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We discuss different nuclear structure properties that may lead to spin suppression in magnetic
dipole excitations (as well as in Gamow-Teller transitions). We especially compare the triaxial and
the axial asymptotic deformation limits and show that the summed B (M]1) strength can be quite
different in the two cases. A connection between triaxial deformation and spin suppression is estab-
lished. It is known, however, that modern Hartree-Fock calculations yield axially symmetric solu-
tions for several nuclei which were previously thought to be triaxial. We show that taking into ac-
count the effects of higher shells can lead to an enhanced orbital contribution to M1 excitations

without affecting ground-state magnetic moments.

I. GENERAL CONSIDERATIONS, DEFINITIONS,
AND SUM RULES

For the purpose of our discussion in this and the next
sections, it is useful to start with a few standard
definitions. In terms of the magnetic dipole operator

p=py 2 (gl +gs;) ,
i
we write the transition strength from initial state (ITT,)
to final state (I'T'T),) as
13
2I +1 4xw

where I,T, and T, stand for total angular momentum,
isospin, and its third component, respectively. The total
M1 strength from ground state (i =g.s.) is simply denot-
ed by B(M1)1:

B(M1)1= 3 B(M1;g.s.—f)

B(M1i—f)= I'T'T!|\w|ITT,)|?, (1)

f
3 2

= .S. 2
o H&Eg-s.l(nlylgs)l , ()

and the linear energy weighted sum rule (LEWSR) by
B (M1)1:

B(MDT=Ag.s|[w[Hulllgs.)

3
= an %(E,,—Eg,& W{n|ulg.s.)?. (3)

The quenching of spin and/or orbital strength in M1
transitions can be easily related to symmetries of the nu-
clear Hamiltonian. In that respect, Eq. (3) is particularly
useful to analyze the role of symmetries and the role of
different nuclear interactions in M1 excitations. It is also
convenient (and a common practice) to decompose the
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magnetic dipole operator into an isoscalar and an isovec-
tor operator

p=ps—pylpy , 4)
with
PS=%2ji+#S20i >
i i
py=3Lt;+2u" 3 o;1],
i i

where we use the conventions

t,= -+ neutron, —I proton ,

81,s = (81,5 Jvare »

p'=1(gl—g)=2.353,
and pS is the Morpurgo factor,

pS=tgl+g'—1)=0.19 .

The first term of pug commutes with H and does not in-
duce transitions. The isoscalar spin term is hindered by
the Morpurgo factor! and in the LS coupling limit is also
diagonal. One then sees that M1 excitations are essen-
tially isovector. Because of the hindrance factor 1/(2u")
in the orbital contribution relative to the spin one, most
M1 excitations are predominantly of spin isovector char-
acter. Hence, traditionally, it is the spin isovector term
in Eq. (5),

Y,=So,t, (6)
i
that has been extensively studied. Further interest in this

operator stems from its close relation to the Gamow-
Teller (GT) operators of 3 decay,

0" =Y, = ot , )
i
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which, together with the spin (s) and isospin (T) opera-
tors, form the generators of the SU(4) Wigner symmetry
group.?

However, in the last few years several M1 excitations
have been found? that are predominantly orbital, and in-
terest in the isovector orbital term has increased. The ap-
pearance of these excitations, together with the long-
standing problem of the quenching of spin excitations
and Gamow-Teller strengths, makes it interesting to ana-
lyze these operators on the same footing.

In the next section we shall discuss selection rules that
emerge from (a) shell-model calculations with simplified
two-body interactions and (b) calculations with Nilsson-
type one-body Hamiltonians. But, before doing so, it is
useful to consider some general properties and their rela-

J

2371

tions with the sum rules in Egs. (2) and (3). These sum
rules have been extensively discussed in the literature for
the isovector spin operator® and to a much lesser extent
for the isovector orbital operator. If we consider a nu-
clear Hamiltonian of the form

