
to have a Woods-Saxon shape and a depth that decreases linearly with increasing energy. The shape
parameters for all components of the potential are assumed to be independent of energy. The model
is formulated in terms of the energy relative to the Fermi energy, and the imaginary potential is as-
sumed to be symmetric about the Fermi energy, which is set equal to —7.7 MeV on the basis of the
empirical level structure for n-8Kr. All other parameters are taken from earlier analyses of other
nuclei, particularly of Y. The model is shown to give good overall predictions for the n-3¢Kr mean
field by comparison to the following three sets of empirical data: (i) the observed energies of the oc-
cupied and unoccupied valence levels, (ii) the energy-averaged total cross section for neutron ener-
gies up to 25 MeV, and (iii) the averaged scattering functions for s-, p-, and d-wave neutrons in the
resolved resonance region from 0.015 to 0.96 MeV. The latter comparison is the unique feature of
this work; the partial-wave-scattering functions that are available for s, p, and d waves in the reso-
nance region for 3¢Kr make possible detailed comparisons to the scattering functions from the mod-
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I. INTRODUCTION

The neutron-nucleus interaction is described approxi-
mately by a complex mean field whose central part is lo-
cal;

M(r; E)Y=N(r;E)+iW(r;E) . (1.1)

In addition, there is a spin-orbit component. The mean
field varies smoothly as the neutron energy E changes
sign; for positive energies, it is called the optical model
potential (OMP) and, for negative energies, its real part is
the shell model potential. The energy dependence of
M(r;E) is quite complicated in the region near the Fermi
energy, which separates the occupied and unoccupied
single-particle states at negative energies, and this com-
plicated behavior is described in terms of the dispersion
relation! (DR), which connects a part of the real com-
ponent of the potential to the imaginary component.
Recent analyses?”’ for the doubly closed-shell nuclei
40Ca and 2°’Pb have shown that the introduction of the
dispersive component into the neutron mean field results
in a good description of the empirical data over a very
broad region, including both negative and positive ener-
gies, even though there are few adjustable parameters in
the model. For negative energies, predictions were made
not only of the single-particle energies but also other
bound state properties, such as occupation numbers, ab-
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solute spectroscopic factors and rms radii. Those studies
involved two alternative methods, the ‘‘iterative-
moment” analysis’~ > and the “dispersive optical model”
analysis.ﬁ’7 For the moment method, one begins with
OMP parameters that have been obtained at positive en-
ergies by conventional multiparameter OMP analyses of
scattering data and, using ratios of various radial mo-
ments, deduces the mean field for a broad region of both
positive and negative energies. In contrast, the dispersive
optical model analysis incorporates the dispersion rela-
tion into the original fitting of the data. The iterative-
moment analysis was used’ > for both proton and neu-
tron fields for “°Ca and for 2°8Pb, whereas the dispersive
optical model analyses were only for the neutron fields.
The striking success of these models for the doubly
closed-shell nuclei “°Ca and **Pb leads one to expect
similar success for other nuclei. Good candidates are the
nuclei near 4=90 which have 50-neutron closed shells;
these are Kr, ¥Rb, ®Sr, and ¥Y, °°Zr, and “?Mo. In
fact, Mahaux and Sartor® used the iterative-moment ap-
proach to deduce the n-%Y mean field and, quite recent-
ly, Delaroche et al.’ made a dispersive OMP analysis for
the n-°°Zr mean field. The present predictions for n-*Kr
are based primarily on the mean field deduced® for n-%°Y.
The available data for scattering of neutrons from %°Y do
not span as large an energy range as was the case for n-
40Ca and n-2°%Pb, but they do include extensive measure-

415 ©1989 The American Physical Society



416 C. H. JOHNSON, R. F. CARLTON, AND R. R. WINTERS 39

ments'® for 1.5<E <10 MeV. Also there are measure-
ments'"!2 of neutron scattering from *’Y at 8, 10, 12, 14,
and 17 MeV and of analyzing powers of 10, 14, and 17
MeV. The iterative-moment analysis® was extended to 40
MeV using a global model'! that was based partly on the
n-*Y distributions at 10, 14, and 17 MeV.

Other neutron scattering data related to the mean field
are the neutron total cross sections-in the resonance re-
gion. We use the term ‘“resonance region” to designate
the positive neutron energy domain of a few hundred keV
where the level density is small enough to allow measure-
ment and analysis of the resonances by a high-resolution
experiment followed by a multilevel R-matrix analysis. A
unique feature of such an analysis is that it yields scatter-
ing functions for individual partial waves. If an adequate
number of levels is observed, these functions can be aver-
aged over energy'®*~ ! for comparison to the mean-field
predictions for the individual partial waves. In the spirit
of the dispersive model, we expect that an extrapolation
downward from energies of several MeV will be as suc-
cessful for the resonance region as it is for the more dis-
tant extrapolation to the bound states.

Here, we emphasize the resonance region; we examine
the predictions of the dispersive optical model for that re-
gion in more detail than in previous works. In the disper-
sive OMP analysis® of n-2Pb, predictions from extrapo-
lation into the resonance region were compared to the re-
sults of an R-matrix analysis;'®!” however, the compar-
ison was given little emphasis because the region included
only a few resonances. For the recent analysis® of the n-
%Zr mean field, the empirical s- and p-wave strength
functions and the potential scattering radius R’ were in-
cluded as constraints; however, those empirical functions
contain less information than do the more detailed
scattering functions considered here.

Our data for the resonance region come from recent
measurements'® of the neutron total cross section for
8Kr. The measurements were made with good energy
resolution from 0.015 to 25 MeV, and a detailed R-matrix
analysis was made for the resolved resonance region
below 0.96 MeV. That analysis provides us with accurate
scattering functions for the s,,,, p;,, and p;,, partial
waves and good estimates of the functions for d waves.
Here, we average those scattering functions over energy
for the individual partial waves and compare them to the
functions predicted by extrapolation of the model from
higher energies. The parametrization at higher energies
requires empirical differential cross sections. Since there
are no such data for 3Kr, our procedure is to extrapolate
on the basis of the mean field obtained from the
iterative-moment analysis® of scattering data for n-3°Y.
Since 3°Y and 8¢Kr are similar nuclei, each having a filled
50-neutron shell, only minor changes are required for go-
ing from one nucleus to the other. We also extrapolate
further into the bound state region, much as in the previ-
ous studies for #-*°Ca and n-28Pb.

