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Nuclear interaction currents
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A procedure for extracting electromagnetic exchange-current operators from a given nucleon-
nucleon potential is developed on the basis of the continuity-equation constraint. The present
method is applied to the one-boson-exchange nucleon-nucleon potential to yield exchange-current
operators. It is shown that the proposed formulas reproduce, up to divergence-free four-currents,
both the contact current and the mesonic current derived consistently within the one-boson-
exchange model including meson retardation and nucleon recoil.

I. INTRODUCTION

It has long been known that, in the nonrelativistic
nucleon-nucleon potential model, the velocity-dependent
term introduces contributions to nuclear electromagnetic
transitions. ' ' The "interaction currents" arise because
the momentum operator of the ith nucleon is modified by
the substitution

V= V +~1 v.zV', (1.3)

should also produce exchange currents. Forty years ago
Sachs' derived from V an exchange current

interaction currents. The isospin dependence of the nu-
clear force,

p, ~p, —e; A(r;), Js""'(x)= —e (v, X v~), r V'

where e, =
—,'e(1+7;, ) is the charge operator and A(r,. ) is

the electromagnetic vector potential evaluated at the po-
sition r;. Gauge invariance alone cannot determine the
whole electromagnetic interactions but it gives us a very
stringent constraint on their forms. For the two-nucleon
system the electromagnetic current is the sum of one-
body and two-body operators,

J(x)=J"'(x)+J' '(x) .

1
X ds 5(x—sr, —(1—s)r2), (1.4)

f2 Pr
VoPE 2 ~1 ~1~2 ~2

pz 4~r

~here r=r, —rz is the distance between two nucleons.
The diSculty of this current is immediately seen by tak-
ing the one-pion-exchange potential

It is well known that in the nonrelativistic nuclear theory
the exchange current J' '(x) should satisfy the condition,

V J' '(x)= i V, g—e;5(x—r;)

where f is the pion-nucleon coupling constant, p is the
pion mass, and V, =t)/t)r, . With (1.5) inserted into (1.4),
the Sachs current has no resemblance to the one-pion-
exchange current, '

where V is the nuclear potential and the sum is over
l —1,2.

The velocity dependence is not the only source of the

Jopp(x) =JopE(x)+ JopE(x)

where

(1.6)

2
—Plx —r2l —plx —r, l.t f e e

JopE(x) =e
2 (r, X~~), —5(x—r, )o.,o ~ V~, , +5(x—r2)o ~o, V,

p 4~~x —
rz~ 4'tr x rt

(1.7)

is the contact current and
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is the pionic current.
Riska' tackled the problem from a different point of

view. He projected out the tensor and spin-spin com-
ponents of the nuclear interaction, and wrote down corre-
sponding exchange-current operators by invoking the
known form of the single-pion exchange-current opera-
tors which satisfy the condition (1.2). Buchmann,
Leidemann, and Arenhovel' took a similar approach on
the basis of the parametrized form of the Paris potential.
Riska s idea is further extended to a relativistic formal-
ism. ' Recently the present author has given a rigorous
proof that the exchange-current operators proposed by
Riska indeed result from the minimal-substitution
prescription applied to a mornenturn-dependent represen-
tation of local potentials. '

The isovector nucleon-nucleon potential implies the ex-
istence of currents flowing over its range. It is desired
that a general rule for deducing such currents should. be
given. The interaction currents appear not only in the
nucleon-nucleon interaction but also in meson-nucleon'
and any other hadronic interactions. Since interactions
are usually introduced phenomenologically, mod

eli-
ndependentt determination of the interaction currents are
essentially required.

The purpose of this paper is to propose a general
prescription for calculating nuclear interaction currents
from an arbitrary nucleon-nucleon potential. We sha11
show that our method can reproduce both of the one-
pion-exchange currents (1.7) and (1.8) rigorously from the
one-pion-exchange potential (1.5). In Sec. II we give a
rigorous derivation of the gauge-invariance condition
(1.2). In Sec. III we propose exchange-current operators
which are written in terms of nuclear potentials. In Sec.
IV we consider a one-boson-exchange model and calcu-
late the nucleon-nucleon interaction and the exchange
currents to illustrate the usefulness of our approach. A
discussion is given in Sec. V.

II. GAUGE-INVARIANCK CONDITION

p"'(x) =—g e, 5(x—r; ) (2.3)

p'"(x) -=0, (2.4)

we obtain Eq. (1.2). On this account, it is sometimes ar-
gued that Eq. (1.2) is valid only in the point-source limit.
However, this is not true. Here we give a rigorous deriv-
ation of the gauge-invariance constraint on the two-body
current operators and make clear the meaning of Eq.
(1.2).