H=T3[p}/2m+V()l+ Sali-6,+ SV, ®

i<j
with ¥, a two-body potential of the simplified form
Vi,=V(rp(W+BPY,), 9)

the LEWSR’s for the spin (S}) and orbital (O} ) isovec-
tor operators are

B (M)t = —-fﬂj(3,uN,uV)2{<2 a,.l,.-a,.>+§<z Vir, ti—t) o, 0, )ZP,"}> ‘ , (10)

i<j

B?V(M1)¢=—ﬁ(#~/2)2[<ZG,~1,-'0.->+%<2(tf—t;)z(W+BP;;) > [(l,-"‘—-l;"),[(lf‘——l}’),V(r,-j)]]>], (11)

i<j a=x,y,z

where the mean values are to be taken in the ground state of the Hamiltonian H in Eq. (8). The first term of Eq. (10)
proportional to the spin-orbit energy gives the standard Kurath’s sum rule;’ the second term gives the correction to the
Kurath’s sum rule due to the Bartlett interaction. In the absence of spin-orbit interaction (L-S coupling limit) this is
the only term that remains. Likewise the LEWSR for the orbital isovector contribution contains a term proportional to
the spin-orbit energy and a term that depends on the Wigner and Bartlett interactions. The total LEWSR for the iso-
vector M1 operator contains in addition a cross term coming from the interference between orbital and spin isovector

operators:

B,(M1)1=B}Y (M1 +B (M1 +BSs(M1)1 (12)
with
B?“S(Mln:f;(zym}\,) [(2 a,.1,.~a,.>+§<2 (=122 S i(a, X o MM~ 15, V(r,.j)]> } . (13)
i i<j a :

In the absence of spin-orbit interaction, the LEWSR is
entirely given by the terms depending on the two-body
interaction and only the neutron-proton part of that in-
teraction contributes. Hence, the LEWSR is zero if there
are only protons (or neutrons) in the open shells. In this
case (no spin-orbit interaction) the L-S coupling scheme
can be used and for any pair of particles (1,2) the wave
function ¢(1,2) can be characterized by the quantum
numbers L,,, S;,, and Ty,. In addition, with a two-body
8 interaction [i.e., V(ry,)=8(r,—r,)], the spatial wave
function ¢, (r,,r,) must be symmetric. (In this case one

also has that the double commutator in Eq. (11),

> LAy =15),[ay=15),virpll,

can be replaced by 28(r;—r,)(1;—1,)*). The second term
in Eq. (13) will be zero. Hence, B{™* will be zero for a
spin-dependent delta interaction and no spin-orbit cou-

pling. Similar sum rules can be defined for the Gamow-
Teller operators Y ..

It should be pointed out that the LEWSR’s are highly
model dependent and of limited value especially if the
calculations are in a small space, e.g., valence nucleons in
one major shell. For example, Zamick, Abbas, and
Halemane® considered M1 transitions in closed LS-jj
shell nuclei like %0 and “°Ca. In the absence of ground-
state correlations, all M1 rates and, hence, LEWSR
would be zero. However, when one allows for ground-
state correlations, e.g., two-particle-two-hole admix-
tures, especially those induced by a tensor interaction,
the value of the LEWSR becomes very large. It is, in
fact, much larger than say the calculated value in 23Si,
where the 12 valence nucleons are restricted to be in the
2s-1d shell.

For spin- and isospin-independent interactions, the
Wigner SU(4) group is a good symmetry group of the sys-
tem and the isovector spin operators Y [see Egs. (6) and
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(7)] connect only states belonging to the same (STY)
Wigner multiplet. This is the case with the model Hamil-
tonian in Egs. (8) and (9) when a;=B =0. Then, with
only a Wigner force, practically all spin isovector excita-
tions are forbidden except for a few excitations.>? We
shall turn back to this point in the next section.

A particular case of strong spin suppression and orbital
enhancement is that found in Elliott’s SU(3) limit,” which
is discussed in detail in Ref. 8. Because, in this limit, the
shell-model calculations generate low-lying spectra of ro-
tational character, one is tempted to connect properties
concerning M1 strengths, etc., that follow from shell-
model calculations with those from deformed mean-field
approximations. In other words, one may relate the
quenching or enhancement of orbital M1 transitions in
shell-model calculations to the spatial symmetries of the
mean field in the corresponding Hartree-Fock (HF) cal-
culations. The extreme case of a closed LS shell illus-
trates this. For a closed shell there are no M1 transi-
tions. This corresponds to the fact that the mean field is
spherically symmetric and commutes with the M1 opera-
tor. For an open shell (considering for the moment spin-
and isospin-independent forces) the M1 strength grows
with the number of particles (or holes) in the shell up to
midshell. This can be related to increasing spatial aniso-
tropies of the corresponding mean field.

