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Radiative muon capture in a relativistic mean field theory: Fermi gas model
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We examine radiative muon capture in a nuclear medium using mean field theory and a relativis-

tic Fermi gas model for the nucleus to obtain the single nucleon states. The aim is to explore, in a

simple model, effects of the medium which are characterized primarily by a nucleon effective mass

m, as well as other relativistic effects. The relative rate, i.e., the photon spectrum divided by the

nonradiative rate, and the photon asymmetry relative to the muon spin are calculated. The most

important effect turns out to be the Fermi motion which reduces the relative rate by a factor of 2—3

in the experimentally accessible region, compared to the static case. The m * effect further reduces

the result by 10—S0%, depending on the photon energy. The relativistic nature of this calculation,
unlike usual nonrelativistic calculations, allows these effects to be incorporated to all orders in 1/m.
As a consequence some interesting effects can be studied in the small k region. We conclude that

both relativistic kinematic and medium effects may be significant and thus that it is worthwhile in-

vestigating this reaction in more realistic relativistic nuclear models.

I. INTRODUCTION

There has been a lot of interest recently in relativistic
mean field theory approaches to problems involving a
variety of medium energy processes in nuclei. ' Recall
that in such theories the effects of the nuclear medium
are incorporated via very strong effective average scalar
and vector potentials. The nucleon field satisfies a Dirac
equation in the presence of these potentials. One impor-
tant qualitative effect of such potentials is a renormaliza-
tion of the nucleon mass in the medium which is brought
about by the scalar potential. Thus in the medium the
free nucleon mass m ~m * where the effective mass m *

can be of the order of 0.6m.
One is then immediately led to the question of whether

one can see effects of this mass renormalization in nuclear
processes. A related question is whether one can see
effects which can be traced to the relativistic nature of
the approach. This question has been asked with respect
to a variety of proton scattering reactions, to ordinary,
nonradiative, muon capture, to beta decay, and to elec-
tron scattering, with somewhat mixed results. Some-
times there are moderately large effects and sometimes
only fairly small ones. The purpose of the present paper
is to ask this same question with respect to radiative
muon capture.

The

backflow

effects associated with higher-order
corrections to the relativistic wave function have been
shown to be important for isoscalar transitions. Such
corrections are suppressed for isovector transitions such
as those associated with muon capture and thus such pro-
cesses are attractive to study.

Why else might radiative muon capture be interesting
as a laboratory for investigating relativistic and efFective
mass effects? In the first place one might expect radiative

muon capture to be more sensitive than some processes to
relativistic effects in the model. This possibility is sug-
gested by the fact that radiative muon capture, like ordi-
nary muon capture but unlike beta decay, depends on the
induced weak interaction coupling constants. In particu-
lar, radiative capture is very sensitive to the induced
pseudoscalar coupling gz which is given by the
Cioldberger-Treiman relation. Sensitivity to the induced
couplings is important since these are terms of order
1/rrt, and thus in some sense relativistic corrections.

The effects of the medium may also be important in ra-
diative muon capture. Such effects, originating in the
effective mass m*, enter in two places. First, since
m* &m, they will enhance all of the relativistic type
terms, which are of the form p/m. Second, m* will ap-
pear in the numerator of the g& terms since the
Goldberger-Treiman relation, applied in the medium, in-
dicates that g~ is proportional to 2m*g~. Thus, at least
for these terms, some of the m* effects may cancel.
However, since there are many such terms with different
signs, it is necessary to actually do a calculation to really
determine the effect of either relativistic or m * terms.

The purpose of this article is thus to carry out such a
calculation in a very simple model, namely, a relativistic
Fermi gas. While such a model. is obviously
oversimplified and cannot be expected to give quantita-
tive information relevant to real nuclei, it should give
some idea of the size of the various effects and some indi-
cation of the value of a calculation involving more de-
tailed models.

In the next section we review the standard approach to
radiative muon capture for a free proton. The following
section describes the features of the relativistic mean field
theory which will be required. Next we describe how
these two ingredients are combined to obtain a calcula-
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tion of both the photon spectrum and the asymmetry rel-
ative to the muon spin. The final sections describe our re-
sults and some of the interesting features which emerge.

II. RADIATIVE MUON CAPTURE ON A FREE PROTON

g~(q ) =g~( —m „)(I +m „)/(m —
q )

gp( —m„)=m„(m~+m„)g„/(I +m„)—=6.6g„

(b) n p
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FIG. 1. Diagrams contributing to radiative muon capture on
a proton: {a) radiation from the muon; {b) radiation from the
charge and magnetic moment of the proton; {c) radiation from
the magnetic moment of the neutron; {d) radiation from the ex-
changed pion which generates the induced pseudoscalar cou-
pling; and (e) gauge term arising from the momentum depen-
dence of the weak vertices.

