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We investigate some important theoretical issues associated with the treatment of the spin-2

baryons in the effective Lagrangian theory. These are the form of the spin- —particle propagator,
off-shell parameters involving the spin-

~ Geld; strategies of implementing gauge invariance, and uni-

tarity. We comment on previous works by Peccei, Nath et aL., Williams, and Adelseek et aL. , the
last three works being in the context of recent revival of interest of baryon resonance structure in

quantum chromodynamics. Our experience on the 5(1232) resonance is invoked as a concrete ex-

ample of dealing with these problems. Examples of some related problems in theories of massive

vector and spin-2 particles, in pion decay and supersymmetry, respectively, are also discussed.

These discussions should trigger new theoretical and experimental investigations in the study of
baryon resonances excited from free hadrons and in complex nuclei.

I. INTRODUCTION

Thanks to the development of quantum chromodynam-
ics (QCD), the color gauge theory for strong interaction,
there has been a renewed interest in the structure of had-
rons. ' Building of new high-duty electron accelerators,
such as the continuous electron beam acclerator facility
(CEBAF), sets the stage for extensive electroweak studies
of the excited baryons, many of which have spins greater
than or equal to —,', both in free state and in nuclei. Photo
and electroproduction of these baryons require theoreti-
cal investigation of gauge-invariant EBB*amplitudes (y,
real or virtual photon, B,B*, nucleon and excited
baryon, respectively), propagation and decay of the reso-
nances B', ideally without violating unitarity. This last
requirement is particularly difficult to implement for res-
onances beyond b, (1232), due to the opening of many
channels, to which B* can decay by strong interaction.
Another troublesome aspect is the ambiguity related to
the background contribution. Considerable progress has
been made in the last decade in handling these difficulties
for 6(1232), but much remains to be done for other reso-
nances.

The purpose of this paper is to examine some of these
important theoretical issues for the spin- —,'baryons, of
which b, (1232) is the most familiar example in the inter-
mediate energy nuclear physics. While there is a long his-
tory of this subject, starting with the classic papers by
Dirac, Fierz and Pauli, Rarita, and Schwinger, among
others, problems with massive spin- —,

' fields keep coming
back. Among the most recent discussions that we shall
address here, are those by Williams and Adelseck et al.
on the propagator for these baryons, the handling of the
gauge invariance and baryon decay width, by Adelseck
et al. , and constraints on the interaction Lagrangian for
massive spin- —,

' fields, by Nath et al. We shall also touch
upon the recent discussion of the problem of interacting

massive spin- —,
' fields, in supersymmetric theories. Ap-

plications of our present discussions in the context of ex-

citations of baryon resonances in complex nuclei are
beyond the scope of this paper, and will be taken up else-

where. An outline of the rest of this paper is given below.
In Sec. II we review the local relativistic wave equation

and Lagrangian for a free massive spin- —', particle. We
present the defining equation for the propagator and
solve for the propagator in momentum space. Spin pro-
jection operators are introduced which ease the calcula-
tions in the remainder of the paper.

The propagator derived in Sec. II agrees with most
previous works, ' but not with the recent works of Wil-
liams and Adelseck et al. In Sec. III we examine the
propagators used by Williams and Adelseck et a/. It is
shown that these proposed propagators do not have
inverses, and corresponding wave equations for the spin-
—,
' field cannot be defined. A brief discussion of the nonlo-
cal wave equation is made and we show that the "nonlo-
cal" propagator is also in disagreement with the propaga-
tors presented by Williams and Adelseck et al.

Since the effective Lagrangian approach remains very
useful in medium energy physics, we consider, in Sec. IV,
the ambiguities in constructing an effective Lagrangian,
examining the example of photoproduction via the
b(1232,—,'+) resonance. At each vertex involving the del-

ta, there is freedom related to the off-shell behavior of the
delta. We review the theoretical attempts to fix the off-
shell behavior of the delta and make comparisons with
the data. As an additional example, we discuss how the
ofF-shell behavior of the spin- —, particles is determined in
the supersymmetric theories. This is only a formal com-
parison, since supersymmetry has nothing to do directly
with the baryon properties.

In Secs. V and VI we return to extant problems in the
extraction of the yBB* amplitudes. The first problem is
related to a nongauge invariant vertex often found in
literature. ' ' The lack of gauge invariance may easily be
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overcome by coupling to the electromagnetic field tensor.
The final problem we discuss is unitarity and the incon-
sistent insertion of a width in the propagator at the level
of the Lorentz invariant matrix element. Although the
general problem of n-body, m-channel unitarity has been
discussed to some extent in the literature, ' ' our goal
here is to illustrate the difhculties associated with unitar-
izing the amplitude obtained from evaluating the effective
Lagrangian in the tree approximation. We finally sum-
marize our conclusions.