According to Sachs and Austern, the gauge invari-
ance of the equations of motion requires that the total
Hamiltonian

H(A„)=H0+H, (A„)
should obey the condition

H'(A )=H(A' ) .

(2.5)

(2.6)

H'( A„) is the new Hamiltonian transformed as

H'(A„)=U H(A„) i —U
at

(2.7)

under a time-dependent unitary transformation

U =exp i g e, G(r, ) (2.8)

(2.10)

The electromagnetic interaction Hamiltonian is
decomposed into one-body and two-body interactions,

with 6 (r; ) being the gauge function. The two-nucleon
wave function g and the electromagnetic vector potential
A„=( A, i A0) are transformed simultaneously as

(2.9)

A. Gauge invariance of the equations of motion H, ( A„)=H', "( A„)+H,' '( A„) . (2.11)

The gauge-invariance condition (1.2) is usually derived
from the continuity equation for the total current opera-
tor,

=e '
$V J(x)+i[H0,p(x)]je ' =0. (2.1)

The time evolution of physical quantities in the nuclear
configuration space is dictated by the nonradiative total
Hamiltonian

ao=r+ v (2.2)

where T is the kinetic-energy operator. Thus the time
derivative of any operator is evaluated by taking its com-
mutator with HD. By separating one-body and two-body
parts and assuming

The one-body and two-body current operators are defined
by

H', "(A„)= fd'x —J„"'(x)A, (x),

H,"'(A„)=—fd'x J„"'(x)A„(x) .

(2.12)

(2.13)

U r+H,"'(A„)—i U '=r+H,"'(A„') .
-

at
(2.14)

We expand the left-hand side of this equation in a power

The separation of the total current into one-body and
two-body currents does not necessarily preserve the
gauge invariance of the one-body current. This is be-
cause the one-body current has a freedom of being
transformed under an arbitrary unitary transformation
which, in general, violates gauge invariance. ' Among
these unitary-equivalent one-body currents, we choose
the one that is manifestly gauge invariant. Then it obeys
the requirement of gauge invariance independently,
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series of e. To order e we obtain

U T+H,'"(3„) —i —U '= T+H("( 3„)at

H,' (()„G)= i—V, g e, G (r, )

= —i f d x V, ge 5(x—r, ) G(x) . (2.22)

We compare this with

+i H(), g e;G(r, )

(2.15)

H,' '(()„G)=f d x V„J' '(x)G(x)

+i H(), f d x p' '(x)G(x)

and we find

(2.23)

The gauge-invariance condition Eq. (2.14) with Eq. (2.10)
leads us to

H,"'((3„G)= i T, g—e;G(r;) +i Ho, g e;G(r, )

(2.16)

V„J' '(x)+i [Ho,p'2'(x)]= —i V' g e 5(x r )

(2.24)

On the other hand, from Eq. (2.12),

H(,"(a„G)=—f d'x J(')(x)a„G(x)

= f d V J"'(x)G( )

J' '(x)=J (x)+5J(x),
in such a way that J (x) satisfies

(2.25)

This is the gauge-invariance condition on the exchange
currents. One easily sees that the sum of (2.18) and (2.24)
indeed leads to conservation of the total current. We
divide the two-body current J' '(x) into two pieces,

+i Ho, f d x p'"(x)G(x) (2.17)
V J (x)= i V,—pe, 5(x —r, ) (2.26)

Comparing this with Eq. (2.16) we find

V„J"'(x)+i[H(),p "(x)]= —i T, g e, 5(x —r; )

Then the remaining current 5J(x) and the exchange
charge density 5p(x):—p' '(x) form a divergence-free
four-current

+i Ho, ge;6(x —r, )

I

V 6J(x)+i [H(), 6p(x)] =0 . (2.27)

(2.18)

In the point-source limit (2.3) we gain

V, J"'(x)=— i [T,p'"(—x)], (2.19)

U(v+H,"'(~„))U-'=V+H( )(A' ) . (2.20)

By expanding in powers of e and retaining the first-order
terms in e we obtain

U{V+H,"'( A„))U '= V+H', '( A„)

It is important to note that, in the presence of the poten-
tial V, Eq. (2.19) is not the exact relation in contrast to
the usual argument in decomposing the continuity equa-
tion into one-body and two-body components. Equation
(2.19) holds true in free space but loses its validity in the
nucleus because the interaction potential V enters
through the time derivative of one-body quantities.

We turn to the two-body current. From Eqs. (2.6) and
(2.14) we have

It should be stressed that the condition on the interaction
current, Eq. (2.26), has exactly the same form as Eq. (1.2)
in the nonrelativistic theory. Now it is clear that the con-
dition, Eq. (2.26), is derived from the assumption that the
one-body current satisfies the gauge-invariance condition
separately. We did not take the nonrelativistic limit nor
the point-source limit. The 5-function in (2.26) emerges
not because we made the point-change approximation
(2.3) but because the local gauge invariance is imposed.

