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Neutron- Zr mean field from a dispersive optical model analysis
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Elastic scattering cross sections have been measured for 8, 10, and 24 MeV neutrons incident on
Zr. These measurements, together with other neutron elastic scattering and total cross section

data available up to 29 MeV, are used in grid searches to obtain an optical model potential which
contains a dispersion relation term. This potential is then extrapolated toward negative energies to
predict bound single-particle state properties. An overall good description of the data at positive
and negative energies is achieved.

I. INTRODUCTION

During recent years, a great deal of theoretical atten-
tion has been devoted to casting a proper formulation of
the nuclear mean field (NMP) at positive and negative en-
ergies. ' So far, this question has been answered with
great success for "Ca and Pb, two spherical nuclei
often used as testing grounds in structure and reaction
studies.

The unified description of the NMF is accomplished
using a dispersion relation (DR), which links the real and
absorptive terms of the optical model potential (OMP) at
positive energies and makes it possible to extrapolate and
obtain the main NMF features at negative energies. Usu-
ally, this extrapolation is performed adopting either the
so-called iterative moment method or a method based on
a dispersive OMP analysis of proton or neutron scatter-
ing measurements that need to be available over an ener-

gy range as broad as possible. Among these two, by now
standard, methods, the last one appears delicate to han-
dle since it deals with many individual best OMP fits
which, as is well known, very often provide OMP param-
eters with values distributed nearly at random over ener-
gy.

In the present work, an alternative method based on
grid searches for OM potential parameters is suggested
and applied to the determination of the nuclear mean
field for the neutron- Zr system. For that purpose, neu-
tron elastic scattering cross section measurements have
been performed at incident energies E=8, 10, and 24
MeV. These measurements, described in Sec. II, together
with earlier neutron scattering ' and total cross-
section "" measurements available in the interval
0.5 —29 MeV, and the S- and P-wave strength function
values and potential scattering radius, ' form the data
base considered at positive energies. Section III describes
how the grid searches have been conducted. It also in-
cludes the DR analysis of the scattering and neutron total
cross section measurements. The bound-state properties
of the n + Zr system are studied in Sec. IV. A discus-
sion is presented in Sec. V and conclusions in Sec. VI.

II. EXPERIMENTAL SETUP
AND DATA REDUCTION

The Ohio University beam swinger time-of-Bight
(TOP) facility' was used to measure the neutron elastic
scattering difFerential cross sections o(8), from an en-
riched metallic Zr sample at E=8.0, 10.0, and 24.0
MeV. Monoenergetic 8.0 and 24.0 MeV neutron beams
were produced via T(p, n) He and T(d, n) He reactions,
respectively. The Tz gas was contained in a 3 cm long
gas cell. A small Dz contamination in the T2 gas pro-
duced a secondary 10 MeV monoenergetic neutron beam
via the D(d, n) He reaction. The incident proton or
deuteron beam, pulsed and bunched at a 5 MHz repeti-
tion rate with subnanosecond pulse width and with an
average beam current of 3 pA, was incident upon the gas
cell. The scattering sample was located at approximately
14 cm from the neutron production source.

Neutrons were detected in a sevenfold array of NE213
liquid scintillation detectors, each of 10 cm thick by 18.8
cm diameter. The Aight path from the scattering sample
to the neutron detector array was 13 m. Pulse-shape
discrimination was used to eliminate y™rayevents in the
neutron detectors.

Sample-in and sample-out measurements were normal-
ized to the counting rate of a stilbene scintillator 2.0 cm
in diameter by 0.5 cm thick, used as the neutron monitor.
This detector was located at 0.82 m from the neutron
production target at a fixed angle (O„b=45') relative to
the zero-degree line. The obtained energy resolution of
the TOF spectrometer were 135, 188, and 410 keV for in-
cident neutrons at 8, 10, and 24 MeV, respectively.
Differential scattering cross sections were measured in 3
steps in the O„b=15 —90 interval range and every 5' be-
tween 0&,b=90 and 156. A complete description of the
experimental setup is presented in Ref. 15.

The scattering sample was of rectangular shape
(3.4X3.54X0.57 cm ) and weighed 46.35 gm. It was
made with several enriched Zr metallic foils (about
3.4X3.54 cm ) and thicknesses of 390 and 260 mg/cm .
The foils were 97.7% enriched in Zr, about l%%uo 'Zr,
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and about equal amounts ( —0.5%) of Zr and Zr.
The neutron Aux incident on the scatterer was mea-

sured by rotating the beam swinger to zero degrees with
no sample-in position. With this procedure, only relative
efficiencies are needed for the sevenfold array neutron
detector.

Several corrections were made to the data. The source
anisotropy correction was less than 3%. The dead time
corrections were less than 1%%uo. The Monte Carlo code
MULcAT (Ref. 16) was used to calculate multiple-
scattering, finite-size, and Aux attenuation corrections.
Since this code cannot handle a rectangular geometry, a
sample with equivalent cylindrical geometry (to keep the
same volume) was used. We tested this procedure by tak-
ing data with two graphite samples of the same height
but one having the same rectangular dimensions as those
of the Zr sample and the other having a cylindrical
shape. The same code MULcAT was used, handling the
rectangular geometry in the same way as it was done for
the Zr sample. Computed differential cross sections,
after being corrected for multiple-scattering separately
for the rectangular and cylindrical shapes of graphite
samples, showed an agreement within 5%%uo. This method
has been used previously' with equal agreement.

The uncertainties in the final corrected data, especially
near minima of the differential cross sections, are larger
because of the assumptions used in the shape of the sam-
ple. We have accordingly increased at these minima data
points the uncertainties to about 20%.' At other angles,
the uncertainty is typically 5 —7%, as determined by the
statistics, systematic uncertainties, and the above correc-
tions.