Our presentation is as follows. In Sec. II we review
and formulate the dispersive OMP with the DR con-
straint. In Sec. III we review the parametrization of the
model® for n-*°Y, make assumptions for the shape of the
form factors, and make small adjustments for conversion

to n-*Kr. In Sec. IV we check on the validity of this
mean field in the MeV region by showing that it gives a
good description of the observed!® neutron total cross
section for ¥Kr for the energy region from 2 to 25 MeV.
In Sec. V we compare the predicted energies of the bound
states with the empirical level structure. In Sec. VI we
deduce average scattering functions from the R-matrix
parameters for the resonance region and compare these
with the predictions from the model. Section VII is a
summary discussion of the three energy regions of the
preceding sections, and Sec. VIII is our conclusion.

II. FORMULATION OF THE MODEL

We begin by introducing a translation of the energy
variable. Nearly all neutron OMP analyses of the past,
not only for individual nuclei but also for ‘“global” mod-
els of many nuclei, have been formulated in terms of the
energy E of the incident neutron. In other words the
zero of the energy scale corresponds to the neutron sepa-
ration energy for the compound nucleus. Since the mean
field M(r;E) is continuous in energy with no special be-
havior at the neutron separation energy, it is reasonable
that a different reference energy may be more useful.
Indeed, an empirical study'® of the influence of the sym-
metry potential on various nuclei has shown that a more

. consistent symmetry potential is obtained if the energy is

measured relative to the Fermi energy Ep. Also the
significant energy for the DR is relative to Ep. There-
fore, we introduce the shifted energy variable &;

6=E—E . 2.1)

Except for this translation in energy, our notation fol-
lows Refs. 6 and 7 as much as possible. We redefine the
mean central field in terms of the new energy variable;

M(r;E)Y=V(r;E)+iW(r;6) . (2.2)
The real part can be written in the form
V(r; )=V y(r;8)+AV(r;6) , 2.3)

where V(r;&) is the local equivalent to the Hartree-
Fock potential and AYV(r;&) is the dispersive contribu-
tion, which is connected to the imaginary potential by the
dispersion relation, DR,
P reo W(r;6)dE'
AV(r6)=— [T =22

where P denotes the principal value integral. The energy
dependence of the Hartree-Fock-type field V(r;6) is
expected to be quite smooth. In contrast, the dispersive
correction AV(r; &) has a strong energy dependence, par-
ticularly near 6 =0.

To apply the DR we need W(r; &) at both positive and
negative energies. As in Refs. 2—7 we assume symmetry
with respect to the Fermi energy;

W(r;E)=W(r;—§&) .

(2.4)

(2.5)

The resulting real dispersive correction is skew sym-
metric about §=0. Thus, at the Fermi energy the full
central real mean field becomes identical to the Hartree-
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Fock contribution, which we parametrize with a Woods-
Saxon form with shape parameters that are independent
of energy;

Vyu(r;6)=Vy(E)f(Xy), (2.6)
f(Xg)=[1+exp(Xy)] !, 2.7)
Xy=r—Ry)/3y , (2.8)
Ry=ryA'?. (2.9)

For the imaginary field we make the usual division into
surface and volume components;

W(r; E)=W(r;6)+W, (r;6)

and assume, as for the *°Ca and 2°®Pb dispersive OMP
analyses,®’ that the volume part has the same energy-
independent shape as for the Hartree-Fock field,

W, (r;6)=W,(6)f(Xy) .

(2.10)

(2.11)

With this assumption the integration of the dispersive
volume correction involves only the well depths,

W,(6)d &’
&—6

Furthermore, the total real volume potential ¥, (r;&) in-
volves a simple sum of well depths,

V, (r;E)=V, (E)f(Xy),
V(E)=Vy(E)+AV,(E) .

P r-
AV &)=—[" (2.12)

(2.13)
(2.14)

For the surface component we make the usual assump-
tion that the form factor is the radial derivative of a
Woods-Saxon factor and also assume, as for the “°Ca and
208pp analyses of Refs. 6 and 7, that the geometry is in-
dependent of energy;

W, (r;6)=—4a, W,(6)Lf(X,) (2.15)
with the parameters r, and a,. Then the surface disper-
sive term has the same form factor;

A‘Vs(r;é):-4asAVS(é°)‘—j;f(Xs) : (2.16)
P e WG
AV (6)=" f_w e - 2.17)

In the following section we first parametrize the model
for n-¥Y and then convert to n-3¢Kr. For this purpose
we assume that each of the potential strengths for the
mean field could have a symmetry component propor-

tional to the nuclear asymmetry coefficient,
n=(N—2)/4,
Vi(E)=VH(E)+qVy(6), (2.18)
W, (6)=WAE)+qW,(6), (2.19)
W (E)=WAE)+qW,(6), (2.20)

where the leading terms on the right-hand sides are in-
dependent of the asymmetry coefficient.

In addition to its central component, Eq. (2.1), the
mean field contains a spin-orbit component for which we
take the standard real form,

2
CVSO( r ): o .I _ﬁ_

m

1d

SO?;f(XSO) > (2.21)

with energy-independent parameters Vg, rgg, and agg.
Since Vgo(r) is assumed to be real, there is no dispersive
contribution.

