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Collisional width of giant resonances and interplay with Landau damping
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We present a semiclassical method to calculate the widths of giant resonances. %'e solve a mean-
field kinetic equation (Vlasov equation) with collision terms treated within the relaxation time ap-
proximation to construct a damped strength distribution for collective motions. The relaxation
time is evaluated from the time evolution of distortions in the nucleon momentum distribution using
a test-particle approach. The importance of an energy dependent nucleon-nucleon cross section is
stressed. Results are shown for isoscalar giant quadrupole and octupole motions. A quite impor-
tant interplay between self-consistent (Landau) and collisional damping is revealed.

I. INTRODUCTION

The damping of giant resonances represents a long-
standing problem, since we have several possible sources
for the observed widths. In the random-phase approxi-
mation (RPA) (collisionless dynamics) we have the Lan-
dau damping ("fragmentation width") combined with nu-
cleon emission in the continuum ("escape width"), but
this is not enough to account for the experiments. Col-
lisional damping must be included in developing a theory
which goes beyond the RPA and implies a direct cou-
pling of the 1p lh excitations to 2p2h modes. The result-
ing equations are very dificult to solve, and several ap-
proximate procedures have been developed in the last few
yearS 1 s 2r 20 22

In this paper we present a simple and transparent semi-
classical approach to the problem, based on the solution
of a linearized Vlasov equation with a collision term
treated within the relaxation time approximation. The
zero-temperature relaxation time is evaluated solving mi-
croscopically the evolution equation for the momentum
distribution function, with energy-dependent nucleon-
nucleon cross sections. We can satisfactorily reproduce
the experimental behavior of the widths for isoscalar gi-
ant quadrupole and octupole resonances without free pa-
rameters. The main conclusions of this work are as fol-
lows:

(i) The relaxation time of giant resonances is strongly
dependent on the multipolarity of the collective mode.

(ii) We have a quite important interplay between self-
consistent (Landau damping) and collisional damping in
building up the final observed width.

Theoretical uncertainties are coming from medium
effects on the nucleon-nucleon cross sections, from the
time variation of the Pauli blocking, i.e., the gain term in
the collision integral, and from the use of nuclear matter
parameters (p,pF) also for finite nuclei. Here we limit
our analysis to isoscalar motions, but the extension to iso-
vector resonances can be easily done along the same line.

In Sec. II we evaluate the relaxation time starting from
a quadrupole distorted distribution in momentum space.

The response function is constructed in Sec. III, where
we also compute the widths of strength distributions for
quadrupole and octupole collective motions. Finally
some conclusions are drawn in Sec. IV.

II. RELAXATION TIME FOR GIANT RESONANCES

At zero temperature the only possibility of having
two-body collisions in the nuclear medium is related to
distortions of the nucleon momentum distribution.
Indeed if nucleons are sitting part of the time outside the
Fermi sphere, they can collide, since the final momenta
are not fully Pauli blocked.

This is the case for giant resonances (GR's) which can
be very well described in phase space as scaling oscilla-
tions with momentum distortion of quadrupole type.

For example the isoscalar giant quadrupole resonance
corresponds to Fermi sphere deformations of the type

p„+p ( 1+2a )—,

p~
—+p (1+2a), (2.1)

2m [(Px ~+ ~Py ~+ (Pz ~ ~distortedvolume 5~F

(2 2)

Pz
5'z ~ =p, (1—4a),

(1+2a)
where a=a(t) is the amplitude of the quadrupolar oscil-
lation, with a periodic time behavior given by the giant
resonance energy. Consistently the corresponding varia-
tion of the kinetic energy distribution univocally deter-
mines the energy of the collective motion.

The excitation energy per particle is given by the
change of the mean kinetic energy in correspondence
with the maximum value a0 of the amplitude:
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We will use an oblate ellipsoid geometry (see Fig. 1) for
all the distortions in momentum space. Of course the re-
sults are the same for a prolate phase.