In Appendix A, we demonstrate how an off-shell mas-
sive vector field can generate a spin-zero contribution in a
transition amplitude. This demonstration is given in the
context of pion decay in the intermediate vector boson
theory. In Appendix 8, we look at the ~X scattering am-
plitude in the s-channel delta exchange approximation,
and show that there is always a spin- —,

' piece of the ampli-
tude that cannot be eliminated, disproving the anticipa-
tion of Peccei' that a pure spin- —,

' projection of such an
amplitude might be possible with a suitable choice of off-
shell parameters for the delta. These two appendices
bring out an interesting common property of the massive
vector and spinor fields for J= 1, —,', J being the angular
momentum of the field, viz, such fields, "off-shell, "would
generate contributions involving the (J-1) sector of this
field, in effective amplitudes.

II. FREE LAGRANGIAN AND PROPAGATOR
FOR A MASSIVE SPIN-

2
PARTICLE

To start, we recall the free Lagrangian for the massive
spin- —,

' field

L=f A pP,
with

(Sa)

a„y~=o . (Sb)

Note that g' is a vector spinor with a suppressed spinor
index; thus Eq. (5a) implies a sum over the spinor index P

(y„) p0p=o . (Sc)

2 1 3+1
3M2 3M2 2g + ]

(2A +1)

1 3+1 AM
'V 'P

2 g + 1
'V(y'VP

A "vector spinor" means it transforms, under Lorentz
transformation, like a product of a four vector and a
Dirac spinor. Eight constraint Eqs. (5a) and (5b) reduce
the number of free components of P to eight.

The propagator for the massive spin- —,
' particle satisfies

the following equation in momentum space

& p(p)Gps(p)=g s,
where g & is the metric tensor, and

A = —[( —y p+M)g —A(y~ +y~ )

—
—,'(3A +2A+1)y y.pyp

—M(3A +3A+1)y~ypj .

Solving for 6, we get

yp+M 1
G~p(p) 2 2 gap grarp 3M rd'p rppa

p —M

A p= —[( iB„y~+—M)g p iA(y Bp+—yg )

——(3 A +2 A + 1)y 8"y„yp

—M[(3A +3A+1)y yp], (2)

Since the physical properties of the free field are indepen-
dent of the parameter A, we can make a particular choice
in (8) by taking A = —1. This yields the expression often
found in literature ' ' for the spin- —,

' propagator

where M is the mass of the spin- —', baryon and 2 is an ar-
bitrary parameter subject to the restriction AW —

—,'. In
Eqs. (1) and (2), a, P, and p are Lorentz indices. The no-
tation and conventions are those of Bjorken and Drell. '

Physical properties of the free field, such as energy-
momentum tensor, do not depend on the parameter 2,
chosen here to be real. This is due to the fact that the
free Lagrangian (1) is invariant under the "point transfor-
mation"'

0"-0"+ar"r W.

A ~( A —2a )/( I+4a ),
(3)

(iy„a~ —M)q =O,

and the constraint equations

(4)

where a& —
—,', but is otherwise arbitrary. We can derive,

via the Euler-Lagrange equations starting with (1), the lo-
cal wave equation for the spin- —,

' particle

pjMv M+Xp pv i p v 2p p +p f p p"
3M

(9)

It is useful to introduce the spin projection operators

1
, (y pr~. +p„r.r p»3/2

3p

(pl/2 )22 pv

(p I/2
)12 )Mv

(pl/2 )21 pv

pppv

p
1

2

1
2

(pppv r'ppvrp) ~

(y pp„r. p,p. ) . —

These satisfy the orthonormality conditions

(&»")„.=-,'y„r.— ", +,(r pr~. +p„r.r p»
p 3p
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(pI ) (pJ )v5 —gIJg (pJ)5 [P (y p —M) M—(P'„+P' 2)]„A'=0 . (15'b)

and the sum rule for the projection operators

Following properties are also useful

y pP =+P;JJ y p, +for i =j, —for i'
(12)

(12a)

This defines a nonlocal propagator for spin- —,
' particle

r p+MP3J2 1 (p J2+PiJ2)
nonlocal 2 2 M 11 22

p —M

(15'c)

p 3/2 p 3/2y (12b)

In the next section, we examine arguments of Willi-
ams and Adelseck et al. for their versions of spin- —,

'

propagators.

III. PROBLEMS WITH THE SPIN-2 PROPAGATORS
PROPOSED BY WILLIAMS AND ADELSECK et al.

X g" ,'r"—r ——(r pr"p "+p"r'r p»}
3p

We have already shown that Eq. (9) is the correct spin-
—,
' propagator. To see the problem with (13), we write it
in the form

M+&'p
Pv 2 ~ ~2 Pv

p M

As a propagator, it must satisfy the equation

(14)

(14')

Hereafter we shall be dealing with an interacting spin- —,

particle. If the interaction Lagrangian obeys the same
point transformation (3) as the free Lagrangian, discussed
earlier, the parameter A is again arbitrary, '" and can be
chosen to be —1. Thus, the spin- —,

' propagator remains
the same as in Eq. (9).