In this section we review the standard theory of radia-
tive muon capture as applied to the free proton. We are
thus considering the process p+p —+n+v+y. Notation
will be that of Ref. 7, and, in particular, we shall use the
particle symbols to stand for their four-momenta and use
rn, I„,m„ for the respective free masses.

The usual contributions to this process are depicted in
Fig. 1 and correspond to radiation from the muon, from
the proton via both charge and magnetic moment and
from the neutron via its magnetic moment. Figure 1(d)
corresponds to radiation from the virtual pion which gen-
erates the induced pseudoscalar coupling and Fig. 1(e) is
a gauge term arising because of the momentum depen-
dence of the weak vertex. The weak vertices contain vec-
tor and axial vector couplings, g~ and g~, and as we11 the
weak magnetism term gM and induced pseudoscalar term

gp
For the calculation considered here we will need the

matrix elements corresponding to these diagrams evalu-
ated for free Dirac spinors. Such matrix elements are
easily calculated using standard Feynman rules and are
given explicitly in Eq. (1) of Ref. 7. The induced pseudos-
calar coupling is defined as a function of momentum
transfer as

being the Goldberger- Treiman value. For radiative
muon capture q takes two different values depending on
the diagram being considered. In particular one has
q =

qL
=n —p for Figs. 1(a) and 1(e) and

q =qz=n —p+k for Figs. 1(b) and 1(c). Figure 1(d)
contains both. Of these, qL -=—m„, but qz can nearly
reach + m „,which leads to an enhancement of gz(q ) of
almost a factor of 4 and contributes to the sensitivity of
radiative muon capture to the induced pseudoscalar cou-
pling constant.

These are the important contributions to this matrix
element, but there are some others which could be includ-
ed. In particular some contributions of the h(1232) have
been considered in Ref. 8. These seem to be small, how-
ever, and will be neglected here.

To evaluate the capture rate, one squares the matrix
element and sums on spins in the standard fashion, and
combines the result with the appropriate phase space fac-
tor. The muon is taken at rest and the appropriate hy-
drogenic muon wave function, evaluated at the origin, is
multiplied into the matrix element. For the free proton,
the calculation is usually done in the rest frame of the
proton, so the proton is taken at rest as weH. The actual
quantities that can currently be measured are the photon
spectrum dI /dk and the asymmetry parameter A (k) in
the angular correlation

d I /dk d cos8-1+ A (k)cos8,
where cosO is the angle between the muon spin and the
photon direction. This, by now, rather standard pro-
cedure is described in detail in Ref. 7.

For the purposes of the present calculation this
description of the process for relativistic free protons is
sufhcient as we plan to treat the nucleus as a relativistic
Fermi gas. Thus in our case the extension to a nucleus
will be a simple extension of the free single-particle calcu-
lation to the situation where the proton is not at rest, to-
gether with a sum over the set of single-particle states.
To make contact with the existing more realistic, and in-
variably nonrelativistic, nuclear calculations, however, it
is useful to review briefly the usual nonrelativistic ap-
proach for the nuclear case. In that case the free proton
matrix element derived from the diagrams of Fig. 1 is
first reduced to two-component form. The muon is taken
at rest, but not the proton, and again the muon wave
function at the origin is included. Then a nonrelativistic
approximation is made, which normally consists of keep-
ing terms only through O(1/I), though terms of
O(1/I ) were considered by Sloboda and Fearing. The
result is an operator in two-component spin space con-
taining terms like 1, cr-v, and p/m. Matrix elements are
then taken using some appropriate nonrelativistic nuclear
wave functions. Fermi motion is thus included to erst or-
der in p via explicit matrix elements of the operator p.
To obtain the photon spectrum or asymmetry parameter
the matrix element is squared and phase space included
in the usual way.

It is the usual practice to divide the radiative rate I by
the ordinary nonradiative rate A„d, calculated in the
same model, as this is supposed to remove some of the
dependence on the detailed nuclear model and give a
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cleaner interpretation in terms of the weak couplings.
While this is only partially effective in removing the mod-
el dependence (see, e.g., Ref. 10), we will use this stan-
dard procedure.