This is a “fixed-geometry” model.>” Actually, there
have been OMP analyses indicating that the surface
shape parameters depend on energy, with 7, increasing
and a, decreasing for decreasing neutron energies below
10 MeV. Such a dependence was found for ¥Y from the
measurements'® which were the basis for the low-energy
part of the model to be used here. Similar energy depen-
dences were found for neutron scattering?®® from 2°Pb
and scatteringﬂ from *>Nb. Nevertheless, we make the
approximation of fixed geometry for the following
reasons. The introduction of an energy-dependent shape
into the DR requires that AV (r;&) be calculated by nu-
merical integration, and it leads to surface dispersive
shapes that deviate strongly from Woods-Saxon deriva-
tives. A recent study?? of these unusual shapes for the
case of n-2®Pb showed that they have strong influence on
the predicted cross sections. The study indicated that a
more consistent description of the data is achieved by re-
placing the energy dependence in the radius by a depen-
dence on angular momentum. Similar conclusions were
reached from a more limited study?’ of ¥Y. Therefore
the earlier empirical evidences for energy dependence
should be reexamined with inclusion of the DR. A prop-
er treatment of the possible energy and angular momen-
tum dependence for the present case should include de-
tailed reanalysis of the observed'? scattering distributions
for neutrons from %Y. For simplicity, we use the fixed-
geometry model; its use for a broad range of positive and
negative energies is found to be very fruitful, much as it
was in Refs. 6 and 7 for n-**Ca and n-2%%pb.

III. PARAMETRIZATION OF THE MEAN FIELD

A. Model for n-%°Y

In the iterative-moment analysis® of n-*®Y, the
diffuseness of the Hartree-Fock potential was assumed to
be constant and the resulting Hartree-Fock radius was
found to be essentially constant. We adopt those values;

ry=1.24 fm, ay=0.7 fm . (3.1

These are nearly the same as the values, 1.24 and 0.68 fm,
found for n-2*Pb from the dispersive OMP analysis.®

The n-2°%Pb analysis covered a broad energy range and
showed that the well depth for the local equivalent of the
Hartree-Fock potential decreases exponentially with en-
ergy. The smaller range of energies considered here al-

lows us to use a linear approximation;
Vu(E)=V,(0)+aé . (3.2)

For n-**Y with the parameters of Eq. (3.1), the iterative-
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moment analysis® gave

Vy(6)=—4.754+0.296 MeV . (3.3)

For the imaginary component the analysis® provides us
with the volume integral per nucleon, Jq,(&), for the full
imaginary potential. The parameters of Jq),(&) were de-
duced® from a least-squares fit to a combination of two
sets of data for 12 <& <49 MeV. For the lower part of
this energy range, 12 <& <19 MeV, the data used were
ten empirical volume integrals which Lawson et al.'° ob-
tained by conventional OMP analyses of the scattering of
2.8- to 10-MeV neutrons on ¥Y. For those energies the
volume term W,(r;&) is negligible. For the higher ener-
gies, 19 < & <49 MeV, the basis was a global parametri-
zation by Walter and Guss!! that included both volume
and surface terms. Mahaux and Sartor® parametrized
Jw (&) using the form suggested by Brown and Rho;?*

(!902
JyplE)=B———— | (3.4a)
w (62+62)
B=—94 MeV fm? , (3.4b)
6,=9.8 MeV . (3.4¢)

We note that B is the asymptotic value of J,(&) for large
|6] and &, is the | 6] for which Jq,(6)=B /2. The full
dispersive contribution to the real potential can be evalu-
ated analytically;**

P e Jp6d&
Jw(é)~#f_w ey (3.52)
=B 6,6 (3.5b)
(62462 )

The solid curves in Figs. 1(a) and 1(b) represent, respec-
tively, Jop( &) and J oo, ().

The full imaginary potential is a sum of surface and
volume components. Empirical evidence shows that the
volume component Jq), (&) rises approximately linearly
with energy from a threshold at about 6 =15 MeV. For
example, the 2°Pb—+n threshold® is 16 MeV, and the glo-
bal model of Ref. 11 has a threshold corresponding to
&=15.4 MeV for ¥Y and 14 MeV for **Kr. We assume
a 15-MeV threshold. The empirical evidence also indi-
cates that the surface contribution decreases with energy

such that the volume component becomes dominant at -

approximately 6 =60 MeV. To satisfy these require-
ments as well as the symmetry assumption, Eq. (2.5), we
introduce the parametrization;

Jopy(6)=0.0, |6]<15 MeV , (3.62)

T, (6)=30—2|6| (MeV fm®), 15<|6| <62 MeV ,
(3.6b)

Ja(E)=B, |E|>62 MeV.. (3.6¢)

These linear segments are represented with short dashes
in Fig. 1(a). [The differences between Jq), (&) and Jq)( &)
are to be neglected for & >62 MeV]. Analytical evalua-
tion of the DR of these linear segments yields the volume

—100 T T T T T T T
~ —80f
ME L
; —60
()
2 -4
=
S _20}
0
—80 T LEMRALARIN BLSLALELE | T T T
-60f (b) LTI -

£ (MeV)

FIG. 1. (a) Imaginary and (b) dispersive volume integrals per
nucleon versus the energy & relative to the Fermi energy for the
neutron-*Y mean field. Short-dashed curves represent surface
terms, long-dashed curves represent volume terms and the solid
curves are the sums of the surface and volume terms. In (a) the
difference between the solid and short-dashed curves for & > 61
MeV is negligible.

dispersive contribution J,q,,(&), which is represented by
the short-dashed curve in Fig. 1(b).