We first examine Williams' suggestion that Eq. (9} is
not the correct propagator, and should be replaced by

M+y p
p2 M2

Equation (15'a) has been rejected ' in the past as a field
equation because of the 1/p singularity in the p /

the tree level, p %0 in the s channel, and this does not
cause any problem, and one might want to use the nonlo-
cal equation (15 a) in the spirit of Williams. However,
the u-channel 6-exchange contribution could have kine-
matics for which p =u =0 (u, the appropriate Mandel-
stam variable), and (15'c) could be problematic. We have
not used this in our phenomenological applications. The
point we want to Inake here is that the correct propaga-
tor for the nonlocal equation (15'a) is (15'c) and not (14).

We now turn to the arguments of Adelseck et al. ,
who in a recent paper on kaon photoproduction oQ' nu-
cleons in nuclei, have constructed @XX*vertices and N'
propagators, where X* represents the —,',D» baryon at
1700 MeV and the —,'+,P» baryon at 1720 MeV. We
shall return to their vertex construction in the next sec-
tion. Their propagator for the spin- —,

' particle of mass M,
width I, and four-momentum p, is

V s +g.p
3(p M+i—Ml )

2 1X 3gp rpr ppP —(r+ r Pp )
s &s

Note that this expression would be identical to that in
Eq. (13) in the limit of I ~0, if we replaced &s by M.
Let us examine if this modified expression is acceptable as
a spin- —, propagator in the limit I ~0. Using our
definitions of the projection operators in Eq. (10), we
have

By Eq. (12), we require

&p&I, =P„"~'+(Pii')„I.+(Pzz')„~ . (15)

Since A„' can be expanded in terms of the basis of projec-
tion operators, and P„'z involves only P„, the ortho-
gonality conditions (11) along with relations (12') guaran-
tee that the left-hand side of (15) can never generate
(P', , )„z and (Pzz )„z terms on the right-hand side of
(15). Thus, P„'„does not haue an inverse and the operator
A' satisfying Eq. (15) does not exist. Hence Williams'
operator (13) cannot be the correct spin- —,

' propagator.
In the literature, there is a discussion of the nonlocal

equation

(P„, y p —Mg„, )g"=0 .

X[(p,'I )„+(P'I }„]

Using the identity

(r-p+Vs )(3 .p —&s }=0,
we get

p~~ (l- ())
r'p+ ~ p3J2

Vv 2 2 Pv
p —M

Thus, the propagator equation (7) written as

+o.'13P6 g a6
"p

(16')

(17)

(18)

which also contains spin- —, contributions displayed ex-
plicitly in the following form

(18')

cannot be satisfied, since the left-hand side of (18') does
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not contain P
& &

and P2z terms, while the right-hand
side does. Thus, P„" of Adelseck et al. cannot be a
propagator for massive spin- —,

' particles.

IV. EFFECTIVE LAGRANGIAN FOR AN INTERACTING
SPIN- —FIELD: OFF-SHEI,L FREEDOM

where A. = —,'(1+4Z ) A +Z, giving, with A = —1,

Z 4 (25)

Applying the same argument for the electromagnetic ver-
tex, Peccei got for the g, coupling, with 3 = —1,

A. Off-shell freedom of the masssive spin-2 field Y— (25')

This subject has a long history and we recapitulate
here the essence of the results for strong and electromag-
netic three-point functions. Taking the example of the
delta resonance, the erat'ective Lagrangian is given by '

L~=L x~+Lyx~+L)x~ .

Here L &z is the strong Lagrangian

L ~q= 5 r8„„(Z)NÃm+H. c. ,
m

(19)

and L '
&&, L && are the electromagnetic interactions

leg i vA,Lr~a = 6 "8~g(Y)y,y5r3F +H. c. ,
2m

(21)

L ~q = — b, "8„,(X)y~r3(BqN)F' +H. c. ,4m'
(22)

where X and h„are nucleon spinor and delta vector
sponsor respectively, ~'s are the —,'~ —,

' isospin transition
operators, and m and m are pion and nucleon masses.

8~ (X) are given by

8„(X)=g +[—,'(1+4X)A+X]y„y, . (23)

is the electromagnetic field tensor. The Lagrangian
L& has the same symmetry as the free one, under the
point transformation (3), thus the parameter 3 drops out
of the observables. 8„ is the mast general tensor
preserving this property of the free Lagrangian. The
form of the strong Lagrangian (20), in which the deriva-
tive of the pion field appears, ensures the chiral invari-
ance. ' ' The interaction Lagrangian of the above form
allows the freedom of choice for the value of 3, exploited
in the spin- —,'propagator, given earlier [Eq. (8)].

B. Choices for "oÃ-shell" parameters for delta

He believed that the condition (24) was necessary for the
independence of the hadronic transition amplitude from
the parameter 2 in Eqs. (2) and (7). This constraint im-
plies

We shall now make a representative sampling of vari-
ous choices of parameters available in the literature and
compare rationales for such choices. We shall also give
the values obtained by us from our fits to the available
multipoles in the delta region.