One of the earlier summaries of this approach for nu-
clei was given by Luyten, Rood, and Tolhoek" who used
closure and simple harmonic oscillator nuclear wave
functions. Other calculations' were done in a giant di-
pole resonance model of Foldy and Walecka' and in a
variety of other nuclear models some of which are de-
scribed in a recent review. '

On the experimental side there have been a number of
measurements of both photon spectrum and asymmetry
parameter in nuclei. ' There is also an experiment in
progress to measure the process for the first time on a
free proton. '

We have now summarized briefly the standard ap-
proach to radiative muon capture. In the next section we
will review those aspects of relativistic mean field theory
which are required for the calculation we wish to make.

III. RELATIVISTIC MEAN FIEI.D THEORY

—iE t+ip x ig„Vot. —
(2)

and substitute into Eq. (1) we obtain

[yoy'p+yo(m —g, go)]u (p, A. ) =E'u (p, A, )

If we take m*=m —g, t1)0 and E*=(p +m* )' then
this equation looks just like the free Dirac equation and
the solutions for u(p, A, ) are the usual free spinor solu-
tions of momentum p and spin A, , only with the mass m
replaced by m*. Thus, in this approach individual nu-
cleons are described as though they were free, but with an
efFective mass m *.

IV. RMC IN INFINITE NUCLEAR MATTER

In this section we describe the model adopted herein to
investigate m * effects. We begin by assuming an infinite

I

There has been a lot of attention directed recently to-
ward the relativistic mean field theories of the nuclear
medium' and a lot of effort devoted to exploring various
aspects of such theories. In the simplest picture, which is
all we will use here, the nuclear medium is described by
very strong scalar and vector mean fields. A nucleon in
the medium then is governed by the Dirac equation in the
presence of these fields, in particular by a solution of the
equation

[i g g„y Vo
——m +g, po]/=0 .

Here Po and Vo are the scalar and time component of the
vector mean fields, which for the infinite nuclear matter
case can be taken as constants. The couplings are g, and
g, and together with the fields lead to potentials of about
330 MeV and 400 MeV, respectively. ' If we assume a
solution of the form

1
SF(q) =

g —g, y Vo —m' (4)

and it would appear that the simple prescription outlined
in the previous paragraph would miss the g, y Vo term in
the denominator. However, by writing out the matrix
elements explicitly one can easily see that the extra time-—ig vot .
dependent factor e ' ' in the solution, Eq. (2), just pro-
duces a shift in the energy, thus changing qo by exactly
the amount needed to cancel this term. Thus, ignoring—ig, vot .this term in the propagator and the factor e ' ' in the
wave functions and just substituting m ~m * everywhere
gives the correct and consistent answer.

The square of this single-particle matrix element,
Q~Mf, ~

can be evaluated using the usual trace tech-
niques. Even for the present problem, the situation is
sufficiently complicated that this expression was evalu-
ated numerically. Thus the matrix element Mf; was ob-
tained by adopting a specific representation of the ma-
trices and multiplying them numerically, just as was done
in Ref. 7. The resulting number was then squared so as
to obtam Q IMf; I'

The capture rate is then obtained by multiplying
Q~Mf;~ by the appropriate phase space and other stan-
dard factors and integrating over the final neutron and
initial proton states. The result is

nuclear medium. Thus the mean fields $0 and Vo can be
taken as constants. In the more realistic finite nucleus
case these fields will be position dependent, and as a
consequence the calculation mould be much more compli-
cated. The potential' g, $0=400 MeV so that the
efFective mass m*=0.57m. The nucleus is then a relativ-
istic Fermi gas, with single-particle states represented by
Eq. (2) with the usual spinor u (p, A, ), except with mass
m, and with all proton (and neutron) states filled for
p ~ kz, where k~ is the Fermi momentum of approxi-
mately 280 MeV. Likewise the final neutron goes into a
single-particle relativistic spinor state with n & k~.

The basic single-particle matrix element is obtained by
evaluating the relativistic expression, Eq. (1) of Ref. 7, us-
ing the wave functions in the medium. Thus the expres-
sion for Mf, is the same as before except now m is re-
placed by m * in the spinors, in the nucleon propagators,
and in the expression for the Goldberger-Treiman rela-
tion for gF. The m which appears in the 1/2m normal-
izing factors in the weak magnetism term g~ and in the
anomalous magnetic moment terms proportional to ~ or
x„ is kept as m rather than m * as these factors just define
the units of the couplings. It is easy to show explicitly,
within the context of this model, that this interaction tak-
en between states in the medium leads to an exactly
gauge invariant result.