As an example of this, we recall here the results® of
shell-model calculations in the even-even 7'=0 s-d shell
nuclei (**Ne,?*Mg, 28Si, S, and °Ar) with a two-body
spin-dependent delta interaction. In Ref. 9 the LEWSR
for isovector M1 transitions was calculated for different
choices of spin-orbit splittings a; and of the parameter
x =B /W. The results can be summarized as follows:

(i) For x =a;=0 [SU(4) limit] the B,(M1)1 is purely
orbital and grows in going from *°Ne to >*Mg and 2Si, or
from *°Ar to 23Si, in agreement with our previous re-
marks.

(ii) For a;=0, x =1, one still finds the same trend of
B,(M1)1 growing with number of particles (or holes) up
to midshell, but now the spin contribution is of the same
order as the orbital contribution. One also finds that
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B, (M1)1=B}" +B} ,

because as said above [see Eq. (12)] B{™* is zero for a
two-body & interaction in the absence of spin-orbit in-
teraction.

(iii) For ;70 (x =0 or x=1) the spin contribution
dominates over the orbital and cross contributions. The
last two contributions are of the same order and of oppo-
site sign [see Egs. (11) and (13)]; they almost cancel each
other.

II. SELECTION RULES FROM SHELL-MODEL
CALCULATIONS IN L-S COUPLING LIMIT

We performed shell-model calculations of Gamow-
Teller and M1 transitions for 4 =22 isobars (%20, 2?F,
22Ne, and *Na), i.e., six particles in the s-d shell, using
zero single-particle energy splittings and different interac-
tions. The selection rules found for M1 and Gamow-
Teller (GT) strengths are summarized in Table I for the
three types of forces used:

case 1 V,=—Gd&(r;—r,);
case 2 V), =—G(1+1P7,)8(r;—1,) ;
—xQ*(1)-Q*2) .

The selection rules for case 1 are also shown schemati-
cally in Figs. 1 and 2 for GT and M1 transitions, respec-
tively.

Figure 1 shows that all GT strengths starting from the
ground state of 2Ne are zero except for the transition

case 3 V,=

Y_
22Ne(071)—>%Na(170) .

This transition is marked by a solid arrow in Fig. 1. Itis
a strong transition that exhausts the “3(N-Z)” sum rule.
As discussed in the previous section, the Wigner super-
multiplet theory.is valid in this case and hence the only
allowed GT transition is the one between states belonging
to the SU(4) multiplet (100). Obviously these results are
independent of the type of Wigner force considered, and

TABLE I. The vanishing 0" to 1" transitions in the 4 =22 system.

Case 1.

Spin-independent delta interaction (x =0), degenerate s.p. energies.

(a) B(M1) are zero for T;=1 (T,=0) and T,=1.

(b) B(M1) are purely orbital for T;=1 (T,==%1) and T,=1.

(c) B(GT+) and B(GT—) are zero for T;=1 (any T,) and T,=1.

(d) B(M1) are purely orbital for T;=1 (any T,) and T,=2.

(e) B(GT+) and B(GT—) are zero for T;=1 (any T,) and T,=2.

(f) B(M1) are purely orbital for T;=2 (any T) and T,=3.

(g) B(GT+) and B(GT—) are zero for T;=2 (any T,) and T,=3.

(h) B(M1), B(GT+), and B(GT—) are zero for T;=3 (any T,) and T,=3.

Case 2. Spin-dependent delta interaction (x=§), degenerate s.p. energies.
(a) B(M1) are zero for T;=1 (T,=0) and T,=1.
(b) B(GT+) and B(GT—) are small (<1073) for T;=1 (any T,) and T,=1.
(c) B(M1), B(GT+), and B(GT—) are zero for T;,=3 (any 7T,) and T,=3.

