Comments

Comments are short papers which comment on papers of other authors previously published in Physical Review C. Each Comment should state clearly to which paper it refers and must be accompanied by a brief abstract.

Comment on "Electromagnetic dissociation of ⁵⁹Co and ¹⁹⁷Au targets by relativistic ¹³⁹La projectiles"

John W. Norbury

Department of Mathematics and Physics, Rider College, Lawrenceville, New Jersey 08648 and Physics Department, Washington State University, Pullman, Washington 99164 (Received 14 November 1988)

A recent calculation by Hill *et al.* for the electromagnetic dissociation of 197 Au and 59 Co is corrected.

The recent article by Hill *et al.*¹ describes some very interesting measurements of electromagnetic dissociation (ED) of ¹⁹⁷Au and ⁵⁹Co targets, by ¹³⁹La projectiles. This complements their earlier work^{2,3} using the lighter projectiles ¹²C, ²⁰Ne, ⁴⁰Ar, and ⁵⁶Fe. The experimental data were compared to calculations based on the Weizsacker-Williams (WW) method³ of virtual quanta. Their data and calculations are listed below in Tables I and II. (The calculations of Ref. 3 have been multiplied by 0.93 as discussed in Ref. 1) As can be seen the agreement between Hill's theory and experiment is reasonable except for a huge discrepancy for ¹³⁹La projectiles, although there are also smaller discrepancies for ¹²C and ²⁰Ne on ¹⁹⁷Au.

I have repeated the calculations of Hill *et al*.¹⁻³ using exactly the same photonuclear data (multiplying the

¹⁹⁷Au data by 0.93) and exactly the same minimum impact parameter and using the same calculational method. My theoretical results are also listed in Tables I and II. I get similar agreement to experiment for light projectiles as does Hill *et al.*, with similar small discrepancies for ¹²C and ²⁰Nc on ¹⁹⁷Au. However, I also get excellent agreement for the heavy projectile ¹³⁹La on ¹⁹⁷Au and a much better comparison (although still outside the error bar) for ¹³⁹La on ⁵⁰Co.

This work was supported in part by NASA Grant NAG-1-797. I wish to thank Gayle Norbury for help with the manuscript and Ferdoush Khan for making me aware of the above data.

RHI	Energy (GeV/N)	σ_{expt} (mb) Refs. 1, 2 and 3	σ_{theory} (mb) Refs. 1, 2 and 3	$\sigma_{ ext{theory}}$ (mb) Norbury
¹² C	2.1	75±14	42	40
²⁰ Ne	2.1	153±18	113	105
⁴⁰ Ar	1.8	348±34	322	297
⁵⁶ Fe	1.7	601±54	631	578
¹³⁹ La	1.26	1970±130	2340	2089

TABLE I. Electromagnetic dissociation cross sections (σ) for ¹⁹⁷Au(RHI,X)¹⁹⁶Au reaction.

 $\sigma_{\rm theory}$ (mb) Refs. 1, 2 and 3 $\sigma_{\rm expt}$ (mb) Refs. 1, 2 and 3 σ_{theory} (mb) Energy (GeV/N) Norbury RHI 12 C 8.7 7.7 2.1 6 ± 9 20 ²⁰Ne $32{\pm}11$ 23 2.1 ⁵⁶Fe 122 105 1.7 88±14 ¹³⁹La 358 430 1.26 280±40

TABLE II. Electromagnetic dissociation cross sections (σ) for ⁵⁹Co(RHI,X)⁵⁸Co reaction.

- ¹J. C. Hill, F. K. Wohn, J. A. Winger, M. Khayat, K. Leininger, and A. R. Smith, Phys. Rev. C 38, 1722 (1988).
- ²J. C. Hill, F. K. Wohn, J. A. Winger, and A. R. Smith, Phys. Rev. Lett. **60**, 999 (1988).
- ³M. T. Mercier, J. C. Hill, F. K. Wohn, C. M. McCullough, M. E. Nieland, J. A. Winger, C. B. Howard, S. Renwick, D. K. Matheis, and A. R. Smith, Phys. Rev. C 33, 1655 (1986).