The lengths of the axis are b =1+2a, a =1/b (in pz
units), and the result of the integrations is

=
—,'(2b2+a~) ——,'=~4'ao2 . (2.3)

cxoqR 0.3 2 v 3/2

izoqR 0.4A &3/2
(2.4)

where v 3/2 comes from quantum corrections (zero-
point motion). It is worth mentioning that the same
values can be obtain'ed in a classical harmonic oscillator
picture along the collective variable assuming scaling es-
timations for the collective mass parameters. '

The amplitudes Eq. (2.4) will directly determine the re-
laxation time, as discussed in the following. Therefore
the differences for various multipolarities will imply a
clear multipole dependence of the relaxation time.

Fixing the initial distortion of the nucleon momentum
distribution, we will follow the path to equilibrium solv-
ing microscopically the time evolution equation of the
momentum distribution function

This formula is used to evaluate the mean value of a
over an oscillation, a =—,'ao. Considering ez -65A
(for giant quadrupole) or eD -1093 ~ (for giant octu-
pole) we finally get

and p =p„„/¹isthe normal nuclear density. We will use
p=0. 145 fm consistent with p+ =260 MeV/c.

(iii) A collision probability is introduced as

At
lJ

&co»
(2.7)

where b, t is the used time step interval and 6t„„=h,/U,
(U; is the relative velocity of the two test particles) is the
mean time elapsed between two collisions. In order to
take into account all possible collisions, one should
choose ht ~ At„&&. A minimum value of 4t„&&, without
Pauli efFects, is b, t„~~ —I/a p2vz-3 fm/e.

(iv) A random number x, in the interval (0, 1), is com-
pared with 0; . If x (II;, the collision can occur, and
two 6nal momenta pf, p f are randomly chosen within
the constraint of energy and momentum conservation.
Conditions (iii) and (iv) ensure that test particles have on
average at most a mean free path A, . The real mean free
path is actually larger due to Pauli blocking. The col-
lision is accepted only if the two fnal momentar f, pJf
are outside the initial ellipsoid. We remark that this
frozen Pauh blocker eliminates any gain contribution
leading to longer relaxation times.

In the case of constant o.» an exact result can be
worked out for the relaxation time of a quadrupole defor-
mation of the Fermi sphere. The collisional procedure
described here correctly reproduces this result. ' As a
measure of equilibration at each time step we compute
the ratio

&g( p) =Ifgl (2.5)
2&p,'&

&p„'&+ & p,'&
(2.8)

where I [g] is the collision integral, of Uehling-
Uhlenbeck type. ' %'e use the test-particle propagation
method simulating the Uehling-Uhlenbeck integral by
performing s-wave scatterings between these pseudoparti-
cles. ' "" At each time step, the procedure for a collision
to take place is the following. ' '

(i) Two test particles (i,j) are randomly chosen in the
occupied momentum space at time t.

(ii) A mean free path is defined as

Figure 2 shows the collisional relaxation times for a giant
quadrupole resonance as a function of the mass number.
The dashed line represents the results obtained with a
nxed o&&=40 mb, corresponding to an average free

—-O„N =40 mb
xxxgNNIEj
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where o.&& is the average nucleon nucleon cross section
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FIG. 2. Collisional relaxation times for a giant quadrupole
mode as a function of the mass number. Dashed line: fixed
o»=40 mb. X's: energy-dependent nucleon-nucleon cross
section.
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nucleon-nucleon cross section at about 2pF relative
momentum. With the symbol X we show the relaxation
times obtained with an energy- and isospin-dependent
cross section, parametrized according to the nucleon-
nucleon experimental data. " Since we are taking into ac-
count the low-energy enhancement, we get shorter equili-
bration times. It is interesting to note that the change is
less important for medium-light elements, i.e., in the
presence of a larger amplitude of the deformation. In
these cases the dominant collisions leading to equilibra-
tion are those between nucleons sitting on the extreme
edges of the distribution, indeed at a re1ative momentum
of the order of 2pF.

The quadrupole and octupole collisional widths (fi/r),
evaluated with an energy-dependent cross section, are
listed in Table I. %'e make the following remarks.

(i) We get a systematic mass dependence of the type
(for large mass numbers), for quadrupole as well

as for octupole. However, surface effects are not explicit-
ly accounted for, since we are using nuclear matter values
for density and Fermi momentum.