B. Nonlocal current operators

It is well known that a nonlocal potential is represent-
ed by a momentum-dependent potential. In this section
we give a general prescription for deriving a momentum-
dependent representation of a nonlocal current operator.
First we transform the two-body current operator from
the photon position space into the photon momentum
space

(2.21)
J(2)(k) f d3x eik xJ(2)(x) (2.28)

As a consequence we get
The current operator in the nuclear configuration space is

given by
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(r', rz'~J"'(k)~r&rz&=(2~) "fd'k&d'kzd'kId'k'ze ' ' "' ' " '" &kIkz'IJ"'(k)lkikz& .

Because of the conservation of total momentum, the current operator in momentum space is written in the form

(k', kz~J' '(k)~k, kz&=(2m) 5(k, +kz+k —k', —kz)J' '(k„kz, q, k),
where we have introduced momentum variables

k, =
—,'(k, +k', ),

kz= —,'(kz+kz),

q= —'(k —k' —k +k')

Inserting (2.30) into (2.29) we get

(r', rz~J' '(k)~r, rz&=(2m) f d k, d kzd q e

=e'"'RJ' ' i,i,r, k 5(s, )5(sz) .ik R (2) ~ ~ ~

Bs Bs

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

We have made a change of variables,

s, =r
I

S2 —I'2 r2

r= —,'(r, +r', —rz —rz),

R= —,'(r, + r& + rz+ rz)

and integrated over k& and k2 by replacing them with differential operators acting on s& and s2. We have defined

3
J(2) . ~ . ~ —k

d g . —'q. J(2)l, l ~r, 3e l l q
,

as, Bs, CIS I BS2

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

We consider a matrix element of the nonlocal current operator between the two-nucleon wave functions,

Mf = f d r, d rzd r&d rzg, (r'&, rz)(rirzl J' (k)lr~rz &g;(r~, rz)

= f d3s, d szd r d RP,"(R+—,'r —
—,'si, R—

—,'r —
—,'sz)

X e'" J' ' i',i,r, k 5(s, )5(sz) f;(R+ —,'r+- si, R—
—,'r+ —,'sz) .

Bs) Bsz
(2.40)

where

XJ' '(p„pz, r, k)g, (r„rz}, (2.41)

We integrate by parts to make the differential operators
act on the initial and Anal wave functions. Then we can
carry out integrations over s& and s2 to yield

Mf' d P )d I 2 f r) 12 e

J(z)(k) —e&k'RJ~z~(p p r k)

ik R 'V e
—iq. rJ(z)(p p q k)

(2~)'
(2.44)

In Eq. (2.43) V; differentiates the right-hand side wave
function and V; the left-hand side wave function. It is to
be noted that the momenta defined in Eq. (2.43) never act
on r or R inside the current operator.

R= —,'(r, +rz) (2.42) C. Minimal substitution

p;= ,'i (V; —V;)—. — (2.43}

is the overall c.m. position of the two nucleons and p&

and p2 are the operators
In the Introduction we observed that the minimal sub-

stitution of the momentum operator in the potential
yields an electromagnetic interaction. However, for the
isospin-dependent potential there occurs an ambiguity in
this procedure. To illustrate this we consider the prob-
lem of one nucleon embedded in the potential

Equation (2.41) defines the momentum-dependent current
operator &(p, *)=p'~. P(r) . (2.45)
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The momentum operator p is defined as above, ——'[(p„~A+ A.p„), [ e, y] ] = —p. A[e, y] (2.59)

p= —,'i —(V—V) . (2.46)

Partial integration without surface terms allows us to re-
place V with the operator acting on its right-hand side,
thus generating ordered operator products (Weyl-ordered
products), e.g.,

py(r) =—,'[p„g(r)+y(r)p„],
p'p(r) =

—,'[p'„g (r)+2p„q (r) p„+p(r)p'„],

(2.47)

(2.48)

where p(r)=r P(r) and p„ is the unsymmetrized
momentum operator (the momentum operator in the usu-
al sense). The symmetrized momentum operator is very
convenient because it commutes with y(r) so that we can
place it on either side of p(r), i.e.,

which lacks the term proportional to [e,qr]. The reason
for this discrepancy is obvious: The V term in (2.58) is
written as

P m( )+2P 0'( ) P 0'( )P (2.60)

Thus this can be interpreted as a momentum-dependent
term, although it commutes with any function of r. The
minimal substitution indeed generates the missing [e,y]
term. From this exercise we learned that for isospin-
dependent potentials the electromagnetic interaction
from the minimal substitution is not uniquely deter-
mined. This nonuniqueness is attributed to the fact that
the momentum representation of the potential has arbi-
trariness. We also learned that for isospin-dependent po-
tentials the electromagnetic field couples to V.

pq (r) =q (r)p,

p 9'(r) I'(r)p =p I'(r)p .