III. OPTICAL MODEL ANALYSES

The data set which we use to perform the OMP analy-
ses consists of neutron elastic scattering differential cross
sections between 1.8 and 24 MeV, neutron total cross sec-
tions o.T, for Zr for neutron energies between 0.9 and
5.5 MeV (Ref. 7) and 0.5 —2.4 MeV, total neutron cross
section for ""Zr in the energy range from 47 keV to 20
MeV, "by Peterson et al. ' in the energy range from 17.4
to 28.9 MeV, and the neutron total cross section for
""Mo in the energy range 2.0 to 81 MeV reported by Lar-
son. ' We have also used the S- and P-wavy strength
function values (So and S, ) and potential scattering ra-
dius (R'). ' A compilation of neutron total cross section
data is presented in Ref. 20. No analyzing power mea-
surements have been reported for neutron elastic scatter-
ing from Zr. We use the spin-orbit parameter results
obtained by Honore et al'. ' in their OMP analysis of
differential cross sections and analyzing powers for neu-
tron elastic scattering from Y between 8 and 17 MeV.
A total of 21 elastic neutron angular distribution data
sets were used: those reported by the Argonne National
Laboratory group at neutron energies between 1.8 and
4 0 MeV at energy intervals of about 0 2 MeV, by
Stooksberry et al. at 2. 1 and 5.2 MeV, by Tanaka and
Yamanouti' at 5.90, 6.92, and 7.75 MeV, the present
data at 8, 10, and 24 MeV, and previously published Ohio
University data at 11 MeV. All of the fitting was done
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FIG. 1. Comparisons between the measured neutron elastic
differential scattering cross sections and our model calculations.
The dashed curves represent calculations based on grid searches
while continuous curves are obtained from the dispersive ap-
proach (see text, Sec. III). Compound nucleus contributions
have been added to the direct reaction predictions for incident
energies up to 8 MeV. The o.(0) data are from Refs. 7—10 and
from the present work.

using the optical/statistical model search code opsTAT.
Compound nucleus contributions to the cross sections are
calculated using the Hauser-Feshbach theory with op-
tional width Auctuation corrections, as modified by Mol-
dauer. For neutron energies larger than 8 MeV, the
compound elastic contributions can be neglected. A sub-
set of the experimental neutron elastic differential cross-
section data are presented in Fig. 1.

To establish our notation, we define the empirical neu-
tron OMP as a sum of a central potential and a spin-orbit
potential. The latter is taken equal to

Vso(r, E)
P?Z C

1 d
Vso(E) — f (r, Rso, aso)L o,

r dr

and

aso=0. 50 fm,

and we, therefore, no longer refer to this potential in this
section.

The central potential is defined as a sum of a real and
absorptive terms:

with f ( r, R so, a so) to be of a Woods-Saxon form. We
adopt throughout the present paper the parameters ob-
tained by Honore et al: '

Vso(E) =6.84 —0.033E (MeV),

SO
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U(r, E)= —V(E)f (r, R v, a), )

where

+4iaDWD(E) f (r, RD, aD)
Gr

i W—v(E)f (r, R ~,a ~),

f (r, R;,a; )= 1+exp
L

is a Woods-Saxon form factor with R,. = r; A '

We have conducted individual best chi-square (y ) fits
to the data by searching on all seven central parameters
for the OMP (i.e., V, rv, a~, WD, rD, aD, Wv). Initial pa-
rameter values were taken from the neutron global OMP
reported in Ref. 25. We have assumed that the geometri-
cal parameters for the volume absorption, 8'v, are equal
to those for the surface absorption, 8'D. Individual best
fit searches for the elastic scattering cross sections indi-
cate a preference for 8'&=0 at energies below 11 MeV
and a small value (W) ( 1 MeV) at 24 MeV. We present
in Fig. 2 values obtained for the other six OMP parame-
ters as a function of neutron energy. Numerical values
are available from authors. It is clear from this figure
that, in general, the obtained OMP parameters do not
vary smoothly with neutron energy. There is, however, a
tendency for V and especially rv to decrease as the in-
cident neutron energy increases. We have conducted grid

searches on the OMP parameters, to obtain functional
representations with smooth energy dependences.

A. Grid search analysis

At each energy for which neutron elastic differential
cross section and neutron total cross section data are
available, we have conducted a best y fit by searching on
potential depths (V, WD, and W~) assuming OMP geome-
trical parameter values which were optimized at each en-
ergy under the following assumptions.

(1) Real central potential radius rv. As suggested from
Fig. 2, its value depends upon E. At very low incident
energy, our initial guess for rv is about 1.25 fm, while at
E=24 MeV the value is r&=1.19 fm. As E increases, rv
reaches an asymptotic guess value, r~-1. 18 fm, which is
similar to that adopted in Ref. 3 for the asymptotic ra-
dius of the real central potential for the n- Ca system.

(2) Real central potential diffuseness av. Sensitivity
tests show that this parameter is not of central impor-
tance to fit the angular distributions and that it can be
held equal to a constant value in the 0.63—0.70 fm range
(Fig. 2).

(3) Absorptive potential radius rD and diffuseness aD.
Our initial guesses for the rD and aD values are 1.26 and
0.58 fm, respectively. These values were obtained in ex-
tensive OMP analyses of nucleon scattering and reac-
tion cross sections for Nb for incident energies for 10
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FIG. 2. Geometrical parameters and potential depths of the OMP for n+ Zr as determined from individual best y fit searches jn

the interval 1.8 MeV (E & 24 MeV.
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keV up to 50 MeV. In our work, the optimum rD and aD
values are sought for the intervals (1.24 —1.30) fm and
(0.50—0.60) fm, respectively, and kept constant.

It also seems apparent from Fig. 2 that for E ( 10 MeV
the rD values decrease with increasing energy while the
aD values increase. These energy dependences in the
shape of the surface absorptive component of neutron op-
tical potentials have been attributed to l dependences of
the imaginary part of the empirical OMP~ recently dis-
cussed by Johnson and Winters.

(4) Volume absorptive potential. Even though indivi-
dual y searches for 0(E &24 MeV suggest that S'z be
small, it is indeed included in our analysis. Its geometry
is usually assumed to be energy independent and equal to
that used for the surface absorption term. However, and
in the spirit of DR analysis, we follow the suggestion of
Johnson et al. and use r~=rz and a~=a&. We use the
values r~=1.18 fm and a~ = 0.665 fm obtained in the
individual best fit analysis at E„=24MeV.

During the numerous individual OMP calculations in-
volved in the grid searches, the experimental values' of
the potential scattering radius R' as we11 as the S- and P-
wave strength functions Sp and S& are used as additional
constraints placed on the OM potential in the keV energy
range. In particular, these data are useful to fix the sur-
face absorption WD(E) at very low energy and help to de-
cide which functional representation of O'D vs E should
be adopted.

The results of our grid searches performed with the
code opsTAT (Ref. 22) may be summarized as follows.