Case 3.
(same as in case 1)

Quadrupole-quadrupole interaction, degenerate s.p. energies.
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FIG. 1. The vanishing B(GT+) (dash-dotted) and B(GT—)
(dashed) transitions of the 4 =22 system (with 7, >0) in the s-d
shell-model calculation when the spin-independent delta in-
teraction is used and the single-particle energies are set to zero.
The pictures for T, <0 and T, 20 are symmetric about 7, =0.
The solid line represents the only nonvanishing GT transition
from the ground state of >’Ne. It exhausts the 3(N-Z) sum rule.
Other possible transitions not connected by lines in the picture
are allowed.

therefore the selection rules for Gamow-Teller transitions
are exactly the same in cases 1 and 3. When the spin-
dependent § interaction is included (case 2) the multiplets
STY are destroyed in the sense that Y is no longer a good
quantum number? and most GT transitions are allowed
(see Table I). However, in this case L, S, and T are still
good quantum numbers, and therefore, one still has the
selection rule B(GT%)=0 for T,=T,=3. To under-
stand why this is so, we have to keep in mind that for the
six-particle system the states with T=T,_,, =3, T,=3,
two are completely symmetric in isospin space and, be-
cause of the 6 force, are spatially symmetric. Hence, they
are all S=0 states and are not connected by the Y,

operators.

Tl

T-T, 1 T
-T, 0 T,

(I'T'T, |py |ITT, ) =(—1)"

The three-j symbol in Eq. (14) is zero for T'=T and
T,=0. In particular,

1
0T,

(=" L =T,/V6 (1s)

z

is zero for ?Na and 1/V/6 for 2Ne. Hence, the selection
rule (a) is a particular case of the general selection rule
that says that there are no AT =0, isovector M1 transi-
tions in self-conjugate nuclei.'®
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FIG. 2. Same as Fig. 1 but for the vanishing (dotted) and the
purely orbital (dashed) B(M 1) transitions.

A similar argument explains why B(M1)1=0 in all
three cases for 20O (see Table I and Fig. 2). The

O+3Aﬁ 1*3 excitation could only be orbital, but since
neutrons have no charge, B(M1)1=0. It is also worth
recalling here that for identical particles (only neutrons in
the 220 case) the isovector and isoscalar excitations are
the same, and, as discussed in the previous section, the
isovector LEWSR is easily shown to be zero.

Figure 2 also shows that in case 1 many (but not all) al-
lowed M1 transitions are purely orbital. As in the case of
GT transition, the lack of spin strength here is connected
to SU(4) symmetry and does not prevail when the spin-
dependent interaction is taken into account. However,
the selection rule (a) [B(M1)1=0 for
T;=T,;=1, T,=0] prevails in all three cases (see Table I
and Fig. 2). In Fig. 2 one sees that the transition

M1
0"1—1%1 in Ne is purely orbital, but the correspond-
ing transition in *?Na is zero. This selection rule comes
from isospin SU(2) algebra and is easily understood if one
takes reduced matrix elements of Eq. (1) in isospin space:

(r'r’|||\py||IT) . (14)

The same coefficient in Eq. (15) enters in Gamow-
Teller transitions between 22Ne and 2?Na isobars for
T;=T;=1. As said before, in cases 1 and 3 these transi-
tions are forbidden because of SU(4) symmetry, but even
in case 2 these transitions are very small because the 071
and 171 states are still predominantly S =0 states. It is
also interesting to note that the M1 transitions between
T;=2 and T, =3 states in **Ne and 22F, which in cases 1
and 3 are purely orbital, are much smaller (by an order of
1073) in case 3 (quadrupole-quadrupole interaction) than
that in case 1 (8 interaction).
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III. NUCLEAR DEFORMATION —ONE-BODY
APPROACH

In the previous section we considered spin and orbital
selection rules in terms of two-body interactions. In this
section we will focus on the one-body aspects by consid-
ering the deformed mean field. We will consider how the
nuclear shape affects the spin properties in a nucleus. To
this end we compute total orbital and spin strengths for
the case of deformed harmonic oscillator mean fields. We
consider first the case of axial symmetry (0, =0, >w,,
prolate) and then the triaxial case (0, >w,>w®,). As in
the previous section, calculations are presented for even-
even nuclei with the N =2 shell open. The problem of or-
bital enhancement has been previously considered in the
corllltext of projected Hartree-Fock by Moya de Guerra et
al.