(2.49)

(2.50)
D. Constraint on the exchange currents

If, however, one is considering a commutator of a sym-
metrized ordered product with some function g (r), p acts
on it. For (2.47) or (2.48), for example, we have

Following exactly the same procedure as in Sec. IIB,
we represent the nuclear interaction in the form of the
momentum-dependent potential

[pg(r), g (r)]= —ig(r) Vg (r),
[p'y(r), g(r)]= 2i p [—g(r)Vg (r)] .

(2.51)

(2.52)

V= e 'q'V
p&, p2, q

r

(2m. )

=I (P& P2 (2.61)
In the left-hand side the momentum operator is sym-
metrized with respect to y(r), whereas in the right-hand
side the momentum is symmetrized with respect to
y(r)g(r). For later applications, it is important to note
that the anticommutators of symmetrized products with

g (r) become

[py(r), g (r) J =2P[q&(r)g (r)],
[p'e(r»g(r)] =2p'[m(r)g(r)]

—
—,'y(r)V'g(r) .

(2.53)

(2.54)

This implies that the anticommutator of V(p, r) with
g (r) defines an eff'ective potential

V,. —+V; —se, A(r, ),
V, ~V;+ie, A(r, ),

(2.62)

(2.63)

where e; and e; are the charge operators which should be
placed at the ri0ht-hand side and left-hand side of 7] 72,
respectively. The minimal replacement of the sym-
metrized momentum operators becomes

The operator p; is again symmetrized within the poten-
tial and does not differentiate r in the potential. In the
presence of the external electromagnetic field the
differential operators acting on the wave functions should
be replaced by

V(p, r)= V(p, r) —
—,'p(r)V (2.55)

p, —+p; —e; A(r;), (2.64)
where V is to act only on g (r), while p is to be ordered
according to the Weyl rule.

In (2.48) we follow the standard procedure and make a
replacement

where e; is the symmetrized charge operator

e;= —,'(e;+e, ) . (2.65)

p„~p„—e A(r) (2.56)
The minimal replacement in the momentum-dependent

potential produces the electromagnetic interaction

to get the electromagnetic interaction

—
—,
' [(P„A+A p„), [e,yJ ] ,'i V A[e, y—]—

H, '" = V(p, —e, A(r, ), p2
—e2 A(r2), r)

—I'(pi P2 r) . (2.66)

p'q(r) =
—,'[p„p(r)+q(r)p'„]+ —,'V'q(r) . (2.58)

The minimal replacement of p„ in this potential produces

= —p. A[e, y] —,'iV A[e, y] —. (2.57)

The last term is present due to the uncommutativity of e
with y.

Next let us rewrite (2.48) as

As emphasized in the foregoing subsection, there exists
an ambiguity in the minimal replacement. However, it is
also true that once we make minimal replacement every-
where including V, the total electromagnetic interaction
is the same irrespectively of how we express the potential.
It is desirable to distinguish two types, p dependence and
V dependence, by imposing some criterion. To find this
we rewrite the divergence, (2.26), as
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V J (x)= —,'i—g[te,, V],5(x—r;)]

+ ,'i—g[[e,, V],5(x—r, )] . (2.67)

a caution is necessary because V' and exponentials do not
commute. As is shown in the preceding subsection, we
have to rearrange operator ordering and define V' such
that

We readily find that currents coming from V' can be
classified according to their isospin structure. The first
term of (2.67) has the isospin dependence

—
( V (pi p2 r) e e j

(2.77)

and the second term

[e, , ~, .r2] .

Since the first term takes the form

,'i g—t—e,, [ V, 5(x r,—)]], (2.68) P'( pi, p2q) = f d r e' "V'(pi, pz, r), (2.78)

The momenta in the left-hand side, which are sym-
metrized within the V' and are acting on the exponentials
as well as on the wave functions, are reshuftied to give a
new potential V' in which the momenta operate only on
the wave functions. After this procedure, we define the
Fourier transform of the potential as

it is clear that only the explicit momentum dependence of
V is responsible for the nonvanishing divergence. On ac-
count of this fact, we demand that the divergence of the
minimal current from the explicit p dependence should
be

and compute

—,
' f d r e'i'[ V', e '] =e'"' V'(pi, pz, q+ —,'k),

y3 iq. r V7. 2 ik RV p p q

(2.79)

(2.80)

V„J '"(x)= ,'i g——[(e,, V), 5(x —r, )], (2.69)
It should be emphasized that V 's cannot be obtained
from the Fourier transform

and split J (x) as V'(p„pz, q)= f d r e' 'V'(p„p~, r) (2.81)

J (x) =J '"(x)+J'(x) .