(i) Real central potential geometry. The variation of r~
vs E has tentatively been given a simple functional form:

52
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FIG. 3. Depths of the real volume (V) and imaginary surface
(8'D) and volume (8'v) potentials as obtained from grid
searches. The continuous curves shown for the absorptive po-
tentials are functional representations defined in Eq. (4).

searched values for the real potential depth, V(E), (Fig.
3) are nearly constant for incident neutron energies less
than approximately 10 MeV, and then the values de-
crease rapidly. On the other hand, the depth of the sur-
face absorption displays a more familiar E dependence:
WD(E) increases to reach a plateau at around E =6 MeV
and then decreases smoothly with energy. The volume
absorption Wz(E) is small everywhere except at 24 MeV
where Wz is given a value equal to 2.9 MeV. If Wz(E)
were to be represented as a linear function of energy, the
parametrizations would be

W~(E)=0. 17(E —7) MeV (7 (E (30 MeV) (3)

(2)

where rp, r „and b are parameters to be optimized using
the rz(E) individual values. Equation (2) simulates forms
obtained for r~(E) at positive energies using the iterative
moment method.

We obtain values rp = 1.24 fm, r
&
=0.06 fm, and b = 12

MeV. We also obtain a~=0.65 fm.
(ii) Absorptive potential geometries. The following

values were obtained:

rD =1.24 fm, aa =0.58 fm .

As indicated above in (4), we choose r~ = 1.18 fm and
a~=0.665 fm.

(iii) Low-energy average properties. Our calculations
performed at 10 keV for R ', Sp, and S, resulted in values

R =6.80 fm Sp =0.53 X 10 S& =3.40 X 10

which compare very well with the experimental values

R'=(7. 1+0.35)fm, S =(0.56+0.2)10

Si =(3.8+1.0)10

obtained by Boldeman et al. '

(iv) Potential depths values. We present in Fig. 3 the
values obtained for the real V and absorptive (WD, Wz)
potential depths as a function of neutron energy. The

(E E-
WD(E) =c, e s (MeV)

(E E~) +d— (4a)

which seems to be a reasonable estimate.
The OMP parameters obtained in our grid searches are

used to calculate the elastic differential cross sections
which are shown with dashed lines in Fig. 1. There is an
overall good agreement between the data and the present
OMP calculations which, up to 8 MeV, combine the
OMP and compound nucleus components. The agree-
ment is of similar quality for the neutron total cross sec-
tion o.T at energies where scattering cross sections are
available. Predictions for o T have also been made at oth-
er energies between 12 and 29 MeV and between 0.5 and
1.8 MeV to further test our OMP modeling. These have
been performed by linear interpolation through the grid
searched 8'~ and 8'D values shown as dots and crosses in
Fig. 3. Our predictions for the total cross section, shown
as a dashed curve in Fig. 4, are in good overall agreement
with the measurements in the interval from 0.5 to 29
MeV. However, they are systematically low in the 8 —29
MeV range.

It is useful to represent the variations of the potential
depth 8'D and 8 z with energy in functional forms suit-
able for the dispersion relation optical model analysis (see
Sec. III 8). After a few trials and following the schematic
model of Jeukenne and Mahaux, it is found that the
best forms are
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field potential is usually written

+ W E'

where P denotes principal value, and W(r, E') the ab-
sorptive potential evaluated at energy E'. VHF(r, E)
represents the local equivalent-of the nonlocal energy-
independent Hartree-Fock component of the nuclear
mean field, which we denote as V'HF(r, r').

With the assumption that W(r, E') be symmetric
with respect to the Fermi energy EF, Eq. (6) is expressed

V(r, E)=VHF(r, E)+EV(r, E),
where

AV(r, E)= (E —EF )Pf— ' dE',
~F (E' EF ) —(E E—~ )—

10 '

I ~ a I i i a ~ I

io'
. i. . ~ . I

io'

E (Mev)
Io is skew symmetric around EF, that is,

6 V (r, E~+E)= b, V ( r, E~ —E) . —

FIG. 4. Experimental neutron total cross-section values, o T,
for Zr in the energy range 0.9 & E & 5.5 MeV (Ref. 7), for ""Zr
up to 20 MeV (Ref. 11) and in the energy range 17.4 & E & 28.9
MeV (Ref. 18). For completeness, o.T values reported for
n +""Mo in the energy range up to 81 MeV are shown as solid
data points. The calculations for ~T ( Zr) are shown as a
dashed line (grid search) and a solid line (dispersive OMP ap-
proach).

As a consequence, AV needs to be evaluated only for
E ~ EF. Also b, V(r, EF )—:0.

The dispersive term, Eq. (8), can be expressed in a form
which is convenient when evaluating the principal value
either on a computer or in algebraic form. Setting
x =(E Ez), with—x )0 since EF (0 for bound nuclei,

y =(E' EF ), and u—sing the symbolic notation

W(r, z) = W(r, z +EF),

and

W~(E) =c2 (MeV),
(E E~) +h— (4b)

Eq. (8) becomes

since

2 ~ W(r, y) W(r, x)—
o (y2 —x 2)

(9)

where EF is the Fermi energy (E~= —9.6 MeV for Zr).
The solid curves for RD and 8'~ shown in Fig. 3

reproduce quite well the values obtained in the grid
searches. They are obtained with

c, =7.564 MeV, d = 10.0 MeV, g =0.026 MeV

and

c2=7.0 MeV, h =37.0 MeV .

The parameters cz and h for Wv(E) are optimized such
that the volume integral of the total absorptive potential
reaches a plateau for E near 100 MeV.

B. Dispersive OMP analysis

The consequence of causality is that there exists a rela-
tionship between the real and imaginary central parts of
the OMP. This relationship may be used to write the real
part of the central neutron- Zr mean field V(r, E) as the
sum of a Hartree-Fock component VH„(r, E), plus a
dispersive component. The latter is determined from the
absorptive part of the optical potential which connects
these quantities. Thus, the real central part of the rnean-

The dispersive term, Eq. (9), can be evaluated for any
value of the incident energy provided that W(r, y) and its
first derivative be continuous functions of y all over the
iriterval from zero up to positive infinity. Such are the
forms adopted [see Eq. (4)] for the surface and volume

components of the absorption.
At this stage of the DR analysis, it is useful to make a

few remarks intended to help the reader understand
which potentials, together with their physical contents,
are determined from empirical fits to data available at
positive and negative energies. In an empirical DR ap-
proach, one tries to determine the local Hartree-Fock po-
tential VHF(r, E); the Hartree-Fock potential obtained in
a DR analysis which we will denote as VH„(r, E) should,
in principle, represent a good approximation to
VHF(r, E) The empirical p. otential VHF(r, E) is usually
obtained at the end of a multistep procedure, as the
difference between the empirical real term of the OMP,
V(r, E), and the dispersive term, EV(r, E) (Refs. 2 and 3)
and is usually called the Hartree-Fock potential. The po-
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b, V(», E)=b, Vv(», E)+b, VD(», E)

with

b, Vv(», E)=b, Vv(E)f (», Rw, aw) (10)

and

EVD(», E)= 4aDb, VD(E) —f (», RD, aD ),d

where the values for the volume 6Vv(E) and the surface
b, VD(E) correction terms are calculated separately using
Eq. (9).