A. Axial symmetry

To stress analogy with the L-S coupling limit con-
sidered in the previous section, we consider Nilsson mod-
el wave functions in the asymptotic limit. In this limit
the single-particle levels are characterized by Q"[Nn,A]
or, equivalently,

Q"[n,n,A}l (Q=A+Z2=1

2

N=2n,+n,+A).

The order of the twofold degenerate levels in a given N
shell is ;[NNO], $[NN—11], {[NN—11], J[NN—22],
2[NN —22], {{NN—20],..., . In this basis /, and s,
are diagonal and the total M 1 strength is

B(Ml)T=Z3—7;(<¢om_u+l¢o>—<¢slﬂ+l¢o>2), (16)

(Polp—pildo) = >

p=mv pphp
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TABLE II. Selection rules and matrix elements of /, in the
cylindrical basis (B,=V (Mw,/#)=1/b,, B, =V (Mw,/#)
=1/b,,and =B, /B, B, /B..

N’ n, n, (nn,A+1Q+11, |n,n,AQ)
N n, n,—1 —B*V(n,+A+1)n,/2
N n,—1 n,+1 —B*V'n,(n,+1)/2
N+2 o, n41 =BV FAFDn T2
N—2 n,—1 n,—1 —B~V'n,n,/2

where the second term represents the correction due to
the spurious state

bs=y7+160), N?=(4ol%I4o) . a7

and ¢, is the intrinsic ground state.
Using the selection rules in Table II for the [, opera-
tor, as well as

siln,nzA2>=|n,nZAE:t%>8A,ni1/2 ) (18)

the matrix elements in Eq. (16) can be easily computed
for any particular ground-state configuration ¢,. We as-
sume a closed core and 2n . protons and 2n, neutrons in
the open shell N. We denote by A p (p=m,v) the occu-
pied states in the N shell and by p , the empty levels in the
N and N +2 shells (see Table II) and write

S (Pl 2+l )12+ K, 1B 1) (19)

The states h,, p, in Eq. (18) are defined so that their () value is greater than zero (Q,2 Lyand & p is the time reverse of

h,. A similar expression holds for the spurious correction

pP=72

(Bsls180) =53 3 (poliv 1) poliaslh,) +<poli 1y Xp, 1)) +4p, is 15, )b, lus R0, 20)

L PP )

and normalization factor

N=3 3 (Kp,lis+ 1h )2+ 1Kp,li— |,
P Py,

+ U p,liv ) . 1)

From these equations [(16)—(21)] it is easy to see that if
there are only two neutrons and/or protons in the open
shell &, the total spin strength will be zero. Indeed, in
that case there is only one h, state entering in Egs.
(19)-(21), the one corresponding to the lowest level

+[NNO] which cannot be connected by the S operators
to any empty state p,,.

Hence, axially symmetric nuclear deformation can be
understood as a mechanism for spin suppression in some
particular cases, like the one just considered of only two
neutrons and/or only two protons outside closed shells.
If more nucleons are added in the open shell N, other
states (2[ NN —11],...,) are occupied that may be con-
nected by the S, operators to empty states. In those
cases the spin strength will remain finite at any deforma-
tion.
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~ As an example, consider the cases of 2°Ne and **Ne.
For 2°Ne we have two protons and two neutrons in the
+[220] level and it is easy to see from Table II that the

nonzero matrix elements entering in Eqgs. (19)-(21) are

(211211, 12204 ) =(2114[1, [2204 ) = -, ,
L (22)
(4312]1,12201 ) =(431L|1,[220L)=—Vv3/2B8_,

for both proton and neutron states. After substitution of
Eq. (22) into Egs. (19)-(21) we find, taking bare g; values,

<¢0‘#—#+i¢o> =(¢olL_L o)
=2[(dslpl¢) >=02B% +3B )k ,

which gives a purely orbital M 1 strength,

[BOM 1) Tihs= (B + 362 Wk (23)

From this expression one also sees that this purely orbital
strength tends to increase with deformation. For small
deformation 2. =0 and B% ~4, but for large deformation
B and B% increase as w, /w,. For instance, for superde-
formed *°Ne (o, /w,=2) one has 85 + 3B~ =5.75.