Peccei' erst made a theoretical e6'ort to get a fix on
the off-shell b, parameters. He argued that 8„ in Eq. (23)
should be subject to the condition

Nath et al. ' have argued that Peccei's condition (24)
is unnecessarily restrictive, and Eq. (23) provides the
most general form of 0„,consistent with the point trans-
formation property. We cannot substantiate Peccei's
claim' that (24) would result in a pure spin- —,

' coupling
(See Appendix B). Thus, the s-channel 5 contribution to
the mX elastic scattering always has a spin- —, contribution
from the delta propagator for arbitrary value of Z.

Nath et al. have concluded on the basis of field
theoretic arguments originally formulated by Fierz and
Pauli that the second gauge coupling term [Eq. (22)]
should be absent, and a special choice of values for the
parameters Z and Y is required. Their choice is

Z= —,', Y=O, g2=0 . (26)

One curious consequence of (26), arising from the absence
of the gauge coupling g2, is that the dynamical freedom
of two independent electromagnetic multipoles at the
yNb, vertex is lost. Thus, the electric quadrupole (E2) to
the magnetic dipole (Ml) amplitude ratio (EMR) for the
delta radiative decay is fixed kinematically, and is given
by

EMR= —(M~ —m )/(3Mq+m ) = 6%—, (27)

for the Nath et al. choice of the absence of the g2 cou-
pling, with M&, the 5 mass. Similar results would follow
for other yNN* (J=—,') vertices, where the appropriate
multipole amplitudes would be likewise constrained.
Thus, for the N ~N' (1520, —,', T =

—,
'

) transition,
M2/F. 1 =(M +

—m )/(3M&, + m ) = 11%, M ~ being

the X* mass.
There is an obvious objection to accepting the results

like (27) as correct. Hadrons are composite particles, and
the ratio of the @X' transition amplitudes should not be
fixed a priori by the vector-spin properties of delta alone.
These should be determined by the interactions of the ha-
dronic constituents. Thus, for the @X' vertex, the SU6
quark model, in its symmetry limit, ' gives a vanishing
E2 transition amplitude and the EMR. Realistic quark
shell model wave functions' yield the EMR to be
—0.4%, sensitive to the color magnetic interaction' be-
tween quarks as approximated by the one-gluon exchange
model. In the soliton models, the EMR tends to be
—2.9%, while chiral bag models ' yield a value of about
—1% for the N+-+6(1232) transition. Thus, the univer-
sality of the EMR value, independent of the quark-gluon
dynamics of the hadron structure, implied by the argu-
ments of Nath et al'. , is, on the face of it, unacceptable.
We, therefore, conclude that the parameter choices of
Nath et al. , given by (26), are invalid characterizations of
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the yN b ti ansition amplitude. This conclusion is
strengthened by the relatively poor qua1ity of fit of the
photoproduction multipoles using the parameter choices
given in (26). Current analyses seem to rule out EMR
= —6% and thus g2%0 for the YXb, transition. The
M2/E 1 ratio for yN~D»(1535) is less well determined
than the EMR, but available analyses give
31%~M2/El~56%, inconsistent with g2=0 for this
transition. Finally, if gz =0, then for all transitions
yX~ —,

'+ (or —,
'

) the ratio of A i/2 to A3/2 wo uld be very
nearly the same, which clearly is not the case.

In work reported elsewhere, Davidson et a/. have
taken the approach formulated by Olsson and collabora-
tors' ' to its 1ogical conclusion. In this approach, the
eff'ective Lagrangian (19) is assumed correct. The ampli-
tudes are obtained at the tree level and unitarized by us-
ing the Watson theorem. The strong and electromag-
netic coupling parameters g„», g„and g„X,Y, Z, are
assumed to be energy independent, and they are fitted to
the multipole data. Including all data sets, the following
ranges of parameters are obtained
—0.8 Z 0.28, —0.75 Y & 1.67, —3.0 X & 3.8,

(28)
5.30, 4.49 g2 &9.24 .

The range of gz is clearly inconsistent with vanishing
of g2 predicted by Nath et al. (27). The EMR is con-
sistent with realistic hadron models.

C. Choice for "ofF-shell" parameters
for the massive spin-

2 particles in supersymmetry

To extend the scope of our above discussion of the off-
shell parameter of the massive spin- —,

' field, we shall dis-
cuss one example from another exciting area of the field
theory; supersymmetry and supergravity. The theory of
supergravity describes the interaction of the massless
graviton (of spin-2) with a massless spin- —, fermion, called
gravitino, the gauge field arising from supersymmetry
transformations. When the supersymmetry is coupled to
supergravity, the massless spin- —', gravitino and the mass-
less spin- —,

' goldstino combine to give the massive spin- —,
'

gravitino. The supersymmetric theory provides us with
one nice particular example of the off-shell parameters
for the massive spin- —', sector. Consider the supersym-
metric scalar multiplet which contains a scalar g, a pseu-
doscalar P, and a Majorana spin- —,

' field g. Then the su-

persymmetric interaction terms involving the gravitino-
Majorana field —scalar and pseudoscalar are

Choosing 3 = —1 as before, we get

Z=O. (31')

I =4f0"(g„t3 ,'y p'—„)—yuF (32'}

We thus have, in a formal comparison to the yNE case,

—,'(1+4K)A + P= —
—,
'

With 3 = —1, we get

y — 1

This, together with (32'), should be contrasted with (21)
for the yNA vertex. Such comparisons, we should stress,
are purely formal and illustrative, as supersymmetric
theories for a spin- —,

' —spin- —,'-pseudoscalar vertex have
nothing to do with the structure of the mNh vertex which
involve particles involving internal structures. Effective
Lagrangian theories such as the ones we have considered
above for the DNA and yNA interactions are only guided
by Lorentz and gauge invariance for the most part, and
other constraints such as the Fierz-Pauli ones for the
point particles seem to be dynamically restrictive.