tential V(», E) is directly extracted from the fits, as op-
posed to EV(», E) which is determined through Eq. (8).
Therefore, the precision attached to the b, V(», E) values
depends upon assumptions made about the absorptive po-
tential, among others: (i) the relation W(», E EF—)
= W(», E+EF), and (ii) the functional form given to
W(», E) at high and low energies. The assumptions and
related uncertainties propagate into the empirically deter-
mined values of VHF(», E) which then might bear little
resemblance with a reasonable estimate for a microscopic
Hartree-Fock potential calculated with a realistic
effective interaction, VH„(», E). Thus, the empirical po-
tential V(», E)—b, (», E) should be viewed as the smooth
energy-dependent real component, VH„(», E) of the
empirical real term of the mean field V (», E).

We assume that the absorptive potentials have Woods-
Saxon radial forms and fixed geometries as described in
Sec. III A. Then the DR contributions are as follows:

C. Grid search for dispersive OMP parameters

The central OMP obtained by adding the DR contribu-
tions differs slight from that given in Eq. (1). It is given
by

U(», E)= — V(E)f (», Rv, av)+b, Vv(E)f (», Rw, aw)

4aDb,—VD(E) f (», RD, aD )
dr

+i 4aD WD(E) f (», RD, aD)
d

Wv(E)f (», Rw, aw)

In this equation we then define the Hartree-Fock com-
ponent as the first term in the real part of the OMP

V(E)f (», R v, av) = VHF(E)f (» RHF aHF ) .

This Hartree-Fock contribution to the mean field then
represents the approximation that throughout the elastic
scattering the target nucleus remains in its ground state
and that nucleon-nucleon correlations in the ground-state
wave function are neglected.

For convenience, we follow the suggestion of Johnson
et al. and use rw=rHF w .HF so that the volume
dispersion contribution 6V~ has the same Woods-Saxon
geometrical parameters as the Hartree-Fock term.

Then the central dispersive OMP is given by

U(», E)=— VH„(E)f (», RHF, aH„)+bVv(E)f (», RH„,aH„) 4aDb VL, (E—) f (», Rii, aD )

d+i 4aD WD(E)
d f (», RD, aD) Wv(E)f (», RHF, aHF)
dr

(12)

This form of the OMP di6'ers from that used in the
grid search analysis described in Sec. IIIA, mainly in
that it contains a surface term, AVD, in the central real
potential. As such the values for potential depths ob-
tained in the grid search are not quite correct to be used
directly in Eq. (12).

A new grid search was done assuming Eq. (12) for the
central OMP potential. Values for (»D, aD) were kept
constant to the values (1.24,0.58) fm obtained earlier
The following OMP parameters were optimized: RHF,
Vv(E), AVD(E), WD(E), and Wv(E) in a grid search,
where Vv(E) = VH„(E)+ b, Vv(E). The value a v =0.65
fm was kept constant. Initial values for the OMP param-
eters were obtained from the previous grid search results.
Best y values were obtained for the data set of consecu-
tive fixed values from rH„=1.18 up to 1.25 fm in steps of
0.01 fm. At each stage the potential depths were opti-
mized and the y recorded. The results indicate that the
best y were obtained for energy-dependent rHF values.
A.lthough the search for rH„gives a shallow minima in y

space, below 9 MeV it prefers 1.18 ~ rHF ~ 1.21 fm, while
the 10—11 Me V data sets indicate a best g for
1.21 ~ rHF ~ 1.24 fm. The 24 MeV elastic scattering data
and total cross sectio'n data above 15 MeV are better
fitted with 1.20~ rH„~1.24 fm. In a study of the p- Ca
and n- Ca mean fields from the iterative moment ap-
proach, Mahaux and Sartor obtain Woods-Saxon OMP
parameters which also indicate energy-dependent rH„
values increasing with increasing energy.

Based on the y results we adopt rH„=1.21 fm and
with this constraint we optimize all potential depths
values. The searched WD(E) and Wv(E) values are then
fitted with expressions given in Eq. (4), and the following
parameters are obtained:

c& =7.98 MeV, d=10 MeV, g=0.026 MeV

cz=6. 5 MeV, h =50 MeV .

These parameters di6'er only slightly from the previous
grid search values.
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We show in Fig. 5 the curves corresponding to W'D(E)

and Wv(E) with the resulting b, Vv(E) and b, VD(E)
values as functions of energy between —60 and +80
MeV. It should be noted that the value of the DR
correction term 5 VD(E) crosses zero at E =9.3 MeV. At
this energy value and using Eq. (2), we get
r~(E =9.3)= 1.217 fm. This procedure has been suggest-
ed ' to choose the value for rHF. The value r&=1.217
fm is in good agreement with the adopted rHF =1.21 fm
value. The individual best fits OMP parameters obtained
in the fits to the neutron elastic scattering data at 7.75,
8.0, 10.0, and 11.0 MeV give an average rv=1. 21 fm
value also in agreement with the chosen value for r H„.

Equations (4) and (10) are the basic inputs for the
dispersive OMP calculations. The only unknown poten-
tial is the empirical Hartree-Fock term. Its depth
VHF(E) is obtained by forming the difference
VH„(E)= V~(E) b, Vv(E) w—here V~(E) is the depth of
the volume part of the real central potential obtained
from fits to the o.(0) data. This procedure is straightfor-
ward since the VH„(r, E) and volume absorptive poten-
tials W~(r, E) were ab initio assigned identical radial
shapes and geometrical parameters (i.e., rH„=—r~ and

aHF
——a~). The empirical values obtained for VHF(E) are

shown in Fig. 6. Dispersive OMP predictions for o(0)
are shown as continuous curves in Fig. 1. Both dashed
and continuous curves shown in this figure incorporate

- compound nucleus components for elastic scattering
below 8 MeV. Therefore, they directly compare to the
o(0) measurements. As can be seen, the overall descrip-
tion of the scattering data is rather good, in particular for
low neutron energies. In this energy range, the phasing
of o (0)'s is well reproduced.

This feature is at variance with findings of Johnson
et al. ' for n+ Pb and n+ Ca at comparable low in-

cident neutron energies. We do not know why the phas-
ing of the present o(0) predictions agree well with the
data. A plausible explanation is that the surface absorp-
tion was carefully mapped from fits to the o (0) measure-
ments and the low-energy average scattering and reaction
parameters (R ', So, and S&).