Then the remaining current J' must satisfy

V J'( x ) =—,
' e ( v, X r2 ),

X [ V', 5(x —r, )
—5(x—rz)] .

For a local charge-exchange potential V' we assume

(2.70)

(2.71)

by shifting the momentum q to q+ —,'k. Equation (2.75) is

cast in the form

k.J'(p„pz, q, k) =ie (ri X ~2), [ V '(p, , pq, q+ —,'k)

(2.82}

J'(x) =e (r, X rz), V'g(x)

and obtain the condition

(2.72)

V g(x)=5(x —r, ) —5(x —r2) . (2.73)

This is given by Osborn and Foldy and discussed by
Heller. The Sachs current (1.4) is an example which
satisfies this condition. In fact, with the aid of the formu-
la

r V„f ds 5(x—sr, —(1—s)r2}=—5(x—r, )

+5(x—r2), (2.74)

k J'(k)= —,'ie(r, X&2), [ V', e ' —e (2.75)

we can verify that J ""'(x) satisfies the required condi-
tion. The constraint (2.71) is a generalization of that of
Osborn and Foldy. When the potential has momentum
dependence, the symmetrization in Eq. (2.71) is crucial,
as we shall soon see.

In the photon momentum space, Eq. (2.71) becomes

In the following sections we do not use the notation P''
but retain V' for simplicity. However, the precise
definition of the Fourier transform should be recalled
whenever we encounter potentials which contain momen-
tum operators in quadratic and higher powers. We shall
also suppress the momentum operators in the argument
to simplify the notation.

III. EXCHANGE CURRENTS
FROM ISOVECTOR POTENTIALS

As mentioned in the Introduction, the Sachs current is
not successful because it does not reproduce the well-
established one-pion-exchange current. In this section we
propose a new method of constructing the exchange-
current operator from a given charge-exchange potential.
Our basic tool is the gauge-invariance constraint on the
current J, Eq. (2.82). Its solution is with great arbitrari-
ness and is dependent on the particular form of V . First
we consider the central local potential Vc(q). Equation
(2.82) gives us the condition

Further we go to the q space,

e'"' k J'(pi, p2, q, k)= f d r e'~'k J'(k) . (2.76)

k Jc(q, k) =ie (vi X rp), [ VC( ~q+ —,'k~ ) —Vc(lq —
—,'kI )] .

(3.1)

In Fourier-transforming the right-hand side of Eq. (2.75), The quantity in the square brackets has the structure
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vc ( I q+ —,
' k

I
) —VC( I q —

—,
' k

I ) =q kF( q, k, (g k )')

so that the current

Jc(q, k) =ie (rl X r2), qF(q, k, (q k ) )

(3.2) In the external electromagnetic field we should make the
replacement

rl. r2(V1+Vl)~rl r2(V1+Vl)+e(r, Xr2), A(r, ),
(3.6)q=ie(r, Xr2),'qk

x [ v (lq+-,'kl ) —vc(lq —-'kl )] (3.3)

rl'r2(V2+V2)~rl r2(V2+V2) —e(rl Xr2), A(r2) .

(3.7)

indeed satisfies the required condition. Its physical
meaning is elucidated by the fact that the obtained
current is also deduced from Vc(q) by using its nonlocal
representation and the minimal-substitution prescription
as is proved in a previous paper. '

For noncentral potentials a modification of the above
prescription is necessary. To see this we consider the
tensor-type interaction

We immediately obtain the current

J'T'(x)= —e(r, Xr2), [5(x—r, )o,o2 VVT'(r)

+5(x—r2)o 1 VVT'(r)o2] . (3.8)

In the q space, it becomes

JT'(q, k) = ie (rl X r2),
VT'(q)=o, qo2 qVT(q) .

In the position space it is written in the form

(3.4) x [o,o2 (q+ —,'k) v;(Iq+ 'kl)

+cr 1'(q —'k) Vz ( lq —'kl )o2] . (3.9)
Vz(r)=o 1 V, o2 V2VT'(r)

=o, (Vl+Vl)&2'(V2+V2)VT(r) . (3.5)
The current obtained in this way does not satisfy the con-
dition (2.82). The current JT(q, k ) must satisfy

k JT(q, k) =ie (r, X r, ), [ VT'(q+ —,'k) —VT(q —
—,'k)]

=ie(r, Xr, ),[o, (q+ —,'k)o. , (q+ —,'k)VT(lq+ —,'kl) —o, (q —
—,'k)o, (q —

—,'k)VT(lq —
—,'kl)] . (3.10)