V. GAUGE INVARIANCE: SOME UNSATISFACTORY
STRATEGIES OF ITS RESTORATION

IN EFFECTIVE AMPLITUDES

Pilkuhn and Williams have described yNA vertex of
the form

y.ek„
y,N.

m, +m (34)

This is gauge invariant only if both N and 6 are on mass
shell. Thus, replacing e~ by k„=(p~ —p~)„, (34) be-
comes

P k
yPA I. +yPN I.

~ k - k

Mz+m Mz+m
(34')

This vanishes for on-shell hadrons, as is easily seen by the
use of the Dirac equation

For the electromagnetic coupling, the supersymmetric
Lagrangian is

L =f4„y ytsy"XF (32)

where F ~ is the electromagnetic field tensor, f is the ap-
propriate coupling constant. It can be written as

L =gf„(y B'tl+iysy'BQ)y y (29) 5~y p =5 "M~, y p~X=mN . (34")

I ~ =»g 0 "y s(g„. ,'Y,y. )X~'0—.— (30}

This is formally analogous to our nXts Lagrangain (20).
Comparing with (23),

—,'(1+4Z ) A +Z = —
—,
' (31)

where g is the suitable coupling constant. To illustrate
the of-shell parameters of the spin- —', sector, let us rewrite
the pseudoscalar interaction term explicitly

'P + s p3/2 ~ 'Y ek
&+p~ —

g 5 m
(35)

However, (34') does not vanish, if either of the particles
is not on shell. Hence the vertex (34) is not theoretically
satisfactory. Adelseck et aI. have devised a trick to
solve this problem, by replacing Mz+m in (34) with
3/s +m. Reconstructing their expression for the ampli-
tude yN ~A —+Nn.
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where q" is the pion four-momentum. Replacing e by
k, we get 3 —+3'

are real); a;J s are the i~j transition amplitudes. The
time reversal invariance requires

A'~N "
2

p~ —M~

y-P
XP3/2k ] +

&s +m &s +m

Using y.p~y5= —y5y p& and assuming the nucleon to be
on mass shell, we get

a,J
—aJ; ~

Thus, the S matrix is symmetric. Unitarity of S, i.e.,

SS =I,
yields two sets of equations,

A, ,
'+ g /a, , /'=1,

(39)

(40)

(41)

1''pg+ v s
A'os% ~ — k

p~ —M~

making use of the identity

3/2 3/2I pv 7 'pz =T pzI' pv

3'ps P, N, (36)
&s +m

(37)

and

2i6,, —iPk,. —2i6k ~i
X, e '~a„, ~e "'+X„e "~a,, ~e

Pl

+ g (aj [~ak;)e "e "'=0, (42)

Substituting y p~y p~=s in (36), we verify that A' van-
ishes and 2 is indeed gauge invariant. However, Adel-
seck et al. have paid a price to achieve this: the propa-
gator in (35) is incorrect as shown earlier, and the nu-
cleon is required to be always on the mass shell. There-
fore, it is an unsatisfactory theoretical strategy of con-
struction of gauge-invariant three-point functions.

As we have discussed earlier, the effective Lagrangian
(21) and (22) is manifestly gauge invariant without the
trouble discussed above. Therein the direct coupling to
the electromagnetic field tensor I „guarantees the gauge
invariance trivially. It also has the merit of preserving
the point transformation property of the free field. It
does treat interaction of hadrons whether or not they are
on mass shell.

where

j=1
jwi, k

a;=a,"e (43)

»[&;+&k)
e "=—e

2i[5,. +5k +(21+1/2)mj=e

where l is an integer. This allows us to recover the result,
originally due to Fermi, '

Thus, there are n equation in (41) and n(n —1)/2 equa-
tion in (42). If ~a; ~

—+0, the last term in Eq. (42) can be
ignored. Using (39), we get, in the limit X;,A,k~1, as

VI. UNITARITY CONSTRAINT
P,q =5;+5k+ln+ —. (44)

A. Multichannel S-matrix unitarity

For an n X n S-matrix, we have

2i 61
X,e

a2i

ai2
2i52

X2e

a„2

. -a

a2
2i 5„

~ ~ ~

P2

(38)

Here A, ; and 6;(i=1, . . . , n) are the elasticities and the
phase shifts of the diagonal channels, respectively (A, ,

's

The problem of satisfying the requirements of unitarity
is not specific to the spin- —', resonances, but it should be
included in a general discussion of the treatment of all
resonances, because many treatments in the literature
often ignore the implementation of it due to technical
reasons. %'e discuss the unitarity problem in several
difFerent contexts: (a) the constraints arising from
diFerent channels, (b) the ambiguity due to the interpre-
tation of tree-level amplitude as T or K matrix, and (c)
the treatment of widths of the resonances. Items (a) and
(b) are, in the main, summary of existing results intended
to stimulate future theoretical developments. Item (c)
zeroes in on extant theoretical problems.