For ?*Ne we have, in addition, two neutrons in the
2[211] level. For protons, the nonzero matrix elements
are again those in Eq. (22), but for neutrons the nonzero
matrix elements are now

2375

(431%|l+|220%)=(431%|l+22_0%)=—\/3_/2[3’- ;
(21114]1,12201) =(2023|1, |2113)=—8, ;
(4223]14 2113)=—V2B_;
(420L|1_[2113)=—pB_;
(2004]1_|2113)=—B, /V2;

(24)

(2114 ]s_|2112) =1

where, as in Eq. (22), we write occupied states to the right
and empty states to the left. Clearly, there is, in this case,
a spin contribution to the total strength, the latter is
given by

3 2
B(MD)1| o= —i;i[zﬁi +38% + (g
—(2B% +3p% +g))?/N?], (25)

where we used again bare g; values, and the normaliza-
tion factor of the spurious correction is now

N2=3p% +9B% +1. (26)

Hence, we see that, in this case, the M1 orbital contribu-
tion still grows with deformation as w,/w,, but for any
deformation there is always a finite spin contribution.
For instance, for w,/w, =2, one has an orbital contribu-
tion of

6.3X —43; w3,
which is less than half the total B(M 1)1 for the same de-
formation when the spin contribution is included.

It should be mentioned that the orbital enhancement
for M1 transitions does not extend to magnetic moments
of K#1 bands. For the orbital part of magnetic mo-
ments we evaluate, in the intrinsic state, the expectation
value of L,. In more detail the matrix element is

—ifi{Y(B\x,B.y,B,z)[x(3/3y)—y(3/3x)1Y(Byx,B.y,B.2)) .

Introducing X =p,x, etc., this becomes
—ifi( P(R,9,2)[X(3/39)—H(8/3%)](X,9,2)) .

Clearly, this expression does not depend on f3; or f3,.

This difference in the behavior of magnetic moments
and magnetic dipole transitions may help to distinguish
this deformation mechanism from another source of or-
bital renormalization—meson exchange currents. Al-
though the calculations of the latter effects are complex
the effects can be approximated by replacing the orbital
term g,/ by (g, +8g,)l +g,[ Y%s1*=!, where 6g, is approx-
imately equal to 0.2 N/ 4 for a proton and —0.2Z / 4 for
a neutron. This renormalization affects both magnetic
moments and M1 transitions. In order to disentangle the
relative contributions of the deformation mechanism and

exchange current mechanism one will have to carefully
analyze both the magnetic dipole moments and the mag-
netic dipole transitions which have a strong orbital con-
tent.

B. Triaxial case

In this case we label the single-particle levels by
(ny,n,,n,) with degenerate single-particle states for
X=+1and 2= —1. For a given N shell, the sequence of
levels is now (OON), (OIN—1), (10N —1), (02N —2),
(11N—2), (20N—2),..., and (NOO). The selection
rules and matrix elements for /,, operators are shown in
Table III. Considering again a given state configuration
with 2n_ protons and 2n, neutrons in such a shell, an
analysis similar to the one in the previous section shows
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TABLE III. Selection rules and matrix elements of /; (B,-“f =B:/B;xB;/B:).

N’ n, n, n, {nynyn;|2il |n,n,n,)
N Ty n,+1 n,—1 V'n,(n,+1)B;;
N n, n,—1 n,+1 Vny(n,+1)(—By;)
N+2 n, n,+1 n,+1 Vn, ¥ D(n, ¥ 1B;
N-—2 n, n,—1 n,—1 Vngn,(—=B;;)
{nyinyn,|2il,|n.n,n,)
N n,+1 n, n,—1 Vn,(n, +1X—B%)
N n,—1 n, n,+1 Vin(n,+1)B,
N+2 n,+1 n, n,+1 V(n,+1)(n,+1(—B5)
N—2 n, —1 fly nz—l annzB;
(n;n}:nz'|2ilz|nxnvnz)
N n,+1 n,—1 n, V'n,(n, + 1B},
N n,—1 n,+1 n, Vn (n, +1)(—B)
N+2 ne+1 n,+1 n, V(n +1D)(n,+1)85
N-2 n,—1 n,—1 n, Vnn,(—B5,)

that in this case the orbital M1 strength has contribu-
tions proportional to

( ,7}“)2 (i#j,i,j=x,p,z)

from particle-hole excitations within the same major shell
N, and contributions proportional to (B;; )? from excita-
tions to the N +2 shell (see Table III). Therefore the or-
bital M1 strength grows again with deformation. On the
other hand, for the spin operator s . the matrix elements