We split the total JT(q, k) into two parts:

JT(q, k) =JT'(q, k)+ JT"(q,k) . (3.11)

The gauge-invariance condition then turns out to be

k J'T'"(q, k) =ie (r, Xr2), cr, (q —
—,'k)o 2 (q+ —,'k)[ VT'( Iq+ —,'kl ) —VT(lq —

—,'kl )] (3.12)

Now one can apply the same procedure as the central potential to give

JT"(q,k)=le(rlxr2), ol (q —
—,'k)o2 (q+ —,'k) [v;(Iq+-,'k ) —v;(lq —

—,'kl)] . (3.13)

As the third example we consider the spin-orbit poten-
tial rl r2p; ~r, r,p, —

—,
'

I e, , r, r, I A(r, ) (3.16)

In the explicit p dependence we make the substitution

VLS(q =1 q p12VLS(q»

where

S=
—,
'

( o, +o 2 )

is the total spin operator and

(3.14) and get the minimal current

JLs (x) 4 I el rl r2] S X V VLs(l )~(x rl )

+(1~2) .

Next we rewrite (3.15) as

(3.17)

VLs(r)= SVVLs(r)—Xp» . (3.15)

p12= 2(pl P2)

is the relative momentum. In the r space, the spin-orbit
potential becomes

VLs(r) = —
—,
' S (

—Vl —Vl+ V2+ V2) VLs(r) X p, 2 .

(3.18)

In this form the minimal coupling to V is induced with
the result
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JL's(x) = ,'—e(vi X rz)zS piz VLs(")[~(x

+5( x—rz )] . (3.19)

We again find that the current JLs(q, k) is the sum of two
terms,

JLs ( q k }=—e ( r i X rz ),SX p i z [ VI s ( I q + -,
' k

I )

+ v;, (Iq —
—,'kl)],

(3.21)

JLs(q, k) =JL',s(q, k)+ JL,'s~(q, k),
where the first term,

(3.20)
is the Fourier transform of (3.19). Invoking Eq. (2.82) we
have the gauge-invariance condition

k Jls(qk, ) i=e(r, x7.z), [VLs(q+ —,'k) —VLs(q —
—,'k)]

e (ri x +2 } [S ('q+ k }x plz VLS( Iq+ -'k
I )

—S (q —-'k) x plz VLS( lq
—-'k )] (3.22)

Consequently, JL,'~ is constrained by

k'JL's'(q k)= e(&i&«z}.S qXplz[VLS(lq+-, 'kl}—VLs(lq —
—,'kl)l (3.23)

We can solve this to obtain

JLs'(q, k) = —e(ri &«z), S.qXp» [V;, (Iq+ —,'kl ) —V;s(lq —
—,'kl }] . (3.24)

From these three examples a general prescription to
derive exchange-current operators from a given nucleon-
nucleon potential emerges.

(i) First we rewrite the potential in terms of the sym-
metrized momenta:

pends on spin and momentum operators of the nucleons.
This constraint is solved for

J'"(q,k) = ie (v, X rz), G (q, k)

pi = —
—,'i(Vi —V, },

pz= —
—,'i(V, —V, ),

(3.25}

(3.26)

The sum

x[v (Iq+-,'kl) —v (Iq —
—,'kl)] . (3.29)

—V —V1 1 ~

Jv Jmin+ Jw, I+J~,II (3.30)

V — V2+ V2,

—,'( —V, —V, +V,+V, ) .
(3.27)

is our result. The isospin-independent potential V con-
tributes only to J '".

IV. ONE-BOSON-EXCHANGE MODEL
(ii) Next we make a minimal replacement everywhere:

V;~V; —ie; A(r;),

V, ~V;+ie; A(r,. ) .

We classify the obtained currents into j '" and J" ac-
cording to their isospin structure: J '" is proportional to
j e;,~, rz] and J"is proportional to e (~, X rz), .

(iii) We calculate the divergence of J"and subtract it
from the divergence of J', Eq. (2.82), thereby giving

k J'"(q, k)=ie(r, x&z), G(q, k)

A. One-pion exchange

Our method of constructing the interaction current
devised in the previous section is quite general and is
applicable to any nuclear interaction models. In this sec-
tion we illustrate its usefulness by employing the particu-
lar field-theoretic model, the one-boson exchange model.
Among other things, it is essentially important to show
that our approach is consistent with one-pion exchange,
the hallmark of the nuclear theory. Since the one-pion
exchange potential is of tensor type, we can substitute

x [ v (Iq+-,'kl) —v'(Iq —
—,'kl)], (3.28)

where V'(q) is some remaining radial function. In gen-
eral, G (q, k), which characterizes the given potential, de-