The surface imaginary volume integral Jq, (&) is found
by subtracting the volume component from the total,

with the restriction that &), (6)=0 for energies above
the cutoff energy near 61 MeV. The result is represented
by the long-dashed curve in Fig. 1(a). The surface disper-
sive term J 5o, ( &) is also found by subtraction,

JA(VS((g):JAIV(éJ)_JAq/U(G), (3.8)

and is represented by the long-dashed curve in Fig. 1(b).
The final step in parametrization of the potential for
89Y is the assumption of specific form factors. Regarding
the volume component, we have already assumed in Sec.
II that the shape parameters are the same as for the
Hartree-Fock potential, Eq. (3.1). This means that the
volume and dispersive depths, W, (&) and AV, (&), are
given by the ratios J,,,(6)/G and J,y,(6)/G, where
G=9.25 fm® for the parameters, », = 1.24 fm and a,, =0.7
fm. The volume imaginary component is of little interest
in itself for the present work because its threshold,
|&] =15 MeV, is outside most of the energies considered
here. However, its dispersive contribution makes a
significant correction to the Hartree-Fock depth for ener-
gies below the threshold. From Fig. 1(b) we see that AV,
is nearly linear in energy for |&| <15 MeV. Thus, from
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Eqgs. (2.14) and (3.3) we find approximately,

V,(6)=—47.5+0.086 MeV, |&|<15 MeV . (3.9

For the surface imaginary component, we assumed in
Sec. II that the shape parameters are to be independent of
energy. . We take the same parameters as used for the
analysis® of n-%Pb;

r,=1.27 fm and a;,=0.58 fm . (3.10)

These are typical empirical values'"** for neutrons in the
energy range 10-40 MeV.

For the spin-orbit component, Eq. (2.18), we adopt the
same parameters as for the 2°Pb analysis of Ref. 6;

Vso=5.75 MeV, rgo=1.10 fm, ag,=0.50 fm .
(3.11)

These are also typical empirical values. This spin-orbit
potential, in terms of its volume integral, is intermediate
between that deduced in Ref. 10 from scattering of 8- and
10-MeV neutrons from ¥Y and that deduced in Ref. 12
from measurements of analyzing power for 10-, 14-, and
17-MeV neutron scattering from 5°Y.

B. Transformation to n-**Kr

There are three nuclear properties which make our
mean field different for 86Kr than for ®Y: these are (i) the
radius is smaller for 8Kr than for *°Y, (ii) the Fermi en-
ergy E is less negative for ®Kr than for *°Y, and (iii)
86K r has three favor protons than *°Y

The smaller radius for 3Kr is introduced via the con-
ventional 4!”® dependences in the various form factors
for the model

We have included effects of the difference in E in our
formulation by expressing the field as a function of the
energy 6 relative to Ep. For n-3Kr we take Ej to be
midway between the 5.515-MeV binding energy for the
ds,, ground state in ®’Kr and the 9.863-MeV neutron
separation energy for 3¢Kr, which leaves ¥*Kr in its g,
ground state. Thus

Ep=—7.7 MeV . (3.12)

This is to be compared to the value —9.1 MeV, assumed
for the n-*Y analyses.®!® For a given neutron energy E,
this 1.4-MeV difference in Ep affects the components of
the potential that are energy dependent. For the imagi-
nary component the effect is significant at low energies;
for a neutron energy of 0.5 MeV, which is the center of
the resonance region to be analyzed in Sec. VI, the sur-
face imaginary depth for ¥Kr is predicted to be 16% less
than that for ®Y at the same neutron energy. The effect
is less for the central real depth V,(&) because the energy
coefficient in Eq. (3.9) is small; thus, at a given neutron
energy, the difference in E makes V(&) only 0.1 MeV
deeper for 3*Kr than for *°Y.

Changes in the potential associated with the fewer pro-
tons in %*Kr result from the symmetry potentials, Egs.
(2.18)-(2.20), because the asymmetry coefficient is slight-
ly larger for ®Kr than for %°Y;

An="89n—%79=0.039 . (3.13)

For the Hatree-Fock field we assume V=15 MeV.
From Eqgs. (2.18), (3.3), and (3.12) we then find for the n-
86K r system,

VE(E)=VE(E)+ AV, , (3.14a)
VE(E)=—46.9+0.296 MeV . (3.14b)

We have neglected the energy dependence in the symme-
try potential®> because its effect on the change in the en-
ergy coefficient for V(&) is negligible. Our choice of
Vy1=15 MeV is consistent with Rapaport’s review.?’
The following comparison shows that it is also consistent
with the difference between empirical®® Hartree-Fock po-
tentials for n-%°Y and n-2®Pb. The model deduced® for
n-2%Pb by the dispersive OMP analysis has the same
Hartree-Fock radius as for n-*Y but a smaller depth,
Vy(0)=—46.4 MeV. If we adjust V, to reproduce the
difference in V(0) between n-*Y and n-2%®Pb, we find
Vi1 =12.5 MeV, in good agreement with our assumed
value. A similar comparison between the model for n-3°Y
and that deduced® from the dispersive OMP analysis for
n-“Ca yields a much larger value, V5, =90 MeV. How-
ever, the latter comparison is complicated by the fact
that the radius ry for the n-**Ca model is only 1.18 fm.
Therefore, as discussed in Ref. 6, the central density is
higher for “°Ca and the deeper well for ““Ca may result
partially from this larger density.

The following asymmetry correction for the imaginary
potential is comparable to the uncertainty in the potential
itself; nevertheless, we believe it is worth making because
it is in the right direction and about the right magnitude.
Rapaport?® concluded that the volume integral of the full
imaginary symmetry potential is about 50% larger than
the main isoscalar component for 10-MeV neutrons, and
that it decreases to zero at about E=80 MeV. The global
model of Walter and Guss'! has only a surface symmetry
term. To describe these empirical properties approxi-
mately, we assume

W (6)=—1.5W%6),
W,(6)=0.0,

(3.15)
(3.16)

where Eq. (3.15) includes an implicit assumption that the
empirical symmetry potential can be extrapolated to neu-
tron energies below 10 MeV. From Egs. (2.20), (3.13),
and (3.15), we find
W(E)=0.94W¥(6) . (3.17)
It follows from the DR that the surface dispersive term is
reduced by the same factor;
AVE(E)=0.94AVE(6) . (3.18)
We note that, at the center of the resonance region, the
combined effects of the smaller |Eg| and the fewer pro-
tons in %6Kr reduce the imaginary potential depth by

21% relative to that for 3°Y, for the same neutron energy.
Furthermore, the depth for 3¢Kr is only 39% of the
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asymptotic value. That is significant for the predictions
of neutron strength functions to be discussed in Sec. VI.