(B} +(B)?

are diagonal in n,, n,,and n,:
7 ’ ’ ’ —_— ’
(nynn= Isylnxnynzz)—Sn;"XSn;nyﬁnz,nz(E s, 1Z) .

Therefore there are no particle-hole excitations due to the
spin operator and the total B(M 1)1 strength is purely or-
bital.

In the restricted N =2 space (i.e., neglecting contribu-
tions proportional to ;) the total M1 strength for 2Ne
in the triaxial case is

3
1= 2 1B+ (BF)2T1 11—
B(M1)?1 47T#N[( yz) ( xz)] Z(B;)2+%(B;

In Eq. (27) (triaxial asymptotic) there is no spin contribu-
tion to B(M1)1. This is in striking contrast to Eq. (25)
(axial asymptotic) where the spin contribution is substan-
tial.

We can make a connection with the two-body ap-
proach in Sec. II by noting that a Hartree-Fock calcula-
tion with a pure Wigner interaction will necessarily lead

(27)

P+ 1B’

to a triaxial solution for ??Ne (or 2*Mg). Thus, things
hang together nicely. In both the shell-model calculation
and the one-body approach, the spin contributions to
B(M1) transitions from the ground state vanish and the
transitions are purely orbital.

Summarizing this part we may then say that while axi-
ally symmetric deformation is a mechanism for spin
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FIG. 3. Schematic representation of possible M 1 excitations in ??Ne for axial and triaxial shapes within the major shell N=2. Oc-
cupied orbits are marked by solid circles for protons and by open circles for neutrons. Orbital and spin excitations are shown by
solid and dotted lines, respectively. The representation of the orbital in the restricted N =2 s-d basis is indicated at the left of each

level.

suppression in some particular cases like 2°Ne, triaxial
deformation provides a more stringent mechanism that
causes complete suppression of the spin strength in the
asymptotic limit. This difference between axial and triax-
ial deformations is illustrated schematically in Fig. 3 for
22Ne, where for simplicity we consider only transitions
within the restricted N =2 space.

C. What is the correct picture —axial or triaxial?

We have seen that there is a large difference in the spin
contribution to B(M1) depending on whether a nucleus
is axially or triaxially deformed. We will of course have
to treat every nucleus on an individual basis and keep
open both possibilities.

For the specific case of ?’Ne, early Hartree-Fock re-
sults tended to yield triaxial solutions. However, with
more modern Hartree-Fock calculations, in which
sufficiently strong spin-orbit interactions are included,
the lowest energy solution has axial symmetry.!'%13

Independent, albeit circumstantial, evidence for axial
symmetry comes from the comparison, performed by Liu
et al.,'* of the B(M1) strength, both spin and orbital, in
an axial Nilsson model calculation and in the shell model.
The shell-model results with the OXBASH computer
code' have generally fit a wide variety of data and there-

fore should be reliable. Both calculations, shell-model
and Nilsson, predict substantially larger spin contribu-
tions to B(M 1)1 in 2?Ne than in °Ne. The relative mag-
nitudes of spin and orbital contributions in the two calcu-
lations are in fair agreement. This suggests that *’Ne is
not a triaxial nucleus and there should therefore not be a
substantial reduction in the spin strength.

It is, however, possible that certain selected heavier nu-
clei do have triaxial shapes and that therefore the spin
strengths in these nuclei will be lower than what one
would expect. For example, we may ask, in the context
of double beta-decay problem, whether a calculated
suppression of double beta-decay matrix elements, as ob-
tained by J. Engel et al.,'® which they attribute to a
neutron-proton interaction (probably in a J=1 T=0
state) can be equivalently explained in a one-body field
picture, as due to the onset of triaxiality or gamma insta-
bility. We plan to look at this problem in the near future.
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