Figure 4 shows a comparison between the neutron total
cross section data for Zr and dispersive OMP calcula-
tions (continuous curve) from 0.5 up to 29 MeV. There is
a good agreement between the data and the calculations
except below 1 MeV where the predictions are too large.
Since the o. T predictions in this energy range almost ex-
clusively depend upon the geometry of the real central
potential, the observed disagreement probably indicates
that the geometrical parameters of the complex mean
field are not quite adequate in the low-energy domain.
We have further tested our modeling of the complex
mean field by extending the calculations for Zr from 29
MeV up to 80 MeV and comparing the results with o. T
measurements available for.""Mo (Ref. 19) and represent-
ed as solid data points in Fig. 4. Both o. T data and calcu-
lations (Fig. 4) have similar phasings and also display a
maximum at around 66 MeV. However, the calculated
o T( Zr) values are on the average 5% lower than the
o.T(""Mo) data, a shift which is also observed when com-

9
80

70
n+ cozy

EF
O
OP 60

UJ 50

EF

40

0

O
-50 -20 -IO 0 IO

E (MeV)
20 30 40

-60 -40 -20 0 20 40 60 80
E ( MeV)

FIG. 5. The solid lines represent the surface 8'&(E) and
volume Wy(E) absorptions versus energy [see Eq. (4)] as well as
the DR correction terms 6VD(E) and 6Vv(E) defined through
Eq. (10).

FIG. 6. Energy dependence of the depth of the empirical
Hartree-Fock potential. The dots at positive energy have been
obtained from the dispersive OMP analysis (Sec. III B). Those
shown at negative energies (around EF= —9.6 MeV) have been
deduced from calculations which best describe the experimental
bound state level energies. The solid line represents V»(E) as
defined in Eqs. (11)and (12).
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paring the O. T measurements for ""Zr and ""Mo in the
20—29 MeV range where the two data sets overlap. The
comparisons shown in Fig. 4 indicate that the present as-
sumed extrapolations beyond 29 MeV for Wi, (E) and
IVD (E) are reasonable.

IV. BQUND-STATE PROPERTIES

The most appealing facet of the dispersive OMP ap-
proach is that it ofFers the opportunity to obtain a shell-
model potential for bound states as an extrapolation of
the OMP toward negative energies. Since Zr has often
been used as a testing ground in transfer reaction mea-
surements, a wealth of experimental information exists
for the energies E„& of the single-particle states located in
the vicinity of the Fermi energy. The single-particle
states found immediately above and below the Fermi en-

ergy are

lg7/2 2d3/2 3s»2, and 2d5/2 (E„())EF)

and

lg9/2, 2p, /2, 2p3/2, 1fs/7, , and 1f7/2 (E„(J&EF),

respectively. Spectroscopic information on these states
may be measured by mea, ns of stripping and pickup reac-
tions on Zr. Graue et al. ' report on measurements of
the Zr(d, p) 'Zr reaction up to 6.5 MeV excitation ener-

gy and present neutron spectroscopic strengths and
single-neutron-particle centroid energies for the 2d5&2,
2d3/2, 3s»2, and lg7/2 subshells. A summary of these re-
sults is presented in Table I. However, the quoted spec-
troscopic factors should be interpreted cautiously. The
authors indicate that the quoted spectroscopic strengths
for a given nlj transition have been normalized in such a
way that their summed experimental strengths exhaust
the expected shell-model sum rule. K.asagi et al. have
studied the Zr(p, d) reaction at E~ =90 MeV and de-
duced spectroscopic information on excited neutron hole
states up to 20 MeV excitation energy. Their results are

also summarized in Table I. The C S spectroscopic
strengths have been normalized in such a way that the
lg9/2 strength is equal to 10 (i.e., the shell-model sum
rule). In both stripping and pickup analyses some of the
neutron strength may have been missed due to the fact
that some of the weak transitions are not clearly ob-
served. The empirical strength for each nlj transition
(usually fragmented in many states) is used to calculate
the single-particle energy positions. If the total empirical
strength for a subshell with quantum numbers nlj is less
than the sum rule strength, the deduced nlj single-
particle energy is not properly determined. The E„0.
values in Table I assume that the sum rule strength for
each nlj neutron orbit has been fulfilled.

It should also be mentioned that the spectroscopic fac-
tors extracted from single-particle transfer reactions are
rather sensitive to the geometrical potential parameters
(ro and a) used to describe the single-particle transfer.
Because these parameters and other experimental uncer-
tainties are not well known, papers describing single-
particle transfer reactions generally quote spectroscopic
strengths normalized to sum rule strengths. This prac-
tice, of course, is not justified. Realistic spectroscopic
factors have been estimated only for Pb from sub-
Coulomb stripping ' and particle transfer reactions
with C and O beams. "Absolute" spectroscopic factors
have been derived using radial wave functions determined
from magnetic electron scattering. No "absolute" neu-
tron spectroscopic factors have been reported for Zr
that we can use to compare with predictions of our
n + Zr mean-field calculations (see Sec. IV B 2).

The single-particle centroid energies estimated from
these measurements are shown in Fig. 7 where they are
compared with the results obtained with the mean-field
calculations. The purpose of these calculations is two-
fold: (i) find the depth VH„(E) at E =EF so that the cal-
culated single-particle centroid energies for the last occu-
pied single-particle level (lg»2) and for the first unoccu-
pied single-particle level (2ds/2) be symmetric around the
Fermi energy, and (ii) evaluate the validity of the
dispersive OMP analysis when extrapolating the OMP
parameters toward negative energies.

TABLE I. Empirical spectroscopic strengths and neutron
single-particle centroid energies for Zr. A. Single-particle energies

1g7/z
3S 1 /2

2d3/2
2d 5/p

E„,, (MeV)

—4.36'
—5.53'
—4.78'
—7.1'

1.07'
0.95'
1.16'
1.0'

The single-particle energy calculations are performed
using a subroutine implemented in the distorted wave
code DwUcK4 [Ref. 38j, and following a trial-error
method in which VH„(E) is given the functional form

VHF(E) = VHF(EF )exp[ —a(E EF )/VHF(EF )] . (1—3)

1g 9/2

~P 1/2

&F3/2
lf s/z
&f7/7

—12.16
—13.21
—13.93
—15.25
—22.28b

1 0b

0.66b

0.72b

1.16
0.8&b

'Obtained from Zr(d, p) 'Zr (Ref. 31}.Uncertainty +15%.
"Obtained from Zr(p, d)' Zr (Ref. 32). Uncertainty less than
20%%uo.