IV. NEUTRON AVERAGED TOTAL
CROSS SECTIONS FOR *Kr

In Fig. 2 the smooth curve represents the total cross
section predicted for *Kr from our model for neutron en-
ergies from 0.01 to 25 MeV, and the histograms represent
cross sections deduced by averaging over energy of the
high-resolution cross sections reported in Ref. 18. The
width of each histogram is the averaging interval and the
height of the vertical symbol on each histogram
represents the uncertainty from counting statistics. At
low energies the histograms have large vertical fluctua-
tions because the resonance fluctuations have not been
completely removed by averaging.

The predicted curve is seen to be in overall good agree-
ment with the observations. For 2 <E <25 MeV the pre-

diction is very good, and for E <0.5 MeV it represents a

good average to the data. However, for the intermediate
region, 0.5 <E <2 MeV, and particularly for 0.5<E <1
MeV, the predicted curve falls generally below the histo-
grams. In Sec. VI we examine the individual partial
waves that contribute in the latter region.

V. EXTRAPOLATION TO NEGATIVE ENERGIES

The left-hand diagram in Fig. 3 represents the energies
for particle and hole states predicted from only the

12
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FIG. 2. Total cross section of *Kr vs neutron energy. The
solid curve is predicted from the model. The histograms
represent averages over energy of cross sections that were orgi-
nally measured with high resolution in- Ref. 18. The vertical
symbol on each histogram represents the uncertainty from
counting statistics.

Hartree-Fock component of the field, and the center dia-
gram represents the level structure predicted from the
full real part of the model. We compare these two struc-
tures further in the discussion of Sec. VII.

The observed structure is shown at the right in Fig. 3.
For E>Ep the observed levels are taken from the
“adopted” ¥’Kr levels in the Nuclear Data Sheets?® with
the restriction that only those with significant spectro-
scopic factors for %°Kr(d,p) stripping®”?® are retained
here. The spectroscopic factors are shown at the far
right for individual levels or groups of levels. For the
hole states, E < Ep, the levels plotted are based on those
observed?®3° by the %Kr(d, ) and **Kr(*He,a) pickup re-
actions, except that we include J7 values only for the
three states which were assigned in the “adopted” level
scheme from the Nuclear Data Sheets®! for **Kr. The 27
level, which is the ground state of 3°Kr, is plotted at the
neutron separation energy of —9.863 MeV. The spectro-
scopic factors for the highest three hole states are from
the (*He,a) pickup measurement®® with the same unit
normalization for the -~ hole state. In Sec. VII we com-
pare the observed and predicted structures.

VI. PARTIAL-WAVE PREDICTIONS
FOR 0-1-MeV NEUTRONS

The histograms in Fig. 2 were obtained by averaging of
cross sections that were orginally measured'® with good
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FIG. 3. Energies of the valence neutron single-particle states
in %Kr. The diagrams labeled ¥y and Vy + AV were calculat-
ed, respectively, from the Hartree-Fock potential and from the
real part of the full potential. The diagram labeled “observed”
shows the experimental energy levels, their J7 assignments, and
the empirical spectroscopic factors. An assignment of two J7
values to a single level means that one or the other is correct;
values in parentheses are favored assignments.
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energy resolution to reveal the resonance structure. In
Ref. 18 the original unaveraged resonance structure was
fit in detail using the R-matrix formalism for the neutron
energies from E;=0.015 MeV to E,=0.96 MeV. Since
only the neutron entrance channel is important in this
case, the R matrix reduces to a single-channel R function
such that the scattering function S;;(E) for orbital angu-
lar moment / and total angular momentum j=I/+1 can
be written

1+iP(E)R;(E)

. —p "2 - -~ v
SylE)=e TEIT 0 (BR (E) 7

(6.1)
where P;(E) and ¢,(E) are the penetrability and the
hard-sphere phase shift evaluated at the channel radius.
A channel radius must be chosen but its value is not criti-
cal; for the present analysis it was 6.4 fm. In Eq. (6.1) the
boundary condition has been set equal to the shift factor
at all energies. The R function R;(E) is a sum over the n
resonances with quantum numbers / and j that are ob-
served within the experimental domain, plus an external
R function which accounts for the influence of levels out-
side of the domain; ’

— 4 RNE) 6.2)

where E;; and y%jk are the energy and reduced width of
the A th level.

The fitted R-matrix parameters were presented in Ref.
18 in tables and figures. Here we reproduce the essential
parts of the figures. In Fig. 4 the solid curves represent
R fj’“(E ). The vertical symbols show uncertainties es-
timated at energies where the resonance-potential in-
terference patterns provide the best information. These
uncertainties increase with / because of the decreasing
penetrability P;(E) of the centrifugal barrier. It is this
decrease in penetrability thta limits our study to s-, p-,
and d-wave neutrons.

The “staircases” in Fig. 5 represent the cumulative
sums of reduced widths up to the neutron energy E.
Each riser represents a reduced width, y%ﬂ, and each
tread is the spacing between adjacent levels. The
different scales of the ordinates should be noted; the sums
of p-wave reduced widths are about ten times those for s
or d waves. The error bars at the tops of the staircases
are not experimental uncertainties; they are deduced
from the fractional uncertainty, (2/n)'/2, that would
occur in the full sum if the observed » widths were drawn
at random from a Porter-Thomas distribution.

We emphasize that the s- and p-wave parametrizations
represented in Figs. 4 and 5, along with the R-matrix
boundary conditions, provide complete descriptions of
the s- and p-wave scattering functions in the experimental
domain [E},E,]. This statement is qualified only by the
presence of small experimental uncertainties. For these
partial waves, therefore, there would be little to gain
from a further measurement such as a measurement of
differential cross sections. The information for d waves is
less detailed because of the centrifugal barrier. In partic-
ular, as discussed in Ref. 18, there are experimental un-

certainties in the separation of the d-wave widths into the
d;,, and d5,, components.