(ii) The octupole collisional widths are systematically
larger:

(2.9)
(A'/~)'

(r/r}2+
This clearly shows a strong multipolarity dependence of
relaxation times, as expected from our procedure.

A very important point to stress is that the collisional
widths are in general smaller, of about a factor 4, than
the observed damping widths 'On. the other hand, if we
consider the effect of the Landau damping alone, i.e., the
fragmentation of the strength in the RPA response func-
tion, we have also extremely small values for the corre-
sponding widths of giant quadrupole and octupole reso-
nances almost independent of the residual interaction
used. ' ' The conclusion is that we should expect to
have a quite important interplay between long-range
(one-body dissipation) and short-range (two-body col-
lisions) correlations due to the self-consistency of the dy-

t

TABLE I. Collisional and final calculated spreading widths
for giant quadrupole and octupole resonances for different nu-
clei.

Nucleus

Quadrupole {MeV)

I
+R

Octupole (MeV)

1

Ca
110cd

144SI
208pb

1.83
0.664
0.425

0.259

1.96
1.30

3.79
1.103
0.715
0.463

10.55

4.2
3.1

1.5

III. RESPONSE FUNCTION WITH COLI.ISIONS

The interplay already discussed has been stressed in
Ref. 17, where the Vlasov equation for small amplitude
motions with a collision term of relaxation time structure
has been solved with all the self-consistency effects, using
separable residual interaction, as an extension of the
method introduced in Ref. 18.

The correlated strength distributions given by the
semiclassical approach have the structure (L multipolari-
ty)

SL (co)
SL (co)=

[I kLal (co)]—+kLm Sl (co)

where kL is the coupling constant of the separable force
(multipole-multipole type}, and Sz(co) is the uncorrelated
strength function,

(3.1)

SL(~)=——
pz. (~),1

(3.2)

with aL (r0) and Pz (co) the real and imaginary parts of the
free polarization propagator,

narnics, which is finally able to reproduce the observed
widths.

Sm
L(co)— Q f dAA, YI~,

n, N
2'2

m„(N)
T "

(Q(n, N)i'/, =, ,
a) co„(N} — F (3.3)

with poles at

2m I i
co„(N)=n +N

T T
and residues

Q(n, N) = 3 +iB,
QL, (r) r(r)

A =—f dr cos[s„(N, r)]coshT "& U(r)

(3 4)

(3.5)

around the Fermi energy. Everything can be expressed in
terms of radial and angular properties of these orbits, for
a given multipole field QL (r), where r &, rz are the classical
turning points, u(r) is the radial velocity field, T is the
period of the radial motion, I is the angular "period, "
and

s„(N, r) = n +N r(r) Ng(r), — —2m I

B =—f dr sin[s„(N, r)]sinhT ~& u(r) (3 6)

Contributions are coming from sing1e-particle orbits, in
the mean field, with angular momentum A, and energy

with r(r) and P(r}, respectively, time elapsed and
angle spanned to reach the point r on the orbit (A, ,E).
n, N are integer numbers —~ & n & 00 and —I. &N &1.
[( —1) =( —1) ]. Details can be found in Refs. 17 and
18.

In Fig. 3 we show 2+ strength functions for Pb,
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FIG. 3. Quadrupole strength distributions for ' 'Pb, calculat-
ed without {a) and with {b) residual interaction. Left side: no
collision term; right side: with collision terms. The diC'erent

scales 'are discussed in the text.
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without [part (a)] and with [part (b)] residual interactions,
calculated with a collisional width I =0.259 MeV (right)
and without collisions (left). The residual interaction
used is of quadrupole-quadrupole type with coupling can-
stant fixed from a consistency condition for a Woods-
Saxon mean field. ' The strength units are different: On
the right we plot the absolute value in fm MeV ', suit-
able to directly deduce the width; on the left we report
the fraction of the EWSR. This is a typical behavior of
the response function, valid also for the octupole. We
can deduce the following.

(i) Without collisions the residual interaction produces
a strong collectivity effect with almost no final fragmenta-
tion of the strength (no Landau damping).