'Quantum numbers for neutron orbitals.

In this procedure, an initial value Eo is guessed for E
(considered here as a dummy parameter) to evaluate
VH„(Eo), b V),(Eo), and AVD(Eo) through Eqs. (10) and
(13) and to solve the bound-state problem. Let us call
E„'&,'(Eo ) this eigenvalue and form the quantity

g(o) E(o)(E )—
Then, another value Ei is chosen to evaluate VHF(Ei ),
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6 Vi,(E, ), and b, VD(E, ) and calculate E„'P(E, ), etc. Fi-
nally, a proper eigenvalue is obtained after m iterations
where 6'„&.' reaches zero. In practice, we have considered
that a calculated single-particle energy is an eigenvalue of
the bound-state problems when

~&'„/J'~ ~ 10 ke& .

A11 the bound-state calculations are performed using the
same spin-orbit potential parameters of Sec. III except
that we choose the depth of this potential to be constant
and equal to Vso(E =0)=6.84 MeV. The values adopted
for the parameters VH„(EF) and a entering Eq. (13),
namely,

VHF(EF ) =52.45 MeV

term of the mean field

V(r, E)= VHF(rE)+b, Vi (r, E)+b VD(r, E)

are shown in the third column of Fig. 7 and in Table II,
where they are compared with the empirical values from
Table I. There is a good agreement between the experi-
mental and calculated single-particle energies except that
the ordering of the predicted 2d3/2 and 1g7/2 levels do
not follow the experimental pattern.

The bound-state calculations have been extended down
below the Fermi energy. In this energy domain, the real
term of the mean field with an exponential parametriza-
tion for VH„(E), Eq. (11), is expected ' to produce over-
bound hole states. For this reason, we adopt a linear E
dependence for VH„(E) in the region E (EF, namely,

and

cz =0.33,
VHF(E) = VHF(E. ) —~(E —E.)

with

(14)

16-

I h I I/2
2d 3/2 ~
I g 7/2~~
3s I/2 ~2cI 5/2

EF

I g9/2

2p I/2
I f 5/2»
2p3/2 ~

VHF V„F+QVv VHF+hV ExP.

I f 7/224-

CD 32 2s I/2
I d3/2
I d5/2

LLI 40-

also lead to a reasonable representation of the empirical
VH„values found earlier in the dispersive OM analysis,
as shown in Fig. 6.

The single-particle energies calculated with the real

y=0. 33 .

The hole states energies calculated with the real term of
the mean field in which VH„(E) is given by Eq. (14) are
shown in the third column of Fig. 7 and in Table II. The
sequential ordering of these single-particle levels agree
with the experimental data, but the predicted single-
particle levels are slightly tightly bound (with exception
for the lg9&z hole level).

Single-particle energy predictions calculated with just
VH„(r, E) are shown in the first column of Fig. 7, while in
the second column are shown the values calculated with
the addition of the volume DR contribution,

TABLE II. Neutron single-particle energies E„z, in Zr.
Each state is characterized by the principal n, orbital I, and to-
tal angular momentum j, quantum numbers. The second
through fourth columns contain the predicted values obtained
in Sec. III from the Hartree-Pock field alone, the HF plus the
volume dispersive term and the real term of the mean-field po-
tential, respectively. The last column contains the empirical
values from Table I.

nlj VHF VHF+ 5Vv V„„+av E,„, (MeV)48, I p I/2
I p3/2 1~ 11/2

1g7/2
2d 3/2

2d 5/2

—0.90
—3.61
—3.50
—4.64
—6.56

—1.19
—3.81
—3.68
—4.74
—6.53

—3.30
—5.04
—4.84
—5.59
—7.14

—4.36
—4.78
—5.53
—7.10

72'
FIG. 7. Neutron single-particle energies E„zj in Zr. The

first column at the left gives the calculated values obtained with
the empirical VHF potential of Sec. III. The second column are
those calculated with the addition to V» of the volume DR
contribution, while the third column are those with the mean
field potential VHF+ 6 V. The column labeled EXP contains ex-
perirnental values from Ref. 31 in the case of particle states and
from Ref. 32 for hole states.

1g 9/2

2p
2P3/2
1fsz2

&f7y2

2S 1/2

1d3/2
1d5/2

1P1/2
&P3/2

1S1/2

—12.58
—16.29
—18.62
—18.44
—24.95
—32.31
—33.68
—37.32
—47.82
—49.31
—60.40

—12.36
—15.76
—17.93
—17.64
—23.49
—29.93
—30.96
—34.14
—43.04
—44.32
—54.15

—11.62
—14.4
—16.18
—16.14
—22.49
—30.05
—31.21
—34.58
—43.53
—44.94
—54.52

—12.16
—13.21
—13.93
—15.25
—22.28
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VH„(r, E)+b, V~(v, E). Comparing these calculations
with those obtained using the real part of the mean field,
one sees that the nuclear dynamics compresses the energy
of the single-particle levels around the Fermi energy, a
feature already observed in similar studies ' for Ca and

Pb. The nuclear dynamics simulated by the DR
correction not only appears for valence orbits but also
propagate across the major shells.

We have also compared the single-particle energy pre-
dictions calculated with VH„(r, E) with predictions from
Hartree-Fock calculations performed using the finite
range density-dependent force of Gogny. The two sets
of single-particle energy predictions agree remarkably
well both for particle as well as for hole states.

B. Other bound-state properties

To complete our analysis, we have used the empirical
mean-field potential to calculate other properties of
bound states and present a comparison with available
empirical resu1ts. Similar analyses are presented in Refs.
2 and 3 for the n+ Pb and n+ Ca studies. The dis-
torted wave code DwUCK4 (Ref. 38) was used to calculate
properly normalized radial wave functions, defined as
U„Ij(r) in Ref. 1, to a radius r of 20 fm.

I. Occupation probabilities

We use the equations of Refs. 1 and 2 for occupation
probability, jV„~, of the single-particle state (n, l, j) defined
as either

TABLE III. Bound-state properties. Calculated values using
the mean field of Sec. III for levels characterized by the nlj
quantum numbers. Neutron single-particle energies E„I,, rms
radius R ' ', occupation probabilities, and absolute spectroscop-
ic factors S„l, are presented.

nlj

1~ 11/2

2d 3/2
3s I/z
2d 5/2

E„„(MeV)

—3.28
—5.04
—4.84
—5.59
—7.10

(fm)

5.21
4.84
5.33
5.44
5.04

N„1.