2
1

v q+a
into Eqs. (3.9) and (3.13). We can easily see that

(4.1)
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1 1
1JopE(qk)= —ie

2 (r, Xr2), o. ,a'2 (q+ —,'k)
2 2 +o, (q —

—,'k)o2
2p

' (q+ —,'k) +p (q —
—,'k) +p

(4.2)

2q
JopE(q, k) =ie

2 (r, Xv.2),cr, (q —
—,'k)o 2 (q+ —,'k)

p
' [(q —

—,'k) +p ][(q+—,'k) +p ]
In deriving Eq. (4.3) we have used the relation

(4.3)

q 1

(q+ —,'k) +p
1

(q —
—,'k) +p

2q

[(q—
—,'k)'+ p'][(q+-,'k)'+ p'] (4.4)

It is satisfying to find that (4.2) coincides exactly with the contact current and (4.3) with the pionic current. In the posi-
tion space, they return to (1.7) and (1.8), respectively.

Thus the requirement of gauge invariance can produce the pionic current which is induced by the electromagnetic in-
teraction of pions. It is sometimes argued that the pionic current is one of the processes which cannot be described by
the nucleonic degrees of freedom only. The above exercise implies the contrary. To give an insight into this result, we
show that the pionic current is also induced by a minimal replacement in the local potential (4.1). To this end we write
the Fourier transform of (4.1) as

d . 1 ~ 1

p2 (2~)3 q2+p2 p2 V2+ 2 (4.5)

In this form we can apply our rule: We make minimal replacements in V, = —V, —V&, expand it in terms of e and ob-
tain the interaction term

1—e
2 r, v2 2 2 i(e, —e, )[V, ~ A(r, )+ A(r, ).V, ] 2 25(r, —r2)2 V2+p2 V2+p2

1=e (r, Xr2), (V, —V2) d x 5(x—r, ) A(x) 5(x—r2)
p V2+ 2 V2+

2
=e

2 (v, X~2),(V, —V2) f d x A(x)
p

5(x—r, )
1

V2 +p2
1 5(x—r2)

V2 +p2

f2
—plx —r l

—plx —r l

=e
2 (r, Xr2), (V, —V2) f d x A(x)

p 4~~x —r, ~

4m. ~x —r2

f2 1 e 2
—plx —r

l

—plx —r
l

=e (~, Xr2), f d x A(x)
i i

V„
Pl x r2l P IX rl I2 e 1

4vrfx —r, f 4~/x —r, [

(4.6)

In the momentum space we get the current

ie
2 (r&Xr2), 2q

p [(q —
—,'k) +p ][(q+—,'k) +p2]

(4.7)
H —gy py oXVyp. (4.9)

I

Foldy-Wouthuysen transformation to order 1/m we
obtain the meson-nucleon coupling Hamiltonian

B. Charged scalar meson exchange

Next we consider the charged scalar meson exchange.
Any other mesons can be treated analogously. The
meson-nucleon coupling is described by the Hamiltonian

H =a.p+pm

+gpss,

(4.g)

where a and p are the Dirac matrices, m is the nucleon
mass, y=r P with P being the scalar-meson field, and g is
the meson-nucleon coupling constant. Applying the

Thus it is not surprising that we can extract the pionic
current from the nuclear potential. Brown and Frank-
lin are the first who showed that the pion-exchange
currents can be derived from the minimal substitution in
the one-pion exchange potential.

It is understood that p is the symmetrized momentum
operator as defined in Sec. II. Since this Hamiltonian
starts from the term of order O(1/m ) the retardation in
meson propagation contributes to the one-meson-
exchange potential. In fact the meson energy is con-
sidered to be O(1/m), and we can make an expansion of
the meson propagator,

D (q ) = =D (q ) —q~~'(q2)+ . (4.10)
1

P 2+ 2

The retardation in the meson propagation is a conceptu-
ally important problem and will be treated in detail in the
next subsection. In this subsection we retain the first
term, i.e., the instantaneous part only. The scalar-
meson-exchange potential to order 1/m is then given by
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the sum of the central potential where

P&Vc= 1—
2m

u(r)
2m 2

(4.11)
u(r}= —g I 3

e 'q'D(q )= —g
(2m)3 4mr

(4.13)

and the spin-orbit potential

VLz = — o, Vu (r) Xp, +(1~2},1

4m
(4.12)

is the static potential.
We are now in the position to apply our method

developed in Sec. III. First consider the central part.
Since it depends quadratically on the momenta, we can
use the results of Sec. II C to obtain

and

Jc (x)= —[e~,+~ r2j . 2[pi5(x —r, )u(r) —
—,'o', XV„5(x—r, )u(r)]+(1~2)1

2m

Jz (x)=e (v, X v2), V„5(x—r, )u (r)+(1~2) .
1

Sm

(4.14)