(ii) If we go beyond RPA and include collisional widths
on the uncorrelated eigenfrequencies, we still have a shift
and change of the strength distribution, but the final
width is much larger than the one related to the relaxa-
tion time. This means that we cannot simply sum up the
two widths, Landau damping and collision, but there is a
complicated interplay between the two sources of collec-
tive energy dissipation, due to the self-consistency of the
dynamics: The Landau damping is enhancing the an-
ticoherent effect of two-body collisions.

In Table I we report also the final damping widths com-
puted within our semiclassical framework for giant quad-
rupole and octupole resonances for different nuclei. We
compare mainly with spherical nuclei in order to avoid
effects coming from ground-state deformations. An
overall comparison with experiments is shown in Fig. 4.

We are systematically below the observed values, par-
ticularly for heavy elements. However, we should men-
tion two contributions which are missing here, more im-
portant for large mass numbers: (i) the escape widths are
not included in our approach, since we consider only
classical bound orbits in the mean field; (ii) the gain term,
i.e., the rearrangement of the Pauli blocking at each time
step, will shorten the relaxation time, more for smaller
amplitude oscillations. Finally, a clear source of theoreti-
cal uncertainty comes from the nucleon-nucleon cross
section. Here we use the free space values, although
we should expect some energy-dependent medium ef-
fects

IV. CONCLUSIONS

The point we would like to stress is that using simple
phase space arguments and a semiclassical self-consistent
dynamics we are able to shed some light on the competi-
tion between one- and two-body dissipation in building
up the damping widths of giant resonances.

This interplay has been already remarked upon in Ref.
20, starting from a quantum RPA approach with col-
lision terms, where the contribution of Landau damping
for quadrupole and octupole isoscalar modes is probably
overestimated. The self-consistency enhancement of the
elementary collisional width in the uncorrelated response
function is also noticed in Refs. 21 and 22, where a con-
stant phenomenological parameter (I „n- I MeV) is used
for the two-body width of unperturbed eigenfrequencies
also at temperatures other than zero.

The observed width of giant resonances is obtained by
adding the escape (I 1') and spreading (I l), or statistical,
widths. However, the latter is not just the sum of the
Landau and collisional damping: We should consider a
convolution of these elementary decays over the states
which share the collective strength.

Applying our momentum space argument to the giant
monopole resonance we expect to have a smaller spread-
ing width than the quadrupole or octupole case. Indeed,
in a breathing mode the momentum distribution remains
spherical and therefore two-body collisions are strongly
suppressed by Pauli blocking. The escape damping
should now play a major role, and we expect, in general,
for the ratio between escape and spreading widths
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FIG. 4. Comparison of our results {dashed line) with the ex-
perimental giant quadrupole and giant octupole widths. Data
are from Ref. 14.

Recent experiments on direct decays of giant monopole
and quadrupole resonances have, however, shown that
the escape probability is almost the same in the two cases,
around 20%%uo, actually somewhat smaller for the giant
monopole in Pb. Following our argument on the col-
lisional part, these findings have a very interesting impli-
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cation about the leading role played by the Landau
damping for giant monopoles, in order to build up a large
spreading width. Fully microscopic RPA calculations
seem indeed to show a larger strength fragmentation in
the monopole mode. ' '

The presence of a collision term also implies a redistri-
bution of the strength of the collective motion (see Fig.
3). A similar effect has been observed in a quantum RPA
calculation including particle-phonon couplings. This
could probably explain some anomalies in the giant di-
pole strength function recently seen at high tempera-
tures, where the relaxation time is strongly reduced. A
nice feature of our method is that we can explicitly calcu-
late the collisional widths for different nuclei and mul-
tipolarities and also we can simply introduce temperature
effects. ' Some results on isovector modes built on ex-
cited states are reported in Ref. 27 following the same ap-
proach but with a simplified geometrical method to com-
pute the collisional relaxation time. For giant dipole res-

onances with increasing temperature one gets a moderate
increase of the widths and a clear quenching of the
strengths in the resonance region. A more microscopic
analysis of temperature effects is in progress.

We conclude with a very general comment. The sim-
ple phase space scaling picture (Fig. 1) of giant reso-
nances comes from a highly coherent combination of
particle-hole excitations and leads, as shown here, to the
enhancement of collisional damping. Coherence helps to
destroy coherence.
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