0.080
0.083
0.072
0.068
0.088

SnIJ

0.75
0.75
0.78
0.80
0.80

1g 9/2

2p i/z
2p 3/2

1fsic
1f712
2s

1d3/2
1d5/2

1p &/z

lp3/2
1$1/2

—11.62
—14.40
—16.18
—16.14
—22.49
—30.05
—31.21
—34.58
—43.53
—44.94
—54.52

4.74
4.31
4.26
4.17
4.32
3.74
3.84
3.97
3.42
3.51
2.88

0.89
0.93
0.93
0.94
0.95
0.96
0.97
0.97
0.97
0.98
0.97

0.77
0.78
0.84
0.85
0.99
0.99
0.96
0.95
0.93
0.93
0.98

m /m(r, E)=1— AV(r, E),dE

E & EI; and extrapolating these curves to E =EF—g and
E =EF+g, respectively, with q as an arbitrarily small
positive number, the magnitude of the discontinuity, Z,
at E=EF is Z-0. 76 (Fig. 8). Since 1/Z is a measure
of the E mass defined in Ref. 2 as

for hole states, or

nlj

E„, (EF (15)

E„i )EF (16).

it is interesting to compare the value 1/Z=1. 35 with
m /m evaluated at E =EF. A plot of m /m at this energy
is shown in Fig. 9 together with the K mass (mH /m) and
the total mass (m*/m) of the mean field, as defined in
Ref. 2. It can be seen that the value of 1/Z compares
well with the E mass if m/m is evaluated at a radius
value near the surface (Fig. 9).

in the case of a particle state. The calculated occupation
probabilities are listed in Table III. In the valence orbits,
we calculate 11.5 neutrons, 8.9 of which are in the 1g9/2
subshell and 2.6 above the Fermi energy. The total num-
ber of neutrons in the valence orbits di6'ers from 10 be-
cause the depletion of the shells below the Fermi energy
in part feed orbits which lie in the continuum. The calcu-
lated total number of neutrons in all orbits is 49.P, not ex-
actly 50 probably because of approximations.

The calculated occupation number of neutrons in the
1g9/2 subshell is 0.89. It is interesting to note that in the

Zr(d, p) 'Zr reaction the —,
'+ state in 'Zr at 2. 13 MeV is

weakly populated. ' It would be interesting to estimate
the possible I =4 strength to determine the actual occu-
pancy of the neutron 1g9/2 subshell.

The occupation probabilities of each orbital (n, I,j) are
also shown as dots in Fig. 8. By drawing continuous
curves through the N, Ij's separately at E (EF and

I.OO
0 I I I—oo — —o-o0

0.90—

0.80—

Z 0.70 p

0.05—
-70 -60 -50 -40

Ep+'-

-30 -20 —IO 0
E„(j ( MeV)

FIG. 8. Values for the occupation probability N„IJ vs single-
particle energies. The dots represent the 1V„I, values shown in
Table III. The continuous curves are just drawn to guide the
eye. Z measures the gap between the two continuous curves at
the Fermi energy.
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FIG. 9. Radial dependence of the effective masses m/m,
m /m and mH/m evaluated at the Fermi energy (EF= —9.6
MeV).

2. Spectroscopic factors
F

The spectroscopic factor is given by the following ex-
pression

S„„=f "0?IJ(r)[m/m(r, E„,, )]dr,
0

and (ii) the moments deduced from experimental informa-
tion shown as solid circles. At positive energies, the
empirical moments are those from grid searches evalu-
ated at E=0.010, 1.8, 3.0, 3.6, 4.0, 5.17, 5.90, 6.95, 7.75,
8.0, 10.0, 11.0, and 24 MeV. At negative energies, the
moments are those of the real part of the mean field in
which the depth of the HF component has been adjusted
to reproduce the experimental single-particle energies.
The energy dependences observed in the continuous
curves for Jr/A and R, , in the vicinity of the Fermi en-

ergy mainly reAect the energy dependence of b, VD(E)
shown in Fig. 5. Similar features have also been found
for the real part of the mean field of the n+ Pb and
n+ Ca systems. '

The uncertainty attached to R, , deduced in the grid-
search analysis ranges from 2.5% at E ~ 8 MeV up to 3%
toward lower energies. The 2.5% estimate is inferred
from model-independent analyses ' of the o(8) measure-
ments performed at 8, 10, and 24 MeV. On the other
hand, the 3% figure quoted for the lower energies results
from adding in quadrature the 2.5% uncertainty with an

where

m(r, E„& )/m =1—. b, V(r, E)

(17)
460

2
390

320

These calculated values are listed in Table III and
should be compared with the "absolute" spectroscopic
factors. No empirical values have been obtained.

250

3. The rms raditts of Ualence orbits

1/2
R Vms — U2 ( ) 2d

nlj njI (18)

The rms radius for each nlj is evaluated by using the
expression

52
crj

E 4

The results are listed in Table III. These values must
wait for measurements such as those described in Ref. 36
for critical evaluation.

1.26

1.22 rV

4. Energy dependence of radial moments

The volume integral or zeroth moment,

J~/A = f r V(r, E)dr,

1.14-

1.10
-40 40

and the rms radius R, , =(rz)'~ or the normalized
second moment of the radial distribution:

f r V(r, E)dr
(r~) =

f r V(r, E)dr

of the real part of the mean field are shown as continuous
curves in the upper part of Fig. 10. In the same figure,
we also show: (i) the moments Jz/2 and R, , of
VH„(r, E) which are represented as dot-dashed curves,

E (MeV)

FIG. 10. Global properties of the mean-field potential. Ener-
gy dependences of the volume integral J&/A, R, , and
"effective" %'oods-Saxon potential radius r& are shown as solid
curves. The data points shown in the upper two panels
represent empirical information obtained from grid searches.
The dotted curve in the lower panel represents the radius r&(E),
Eq. (2) of the real potential used in the grid search. The dot-
dashed lines illustrate the properties of the VHF potential of Sec.
III.
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additional uncertainty stemming from the precision with
which we estimate the calculation of the compound nu-
cleus process. With the same reasonings, the uncertain-
ties attached to the empirically determined values of
Ji, /A are in the range of 3.5% at E ) 8 MeV and 5% at
lower energies. No uncertainties are given for the points
shown in Fig. 10 at negative energies. The reason is that
we do not know how precise are the values adopted for
the centroid energies of the single-particle states. In this
context, there is a good overall agreement between the
continuous curves and the points shown in Fig. 10. Also,
we notice that without experimental information at nega-
tive energies, it would have been impossible to detect the
anomalous behavior of the real part of the n+ Zr mean
field in the vicinity of the Fermi energy.