In the two-channel case, this is exact and is the famous
Watson's theorem, which we could have proved start-
ing with the unitarity of the 2X2 S matrix.

Equations (41) and (42) bring out a particular difficulty
of baryon resonance physics: Most treatments in the
literature are unable to put these constraints in the
analysis of multipoles as soon as the number of channels
exceed two. Even in the two-channel case, some treat-
ments ignore unitarity for convenience. An example is
the nonunitary version of the Blomqvist-Laget theory,
limitations of which we have discussed elsewhere.

To give an example of the complex problem of the mul-
tichannel unitarity, consider the case of 6(1700) —', reso-
nance; its decay channels are Nm. (10—20 %),
(80—90%), and Ny (0.14—0.33 %), where the numbers in
parentheses are the decay fractions. Clearly, the unitari-
ty requires implementation of the constraints in Eqs. (41)
and (42). Not enough experimental i~formation is avail-
able on many of the primary strong interaction channels
(e.g. , Nm +Nmn) to allow —a unitarity-combined analysis
of the photo- or electroproduction amplitudes. This situ-
ation could be helped enormously, if new experimental
facilities became available in this high energy domain
(e.g. , proposed expansion of the Los Alamos Meson phys-
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ics facility, called PILAC). Attempts are still being
made to treat the outgoing multiparticle channels in the
two-body approximation, ' such as treating the Xmm
channels as Am or Np. Critical studies are needed to test
the quality of these approaches.

1 +ES11126g
o.=O, y =

cos25B

1+etan5B
tan6=

e+tan5B

(52)

8. Variety of unitarization strategies

f i+ =fi++f i+ (45)

where f,+ contains all the background contributions and

f,+ is the s-channel b contribution

The use of effective Lagrangians in the theory of
photo- and electroproduction of mesons leads to real am-
plitudes at the tree level, if the widths of the unstable par-
ticles are neglected. This, of course, leads to the violation
of unitarity conditions (40), if the tree-level amplitude is
taken to be the T matrix. Davidson et a/. have exten-
sively investigated the ambiguities due to the unitariza-
tion strategies of the yN~mN in the 5(1232) resonance
region. Lessons learned from there are of general interest
in the context of other resonances for future work and
will be summarized here.

Consider the tree approximation for the mN scattering
in the J=T=—,

' channel. The partial wave amplitude

f,+ is given by

the last two equations following from (47) and (48) setting
0.=0. In this approach, the resonance is not of the
Breit-Wigner form, since y%1.

A third approach to unitarization is to interpret the
tree-level amplitude as a K matrix. Here

T =K(1 iK )— T=—(S —1) .=1
21

(53)

From the unitarity of S matrix, the K matrix is real if all
channels are open and is symmetric if time reversal in-
variance holds. In this approach, the ~N scattering am-
plitude in the 33 resonance region takes the form

1tan6=tan5 +—8 (54)

The extension of the above discussion to photoproduc-
tion is straightforward. Taking the example of a three-
channel case, where channels are indicated as 1=yp,
2=+ p, and 3=m+n, the T matrix element for yp —+m p
is given by

M~I ~
'qf 1+

Mg —s

iK23K i3
Ti2 cos5e K i2 +

1 —iK33
(55)

qf &+
B

@
1 CX

qf, + =sin5e' = +
1 lqf )+ 6 lj

(47)

5 being the m.N phase shift in the 33-channel. This equa-
tion can be rewritten as

a
qf, + =sin5se +

lg
where

(48)

Mq —s
tan5& =qf, +, e=

b.

In Noelle's Ansatz for a single channel,

y =1, a=26B,

(49)

(50)

producing a Breit-Wigner type resonance amplitude. For
the multichannel case, Noelle has a trivially unitary S
matrix for the resonance, S~, and S is obtained by

S=e 'S~ei6 i5
(51)

In the Olsson approach, the unitarization is done at the
T-matrix level. In this approach,

where q is the c.m. momentum, the numerator coming
from the effective Lagrangian theory, and the denomina-
tor is the 6-pole term. Clearly, Eq. (45) does not satisfy
the Watson theorem, hence violating the unitarity condi-
tion (40).

Following Olsson and Noelle, we can unitarize (45) by
writing qf ~+ in the form

where K, are the K-matrix element for the ith channel.
This explicitly indicates the unitarization procedure-for
the amplitude via the K-matrix method. In the Olsson
and Noelle approaches, we can use the previous discus-
sion considering the photoproduction amplitudes at the
tree level.

The importance of the above discussion is that there is
a variety of ways of unitarizing the amplitudes, resulting
in a model dependence of the separation of the resonance
contribution from the novel physical amplitude extracted
from the experiment. It is crucial that this model depen-
dence be explored in specific cases.