For comparison to the scattering function SYM(E) pre-
dicted from the model, we must average the empirical
function over energy. That can be performed numerical-
ly; calculations'* with various averaging functions have
shown that the results are insensitive to the shape of the
averaging function. The average, (S,j(E) ), can be
presented in various ways. For example, it could be
presented in terms of complex phase shifts or in terms of
compound and shape-elastic cross sections. Our choice is
to expand the average in terms of a complex R function,
using the same boundary conditions as for the R-matrix
analysis of the data;

1—iP(E)R(E) ’
ﬁIJ(E)zﬁll(E)+lﬂflj(E) .

(S,;(E))=e (6.3)

(6.4)

This complex R function varies slowly with energy.

The studies'*!® with numerical averaging showed that
#;(E) can be obtained approximately by direct compar-
isons to the R-matrix parameters plotted in Figs. 4 and 5.
This equivalence also has an analytic basis."* !> There-
fore the difficult numerical integrations are not necessary.
Approximately,

1-5 T T T T
(a)

05 1 1 1 1
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ext

]

R

E (kev)

FIG. 4. External R functions for 0.015-MeV to 0.96-MeV
neutron scattering from %Kr. The solid curves were determined
in Ref. 17 from an R-matrix analysis of resonances observed in
the neutron total cross section. Vertical symbols represent un-
certainties at selected energies. Dashed curves are deduced
from R-function expansions of the model scattering functions.
The assumed R-matrix channel radius is 6.4 fm for all curves.
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A=k N E,
vin=J, S,(E"dE", 6.5)
A=1 !
_ £, 3,;(E")dE'
R{UE)=R(E)—P [ ““L—— (6.6)

E E—E

where P denotes the principal value integral. The left-
hand sides of these equations are the empirical parame-
trizations presented in Figs. 4 and 5. If simple functional
forms for ﬁlj(E) and the “strength function” 5;,(E) are
assumed and then parametrized to achieve consistency of
the right-hand sides with the empirical left-hand sides of
these two equations, those parametrized functions can be
inserted into Egs. (6.3) and (6.4) to calculate approximate
average scattering functions. In Ref. 18 the functions
R;(E) and 5,(E) were so parametrized.

Here, we reverse that procedure in order to compare
the predicted scattering functions, S,?M(E ), to the aver-

E
/ §9M (E') dE’ (keV)

2
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>

1 1 1
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FIG. 5. Cumulated reduced widths and integrals of strength
functions for neutron scattering from %¢Kr. The staircases
represent the summation up to the neutron energy E of the re-
duced widths determined from the same R-matrix analysis as
for Fig. 4. Vertical symbols at the tops of the staircases are un-
certainties based on assumed Porter-Thomas distributions of
widths. Smooth curves represent integrals up to E of the
strength functions predicted from the model. All curves are for
an assumed 6.4-fm R-matrix channel radius.

aged empirical functions. We expand S,?M(E) in the
same manner as in Eq. (6.3) with the same boundary con-
ditions,

—aigye) 1 HIP(E)RPM(E)

SPME)= , (6.7)
yoE=e 1—iP(EYRQM(E)
RIME)=R M E)+is ME) . (6.8)

The curves in Fig. 6 represent the resulting model
strength functions, ’s“ﬁM(E). We then introduce the mod-
el functions R Q™(E) and §M(E) into the right-hand
sides of Egs. (6.5) and (6.6). In Fig. 4 the dashed curves
represent the predicted external R functions; in Fig. 5 the
smooth curves represent the predictions for the cumula-
tive strengths.

VII. DISUCSSION

The present study of the n-3¢Kr interaction in the con-
text of the dispersive optical model potential includes a
broad neutron energy region from about —13 to +25
MeV, but the unique feature relative to earlier related
works is the prediction of the scattering functions for in-
dividual partial waves in the region from 0.105- to 0.96-
MeV neutrons. It is significant that a model with rela-
tively few parameters succeeds not only in giving a good
description of the empirical data over a broad energy re-
gion but also in describing finer details in the narrow res-
onance region.

The basic parametrization came from a model that had
been developed by an iterative-moment analysis® for the
n-3Y mean field. Our use of the model required that we
parametrize the form factors; we assumed that all of the
shape parameters are independent of energy. This
“fixed-geometry”’ assumption is in keeping with the mod-
els®” that were so successful for the n-**Ca and n-**Pb
mean fields for broad energy regions. To convert to the
n-3Kr interaction, we made small corrections for the real

0'3 T T T T

S1/2 or 9512

0 i 1 1 1
0 200 400 600 800

E (keV)

1000

FIG. 6. Neutron strength functions deduced from the pre-
dicted scattering functions of the model. The R-function expan-
sion was made using a 6.4-fm channel radius.
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and imaginary symmetry potentials. Furthermore, we
parametrized the model in terms of the energy relative to
the Fermi energy Ej in order to account for the 1.4-MeV
difference in Ep between n-%Y and n-**Kr. Full details
of the formulation and parametrization were presented in
Secs. IT and III.

Given the model, we began in Sec. IV and V by com-
paring its predictions to experimental data for energies
both above and below the resonance region. Figure 2
shows that the model provides an excellent description of
the energy-averaged total cross section for 2- to 25-MeV
neutrons. This success shows that the real and imaginary
volume integrals, or similar quantities such as V»? and
Wr?, are well parametrized at higher energies.