V. DISCUSSION

A. Mean field for n + Zr

The moments of the real part of the mean field shown
as continuous curves in the upper part of Fig. 10 could be
identified with the moments of an equivalent Woods-
Saxon potential, with geometrical parameters rz and az.
The OMP geometrical parameters of this equivalent po-
tential are energy dependent. If the assumption is made
that ai, =a~=0.65 fm (ai, is the diffuseness of the
volume potential defined in Sec. IIIA), then ri, the
equivalent radius, can directly be compared with rz, the
radius of the volume potential defined in the grid search
analysis (see Sec. III A).

The values of ri„shown as a solid curve in the lower
part of Fig. 10, decrease from r~=1.245 fm at E =0
MeV down to about r&=1.17 fm at E =24 MeV. The
radius ri.(E) shown as a dotted curve displays a similar
rapid variation in this energy interval. In the energy in-
terval 40—80 MeV both r& and rz remain almost energy
independent and ri about 1% larger than ri,

B. Comparison between empirical mean fields

The neutron+ Ca and neutron+ Pb empirical
mean fields obtained from a dispersive optical model
analysis are reported in Refs. 3 and 2, respectively. In
this section we briefly compare our results for the
neutron+ Zr mean field with those in Refs. 2 and 3.

The mean field obtained in these analyses consist of a
dispersive contribution due to the coupling of the neutron
to the excited states of the core added to a smooth
energy-dependent term called VH„(r, E). By definition
the latter component is not much influenced by the cou-
pling of the neutron to core excitations and thus should
have a smooth mass number A and neutron excess depen-
dences. We present in Table IV Woods-Saxon geometri-
cal parameters obtained for these phenomenological HF
potentials.

In Ref. 3 the authors comment that the increase in the
radius parameter rH„ from 1.18 fm for Ca to 1.24 fm
for Pb rejects the dependence of the density radius
upon mass number. The same dependence predicts an in-
crease of 0.02 fm when A increases from 40 to 90. The

TABLE IV. Geometrical parameters for HF potentials and
average best fit potentials. All values in fm. A Woods-Saxon
radial dependence has been assumed.

"Ca
90Zr
208Pb

rHF

1.18b

1.21
1.24'

0.70b

0.65
0.68'

rv

1.15
1.19
1.21

av

0.75
0.65
0.67

'Reference 42.
bReference 3.
'Reference 2.

EF——12 MeV, a=0,
—VH'„(E)=52.45 exp[ —0.33(E EF)/52. 45]—,

EF— 9.6 MeV, @=0.111,
—VHb„(E) =46.4 exp[ —0.31(E EF ) /46. 4—],

EF= —6 MeV, a=0.212,

where E=(N —Z)/A is the asymmetry parameter.
As noted in Ref. 3, the difference in these expressions

are namely due to two reasons: (1) the central part of the
neutron OMP consists of isoscalar and isovector terms,
the latter being proportional to e, and (ii) the central
matter density tends to decrease with increasing mass
number A.

Although it is convenient to measure the energies from
the Fermi energy as done in the above equations, it has
been traditional to express the energy dependence of pa-
rameters of the OMP as a function of the incident energy.
Using a linear approximation and the respective EF
values, we get

—VH'F(E) =52.6—0.55E (MeV),
—VH"F(E) =49.4 0.33E (MeV), —
—VPHb„(E) =44.6—0.31E (MeV) .

These HF potentials may be written as an algebraic
sum of isoscalar VH„(E) and isovector VH„(E) terms:

VH„(E)= V„F(E) eV HF (E) . —

If the difference between the above potential values is
attributed just to VHF(E), we can use values for the Ca-
Zr and Ca-Pb potentials to get an average value

VHF (E)=33.3 —1.6E (MeV)

rH„=1.21 fm value we obtained for Zr agrees with this
prediction. In Table IV we also present values for indivi-
dual average geometry parameters obtained in the OMP
neutron scattering analysis on the same nuclei.

The energy variation of the VHF(E) potential depth for
energies E)EF for n+ Ca (Ref. 3), n+ Zr (this work),
and n+ Pb (Ref. 2) are given by the following equa-
tions:

—VCH'„( E)=58.8 exp [—0.5 5(E EF ) /5 8. 8 ]—,
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assuming linear energy dependences V(E)= V(0) a—E,
for these potentials. The geometrical OMP values are
different for each nucleus (Table IV) and thus we also
have calculated the isovector volume integrals to obtain
an average value

=476.4 —14.8E (MeVfm ) .

Those values are larger, especially the coefficients a
representing the linear energy dependence, than empiri-
cal values obtained in neutron global analyses.

If we use values for the Zr-Pb potentials, we get

VH„(E)=47.6—0.2E (MeV),

JHF(E) =399.5 —1.7E ( Me V fm ),
which gives values for the coefficients a in good agree-
ment with empirical values.

The isovector values obtained from the Zr-Pb poten-
tials reAect linear energy coefficients which are almost an
order of magnitude smaller than those obtained from the
Zr-Ca or Pb-Ca potentials. This is attributed to the large
a=0. 55 value, obtained for VH'„(Ref. 3). However, and
as indicated in Ref. 3, these results should be considered
just as crude estimates of the isovector potential because
(a) we have neglected effects due to the variation of the
central density with A, and (b) the dispersive contribu-
tion in each nucleus are different enough that it cannot be
neglected in these type of comparisons.

VI. CONCLUSION

The aim of this paper is to apply the dispersive optical
model approach of Mahaux et al. to the study of the neu-
tron interaction in the neutron-closed-shell nucleus Zr.

To make it as complete as possible, we have enlarged the
existing scattering and reaction data base by performing
new elastic scattering measurements at three incident en-
ergies (E =8, 10, and 24 MeV) which are of critical im-
portance for a proper determination of the interplay be-
tween surface and volume absorptions in the OMP analy-
ses. A set of smoothly energy-dependent OMP parame-
ters is obtained from grid searches, which then are used
to build a dispersive OMP and its extrapolation toward
negative energies. This grid search technique, which so
far has never been used in the design of a nuclear mean
field at positive and negative energies, is shown to be
rather successful in the entire energy range where data
exist. Predictions for rms radii, occupancies, and spec-
troscopic factors of the particle and hole states are also
presented. It would be nice to see whether these predict-
ed bound-state properties find an experimental
confirmation, for instance, from deep inelastic (e, e'n)
transitions and/or (p,pn) reactions.
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