The model dependence is, in fact, the Achilles heel of
the resonance physics. Feynman put his finger on this
problem by asking the following questions: "How much
is resonances and how much is background? Can the
background below a resonance be simply tails of other
resonances? How big is the tail of a resonance'?"
Feynman's own answer to the last question, "Impossible
to answer except arbitrarily" is a warning that we should
not forget to explore in every instance. Elsewhere we
have tried to do just that for the photoproduction in the
delta (1232) region. Much remains to be done for other
resonances. We hope this discussion will help support
such a process.

C. Treatment of the widths of resonance in a unitary fashion

Another trouble with unitarity can be caused by an in-
consistent insertion of the width of a baryon resonance,
produced by the electromagnetic vertex, in the expression
for the Lorentz invariant amplitude. We have detected
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g (E+m )(M~ —W)q

8vrW(s —M~+ iM~I ~ )
(57a)

this problem in the work of Adelseck et al. , where their
tabulation (in their Table III) for the spin- —, and the spin-

resonance propagators has a pole structure
(q

—M +iMI )

This problem is most easily demonstrated by the elastic
aX scattering via a —,

'+ resonance. The amplitude for this
process, following the method of Adeleseck et al. by in-
serting the width of the resonance, is of the form (with a
PS coupling)

'V'I'1+'V ~&+~a
M = U ~~+ U.

S g l

where the initial nucleon four-momentum is p;(E, p; ),
s =(p;+q; ), q;, is the pion four-momentum.

Making partial wave projections for the amplitudes
corresponding to the ~N s wave and p wave, we get

~s M—t, +iMt, rt, (s) in the manner of Adelseck et al.
in above expressions. We can now calculate the K-matrix
elements from then T-matrix elements, using
E=T(1+iT) . This yields for the above two ampli-
tudes

g ~t, (E+m)q (W+Ma)
M~I ~=

24m 8'm
(61a)

g tvt, (E—m )q ( W —Ma)
M~I ~=

24~8'm „
(61b)

again inconsistent with each other. For brevity, we shall
omit demonstrating here the same phenomenon for the
yX~ ~X case.

To conclude, it is not appropriate to insert the width of
the baryon resonance in the invariant amplitude by the
prescription s —Mt, ~s—Mt, +iMt, I t,(s), as Adelseck
et al. have done. This is inconsistent with unitarity.

and VII. SUMMARY AND CONCLUSION

g (E—m )(M~ + W)q

8~ W(s —MR + iM~ I ~ )

where W= v's. From the unitarity of the S matrix,

T T=ImT,

(57b)

(58)

with T =qf 0+ or qf, . Thus, (58) yields for the respec-
tive cases

g q(E+m)(W —MR)r, =
Sn8'M~

(59a)

—g ~t, (E+m)q (W+Mg)
qfi+ =

24vr Wm (s —M~ )
7

g~t, (E—m )q (M—~ —W)

24~Wm (s —M~ )

(60a)

(60b)

Suppose we had made the substitution s —M z

g q(E —m )( W+MR )

8~8'M~

Thus, the widths obtained from the same resonance from
the two different partial waves are not equal, indicating
an inconsistency. Therefore, inserting width at the level

of the amplitude [Eq (56)J, as don.e by Adelseck et al. , is
ineorreet. At best it can be reasonable for one partial
wave, but not the other. Thus, if the resonant partial
wave has the correct width, the nonresonant partial wave
violates unitarity with the same width.

The discussion for the ~N~mX and yX~~N pro-
cesses in the 6 channel is more complicated, but the
Adelseck et al. procedure again leads to inconsistency.
For the mX scattering in the effective Lagrangian ap-
proach, using L zt, of Eq. (20), we can compute the reso-
nant and nonresonant partial wave amplitudes, ignoring
the delta widths. These are

We have investigated some of the theoretical issues as-
sociated with spin- —, particles. This is relevant to the pro-
duction and decay process of spin- —,

' baryon resonances.
We have reviewed the derivation of the relativistic spin- —,

propagator and showed that the propagators presented
by Williams and Adelseck et al. are-inconsistent with
both local and nonlocal wave equation of a massive spin-
—,
' particle. Then we have discussed interacting the spin- —,

'
field within the framework of the effective Lagrangian
theory. We have used the most general interaction La-
grangian constructed in a way that it preserves the same
symmetry as the free one, under the point transforma-
tion. This introduces arbitrary parameters in the theory,
which determines the off-shell contribution of the spin- —,

particle. Peccei' first attempted to fix these off-shell pa-
rameters, but Nath et al. showed that Peccei's condition
is unnecessarily restrictive. However, Nath et al. have
later argued that the second gauge coupling term [Eq.
(22)] should be excluded and specific values of the off-
shell parameters are required. We have discussed why
these new constraints of Nath et al. are theoretically
poor characterizations of the yah transition amplitude,
besides yielding a relatively poor quality of fit to the pho-
toproduction multipoles. For a theoretical comparison,
we have mentioned the choice of these off-shell parame-
ters in supersymmetry which deals mainly with point
spin- —, particles. This, of course, has nothing to do with
particles, such as 6, with composite structure, but is illus-
trative of the off-shell freedom of the massive spin- —,

'
fields. We have also pointed to an analogous freedom in
the massive vector fields, in Appendix A, discussing pion
P decay in the intermediate vector boson theory.