This procedure as applied to the propagator deserves
some further comment. The momentum space Feynman
propagator associated with the Dirac equation in the
medium, Eq. (1), ls

2 k (cos8 ) k n Q nI = ', '," ~y„(0)~'f„'"dkf, ", '"dcose„f 'dp f„™xdnf dP„" —g ~Mf;~'.
477 4WkF min k min ~min F 0 " EFE„n+v 4, ,„,
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In this equation Gp = 1.137X 10 "MeV is the Fermi constant, a =—„', is the fine-structure constant, and
~ $„(0)~

is
the muon wave function at the origin. For the few absolute rates quoted we have calculated ~!t„(0)~

using the simple
Bohr wave function for Ca evaluated at the origin and then multiplied by a factor 0.44, as given by Sens, ' to account
for the average over the nuclear volume. This wave function of course cancels in the ratio of radiative to ordinary non-
radiative rates. It should be emphasized that this procedure defines a convenient normalization but does not necessarily
make this a realistic calculation for Ca. The various integration limits are complicated functions of the kinematics
and are evaluated numerically. These limits are determined by the usual energy and momentum relations for a three-
body final state together with the constraints p ~ kz and n ~ kz.

We will for the most part divide out the ordinary nonradiative rate to suppress some of the sensitivity to the nuclear
model. Thus we also need the ordinary rate which is given by

kF n max
2

4&kp ni~ F p n + spins

Here ~Mf; ~
is that appropriate for ordinary capture. It

is obtained from Ref. 7 with the same changes m ~m'
as used for the radiative case.

For such a complicated integral as in Eq. (5) above it is
important to have some numerical checks on the correct-
ness of the calculation. We made the usual checks on the
stability of the integral by varying the number of integra-
tion points. We also checked that in the limit m* —+m
and k~~0 the numerical result did in fact reduce to that
for a free proton at rest as obtained in Ref. 7, as it should.

V. RESULTS AND DISCUSSION

In this section we examine the effects on the relative
rate R =(dl /dk)/A„d produced by replacing m by m*
and by incorporating Fermi motion as rejected by a
nonzero kF. The weak couplings are taken as in Ref. 7
and in particular gz is evaluated using the Goldberger-
Treiman functional form given above.

Figure 2 shows, for both the relative rate and the
asymmetry, the effect of replacing m by m '=0.57m with
k+=0. Taking k+=0 puts the initial proton at rest and
thus removes effects of Fermi motion and isolates the m *

effect. One can see from the figure that the effect for both

rate and asymmetry is not large. The rate does increase
over most of the spectrum, by as much as 10%%uo at the
peak, as m decreases, but most of this comes from
changes in A„d.

Figure 3 shows the same curves over the range k ~ 60
MeV which is experimentally accessible. Shown also are
the results for k+=280 MeV corresponding to nuclear
matter. Clearly the Fermi motion effect is much larger
than that due to m . The ordinary rate drops by a factor
of more than 5 and the spectrum dI /dk drops by an
even larger factor. Also now the m*=0.57m case is
lower than the free nucleon mass case by as much as
30—50% above 70 MeV. Fermi motion reduces the
asymmetry parameter as well, by about 10%. The reduc-
tion of the relative rate and the asymmetry parameter
with increasing k+ is a fairly uniform one, as can be seen
from Fig. 4 which shows these quantities for a series of
values of k~. Note that the Fermi motion effect is not an
inherently relativistic concept. Such e8'ects are present in
most nonrelativistic calculations which keep terms
through the first power in p. The advantage of the rela-
tivistic approach here is that all powers of the momen-
tum are kept.

It is interesting to consider separately the two different
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FIG. 3. EfFect of Fermi motion and of m~m on the rela-
tive rate R and asymmetry parameter A in the experimentally
accessible region k & 60 MeV. The upper curves are the 0+=0
curves of Fig. 2. The lower curves have k+=280 MeV. For the
latter the m and m*=0.57m cases lead to A„d values of
1.64X10' s ' and 1.26X10 s ', respectively.
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periment by significant amounts, of the order of several
times g~. Thus they are well within the interesting re-
gion, even for present experiments, but most certainly for
future higher precision ones. This suggests that it is
indeed appropriate to examine such relativistic e6'ects in
more detail and in a model relevant for finite nuclei. It
would also be interesting to explore in such a calculation
the consequences of using an eA'ective pseudovector md%
interaction, a question which has not been addressed at
all in the present investigation. Such an interaction leads
to the same axial weak current for nucleons as does the

pseudoscalar interaction, even in the presence of uniform
mean fields. It could, however, generate additional
terms in the matrix element when combined with the
electromagnetic interaction, as required for radiative
muon capture. Furthermore, for finite nuclei there may
be other interesting di8'erences worth investigating, as
found for other situations.
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