In Sec. V we examined the predictions of the model for
negative energies. The binding energies for the occupied
and unoccupied valence orbits in the real part of the po-
tential are compared in Fig. 3 with the avaliable experi-
mental data. The only empirical parameter introduced
into the model from the bound state region was Fermi en-
ergy, —7.7 MeV. The observed level structure is shown
toward the right-hand side of Fig. 3 and the spectroscop-
ic factors are on the right-hand side. These factors,
summed over the observed fragments, give 0.64 for %Jr,
1.67 for the combined 2% and 3 levels, and 0.49 for the
probable 1" level. Thus it is reasonable to assume that
most of the fragments have been observed. The observed
fragmentation makes it difficult to make comparisons to
the predicted levels; nevertheless, average comparisons
are possible. On average, the predicted energies of the
even parity unoccupied states (3s,,,, 2d;,,, 2ds,,, and
1g,,,) agree well with the empirical values. The 3s, ),
2d;,,, and 2d5,, orbits are of special interest in relation
to s-wave and d-wave scattering in the unbound reso-
nance region, as discussed below. For the occupied states
the comparison of the predictions to the empirical levels
is even less quantitative. We do note that the mean field
binds the 1g,,, orbit less than observed. Stated in anoth-
er way, the predicted separation between the 1g4,, and
2p,,, orbits is 2.6 MeV, whereas the empirical separation
is only about 0.5 MeV. Similar empirical separations are
found*® by the pickup reactions on 8Y and ?°Zr, which
also have closed 50-neutron shells.

To illustrate the special importance of the dispersive
terms at negative energies, we plotted at the left in Fig. 3
the level structure predicted from only the Hartree-Fock
component of the field. We see that the omission of the
dispersive terms spreads out the levels relative to those
for the full potential and relative to the observed levels.
This shows that the dynamic effects’?> embodied in the
DR must be included to describe the observed
compressed level structure in the region near the Fermi
surface. The excess spreading in the pure Hartree-Fock
potential can be attributed to the relatively large and pos-
itive energy coefficient, +0.29, for V(&) in Eq. (3.14b).
In contrast, the volume integral of the full potential has a
negative coefficient because the coefficients for the added
dispersive terms have large negative values in the neigh-
borhood of E (see Fig. 1). The fact that the empirical
coefficient is negative for the full volume integral has
been called the “Fermi surface anomaly.” A more famil-

iar or “normal” energy coefficient!"?’ is associated with

phenomenological analyses of scattering of 10- to 40-
MeV neutrons. For those energies the coefficient for the
effective real well depth is about +0.30, i.e., about the
same positive value as for the Hartree-Fock potential.
This is so because the dispersive contribution in that posi-
tive energy region has only a weak energy dependence, as
shown in Fig. 1(b). (The foregoing discussion of the Fer-
mi surface anomaly could also be made in terms of
effectiveness masses.)

Finally, in Sec. VI, we compared the predictions to
measurements in the intermediate resonance region,
which extends upward to about 1 MeV above the neutron
binding energy. The experimental data consist of neutron
total cross sections for ®Kr that were measured with
high resolution and analyzed'® by the R-matrix formal-
ism to yield scattering functions for s-, p-, and d-wave
neutrons. These functions can be averaged over energy
for comparison to those predicted by the mean field for
the individual partial waves. We defined the strength
functions and external R functions, 5;(E) and R fj"‘(E ), to
be used for the comparisons between the predictions and
the experiment. In Fig. 4 the empirical and predicted
R fj"‘(E ) are represented by solid and dashed curves, re-
spectively. We see that the predictions are very good,
generally within the experimental uncertainties. In Fig. 5
the staircase plots represent the cumulative sums of ex-
perimental reduced widths for the partial waves, s, ,,,
Pi,2> P3s2s A3, and ds /5. The smooth curves represent
the integrals of the predicted strength functions up to the
energy E. Overall these curves agree very well with the
staircases. The upper ends of the curves generally agree
with the tops of the staircase within the Porter-Thomas
uncertainties. We have checked and found that adjust-
ments of the parameters may improve the agreement in
Figs. 4 and 5 for some partial waves but, at the same
time, worsen it for others so that the overall agreement is
no better than already shown.

The general good agreement between the predicted and
empirical values in Figs. 4 and 5 is impressive because the
model has few adjustable parameters and those were
determined almost entirely from measurements of neu-
tron scattering from other nuclei at higher energies. The
single parameter chosen specifically for 3Kr was the Fer-
mi energy, Ep,=—7.7 MeV. That choice and the formu-
lation of the model in terms of the energy relative to Eg
are not of trivial consequence because the potentials have
strong dependences for energies near E, and the reso-
nance region is not far removed from E;. The important
energy-dependent quantities can be recognized by refer-
ence to Fig. 1, where the center of the resonance region
corresponds to §=8.2 MeV. At that energy the depth of
the surface imaginary potential has decreased to about
half the maximum value which it attains at higher ener-
gies, and the surface dispersive depth is at its maximum.

Before proceeding to a more detailed discussion of the
resonance region, we discuss our choice of the functions,
5,(E) and Rj(E), which we used for comparing the ex-
periment to the predictions. Unfortunately, these quanti-
ties are not so easily visualized as are the cross sections at
higher energies or the binding energies at negative ener-
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gies. In fact, 3;; and R are not even definite physical

quantities because their values depend on the arbitrary
R-matrix boundary conditions. For that reason we em-
phasized in Sec. VI that the predicted and empirical
values must be deduced with the same boundary condi-
tions in order to make valid comparisons between theory
and experiment. We could have made the comparisons
using the compound and shape-elastic cross sections;>>3
those quantities are invariant relative to the boundary
conditions. But we favor the strength functions and
external R functions because they allow more direct com-
parisons and can be interpreted qualitatively to give a
good physical picture of the interactions.

To our knowledge this method of comparing the
empirical and predicted scattering function was used only
once before;*> that was for an analysis of neutron scatter-
ing from 32S. On the other hand, there are many papers
in the literature which make comparisons in terms of
“conventional” s-wave and p-wave strength functions.®
It is appropriate, therefore, that we comment on the con-
ventional strength functions in relation to our insistence
that the same R-matrix boundary conditions must be
used for both the experimental analysis and for the com-
parison to the predictions. The conventional strength
function is defined'®3® as proportional to the product
a,5;;, where a, is the assumed R-matrix channel radius.
For s waves at very low neutron energies, this product is
independent of a,. Therefore the comparison for s waves
at low energies could be made without reference to the
channel radius. In fact, in the present case such a com-
parison could have been made for the full resonance re-
gion for s waves.!® In general, however, such a compar-
ison would not be valid®’ for energies of several hundred
keV. The comparison for p and d waves requires'8 the
boundary conditions be used consistently as done here.
Another familiar quantity is the potential scattering ra-
dius R’; it is related to the s-wave external R function at
zero neutron energy and is also independent of a.. The
analysis in Ref. 18 gave R’=7.62 fm for n-*Kr. Howev-
er, the values of R’ determined from very low-energy
scattering data have much less information than the
external R functions considered here for s waves, and no
corresponding information for p waves and d waves.