The electromagnetic interaction Lagrangians (Lr~~,
L &z), used by us [Eqs. (21) and (22)] are manifestly
gauge invariant, irrespective of whether 5 and or N is on
or off mass shell. Williams and Pilkuhn have used yah
interactions which are not gauge invariant except when 5
is on mass shell. We have found these theoretically un-
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satisfactory. To overcome this problem, Adelseck et al.
have replaced Mz+m in (34) by &s +m. This has re-
sulted in an incorrect spin- —', propagator, as we have men-
tioned earlier. We have stressed that these difhculties are
avoidable.

Finally, we have discussed the multichannel S-matrix
unitarity, variety of unitarization strategies in the two-
channel case, such as photoproduction of pion below 2m

threshold, and the treatment of the width of resonances
in a unitary fashion. We have showed that the insertion
of the width of resonance at the level of the Lorentz in-
variant amplitude for the mX scattering is inconsistent
with unitarity; the same is true for the pion photoproduc-
tion.

The search for a unitary theory for baryon resonance
production and decay above the two-pion threshold is,
unfortunately, not yet complete. %'e hope our discus-
sions here will set the stage for new theoretical efforts for
a comprehensive treatment of final-state interactions for
such cases, in a relativistic framework consistent with
gauge invariance, as expenmentalists prepare for new
tools, both electroweak and strong, to explore these
baryon resonances. This is an ambitious, yet entirely ap-
propriate, objective for further tests of QCD in the non-
perturbative domain. It would also help to explore the
resonances beyond 5(1232) in the nuclear many-hadron
domain, a task that has hardly begun.

APPENDIX A

An analogous off-shell phenomenon can be .demon-
strated via the pion decay in the intermediate vector bo-
son theory. Consider the Lagrangian

propagator leads to vanishing amplitude. This confirms
our intuitive expectation that a spin-zero system cannot
decay via a spin-one vector boson, without the off-shell
spin-zero piece of the latter coming into play. Indeed,
the of-shell spin-zero piece of the intermediate vector bo-
son propagator yields the resultant matrix element of the
pion decay

&r q(.1 )'—s)pM;=—f (A7)

as in the ordinary Fermi theory.

APPENDIX B

0„=[P +(1+3a )P', , +(1+a )P~q

+&3a(P'"+P'" )] (82)

where a = —
—,'(1+2Z). The transition matrix M&; can be

rewritten as

Using the Lagrangian defined in Eq. (23), the AN tran-
sition amplitude, via the intermediate s-channel exchange
can be evaluated in the tree approximation. We find

2

U~qj46„,(Z)P' (p)8 p(Z)qPU;, (81)
Nl ~

U Uf are the initial and final state nucleon spinors, q;, qf
are the incoming and outgoing pion momenta, and
p =p,. +q;, where p; is the nucleon momentum in the ini-
tial state.

In terms of the projection operators, 8„(Z) is written

&
—

Xs
PlD (A 1) Mf Uf [ 2 + —,'(y q;'+y qf )+]U;

For the spin- —,
' part of the amplitude, we obtain

(83)

where N is the intermediate vector boson, v,p are lepton
spinor for neutrino and muon respectively, and P is the
pion field. Then the matrix element for the decay m.

~P +Vp 1S

+2M
M q /I, /~

= ——', ( W —m )

Mf; =vugg 2
pG q (A2)

——'(W' —m )a+ +
3 M~ 8'

6 being the intermediate vector boson propagator
a

Gx~ xe p p
M

(P —M ) (A3)

M being the mass of the intermediate vector boson. We
can decompose this propagator in terms of spin-one and
spin-zero projection operators

with

2 8' +m
]. /2

2'+3

a +—m+ — a
4 8'co
3 M~

(85)

p&e pwca
(P1)i. =gA, p ( 0)i.

p p
which satisfy the following properties

(A4)
8 +m —m

28'
the corresponding partial wave amplitudes are:

(Po+P1)~. =g~.

pro' O

(A5)

(A6)

Thus, the spin-one part of the intermediate vector boson

E+m
&O+ =

& ~ [ ~1/2+( ~ )+1/2]

E —m
f1 = [ —/I, /z+(8'+m )B,/z] . (87)
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In order to have pure coupling to spin- —,
' part of the am-

plitude (Bl), fo+ and f, must vanish simultaneously.
We can now set fo+ and f, equal to zero and try to
solve for the parameter a. We find that these partial
waves cannot vanish for an arbitrary or specific value of
the parameter a. Therefore, the spin- —,

' part of the ampli-

tude cannot be eliminated, no matter how we choose the
off-shell parameter Z, contradicting the anticipated result
of Peccei' that this should be possible.
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