The remainder of this section is a more detailed evalua-
tion of these results for the resonance region. The tops of
the staircase in Fig. 5 represent the empirical sums of re-
duced widths for the full energy region. We see that the
sum for p;,, is about ten times that for either s or d
waves. This apparent parity dependence is related to the
locations of the unoccupied single-particle states. Since
the single-particle 3s and 2d states are bound fairly deep-
ly at about —4 MeV, as shown in Fig. 3, only small frac-
tions of their widths are found up in the resonance re-
gion. On the other hand, the single-particle 3p state is
just unbound. Empirical evidence on the 3p state is pro-
vided by the well-known size resonance for the p-wave
neutron strength function.’® The resonance is centered
near atomic mass 4=95, indicating that the 3p,,, and
3ps,, states will become bound for masses with approxi-
mately A4 >95. For %Kr, the interactions that are
represented by the imaginary part of the mean field cause

a spreading of the levels such that p-wave fragments are
distributed over a broad energy region extending down-
ward into the negative energy region. It is reasonable,
therefore, that a large percentage of the p-wave single-
particle width is observed within the experimental region
from O to 1 MeV. Furthermore, the fact that the cumula-
tive sums of reduced widths in Fig. 5 is larger for p;,
than for p,,, is expected because the spin-orbit potential
brings the 3p; /, state into binding before the 3p, ,, state.

The external R functions in Fig. 4 also reflect the pres-
ence of nearby and distant single-particle states. We note
from the sign of the denominator in the summation in
Eq. (6.2) that the external levels lying below the experi-
mental domain make negative contributions to R
whereas those lying above make positive contributions.
Therefore, from the preceding discussion of the energies
of the single-particle states, we expect R fj’“ to be more
negative for s and d waves than for p waves. Indeed, Fig.
4 shows that to be true for both predicted and -empirical
values. We again caution that the values depend on the
assumed channel radius; if a smaller channel radius had
been assumed, all of the R fj’“ would have been less posi-
tive but the intercomparisons would remain valid.

It is of interest to examine Fig. 5 more closely in terms
of the strength functions. The slopes of the predicted
curves are the strength functions, 3 ,jM(E), which are also
represented by the curves in Fig. 6. We can visualize
smooth curves being drawn through the empirical stair-
cases; the slopes of these curves would be the localized
empirical strength functions. Comparisons of the pre-
dicted and empirical slopes or strength functions show
very good agreement except for three regions where the
staircases contain excess reduced widths. These are (i)
for s, ,, for energies near 200 keV, (ii) for p;,, for ener-
gies near 650 keV, and (iii) for d;,, at 520 keV. If these
concentrations were moved to outside the experimental
domain, the residual staircases within the domain would
be described much better by the model. Perhaps these
anomalies represent doorway states.’® The mean field
should describe the interaction including doorway states,
but only on the average. This suggests that the 1-MeV
experimental domain may not be quite broad enough for
defining the empirical averages.

The differences between the predicted and empirical
D3, strength functions near 650 keV are probably re-
sponsible for the differences seen in Fig. 2 between the
predicted and empirical averaged total cross sections. In
that figure the predictions are seen to be too low for
0.5<E <2 MeV. This leads us to speculate that the
imaginary potential might be different for p waves in this
region. In this regard we note that there is little uncer-
tainty in the Hartree-Fock potential; it has a smooth en-
ergy dependence and has been determined from analysis
of a broad energy region. There is also little uncertainty
in the smooth dispersive contribution resulting from the
volume imaginary component. This leaves only the sur-
face imaginary component to be adjusted. In the disper-
sive OMP such an adjustment is accompanied by an ad-
justment in the real dispersive component.

Without making the calculation, one cannot easily pre-
dict the effect on p waves of a change in the surface imag-
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inary potential. Qualitatively, the strength functions are
correlated with the imaginary part, and the external R
functions with the real part. But there are also cross
correlations. For example, an increase in the imaginary
depth in the present case would spread out the p-wave
distribution on both sides of the resonance region and,
thereby, effect both R external and the strength function.
Stated in another way, the imaginary component of the
potential can affect both the off-resonance ‘“‘potential”
scattering and the resonance contributions.

VIII. CONCLUSIONS

The dispersive optical model potential formulated with
fixed geometry and with energies referenced relative to
the Fermi energy is shown to give good predictions of the
n-3Kr mean field over a broad energy region. The model
was parametrized from empirical data on nuclei other
than %6Kr, except that the Fermi energy was chosen
specifically for n-3Kr on the basis of experimental data
on the bound states. The present study does include the
positive and negative energy regions that were the focus
of previous dispersive optical model analyses, but the ma-
jor emphasis here is on the intermediate region of
resolved resonances for neutron energies up to about 1
MeV. In the resonance region the surface imaginary

component is about half of the maximum value attained
at higher energies, and the surface dispersive component
is near its maximum. The unique feature of the present
study is that it includes a more nearly complete set of
empirical partial-wave scattering functions from the reso-
nance region than any previous work and, corresponding-
ly, more detailed comparisons with the predictions than
previously. The overall success of the dispersive optical
model in previous studies of other neutron-nucleus sys-
tems and for the present study of n-3*Kr suggest that the
model can be the basis for a global model of the neutron-
nucleus mean field that covers negative energies, the reso-
nance region, and neutron energies up to at least 100
MeV.
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