(4.15)

The spin-dependent term arises because we made an interpretation p; =(o; p;) . To write down the gauge-invariance
condition in momentum space, we apply Eq. (2.54) with the result

(4.16)
2m 2m

After this reordering, Eq. (2.82) gives us the condition

2
p&

k Jc.(qk) , ie=(r, X r2), 1—
2m

P2 k
[u (Iq+ —,'kI }—u ( Iq —

—,'kI )] . (4.17)

Evaluating the divergence of Jc' leads us to

k
k Jc'(q, k)= ie(r Xir—),2[u(Iq+ —,'kI) —u(Iq —

—,'kI)] .
8m

We therefore obtain

(4.18)

[u(Iq+-,'kl }—u(Iq —
—,'kI)] .

It is important to see that the k term in (4.17) is rigorously canceled by the divergence of J . Thus we find

(4.19)

p&Jc"(q,k) =ieg (r& Xrz), 1—
2m

2
12 2q

2m2 [(q—
—,'k) +p ][(q+—,'k) +p )

(4.20)

where we have used u (q) = —g /(q +p ) and (4.4).
As for the spin-orbit potential the minimal substitution in p,. produces

JLz"(x}=—
I e„r,.&2j 5(x—r, )o, X Vu (r}+(1~2), (4.21)

and the minimal substitution in V produces

1Ji'z(x) =e (r& Xv'z), 2 5(x—ri)o
& Xpiu(r)+( I+-+2) .

4m

In the q space, the latter becomes

14s(q, k}=e(~iX~2)» [o~ Xpiu(lq+-, 'kI) —o2Xp2u(Iq —
—,'kI }] .

4m

Given this form for JL'&, the current JL'&' is constrained by

k JL'z'(q, k) = —e(+, X+2),[u (Iq+ —,'kI ) —u(Iq —
—,'kI )] [o,.(q —

—,'k) Xp, —cr2 (q+ —,'k) Xp2] .1

(4.22)

(4.23)

(4.24)

We solve this for
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.2q 1
J~s'(q, k)= —eg (r, X~2), 2 [o, (q —— k) Xp, —o2 (q+ —,'k) Xp2],

[(q—
—,'k) +p ][(q+—,'k) +p ] 4m

(4.25)

in which we have again used the identity (4.4).
Our next task is to calculate exchange currents using the graphical method and to compare with the above results. In

the external field the meson-nucleon system is described by

H =a (p —e A)+I3m +eAD+g f3(p . (4.26)

We do not include the anomalous magnetic moment interaction for the sake of simplicity. The Foldy-Wouthuysen
transformation yields the one-body interaction correct to 0 (1/m ),

e e e e
H, =earp — p A — a H — V E+ o'pXE,

m 2m 8m 4m
(4.27)

where E and H are the electric and magnetic fields, respectively. H, is manifestly gauge invariant, and therefore con-
sistent with Eq. (2.14). Besides H, the Foldy-Wouthuysen transformation of (4.26) produces at the same time the
"seagull" or "contact" interactions

H, = (4p AIe, yI+2o"HIe, qI+iV A[e, y] cr —AXV[e, @I 2icr—pX A[e, qr]) . (4.28)
8m

With the standard graphical method, we are ready to compute from (4.28) the contact current interaction

1 1 1
el'1 I 1 2 I 2 pl A(11)u (r)+ I el 'rl 1 2I 2

0 I H(r) )u (&)+e (r) X'r2) VI' A(1 I )u (&)
2m 4m 8m

1 1+Ie„r, r2) 2 o, XV u(r) A(r, ) —e(r, Xr2), z cr, Xp, A(r, )u(r)+(1~2) .
8m 4m

(4.29)

One can check that all the terms in H", ""are those ob-
tained from our approach: The first and second terms
correspond to J&'", the third term corresponds to J&', the
fourth term to J~z", and the last term to JL&. The meson-
ic current coincides exactly with J&"+JL&' found in our
approach.

The gauge invariance we have achieved is not a trivial
result. The meson retardation and the nucleon recoil are
the problems to be discussed in the subsequent subsec-
tion. Another problem is the treatment of the nucleon
negative-energy states. The nucleon-antinucleon "pair"
excitation current is induced because reduction of the
field-theoretic four-component equation is projected onto
the two-component subspace. Apart from the conceptual
question that the creation of antinucleon at low energies
should be suppressed due to the compositeness of the nu-
cleon, the pair current is inconsistent with the corre-
sponding nonradiative potential as emphasized by Ohta,
Ohta and Kubota, and more recently by Riska. ' The
contact interaction in the Foldy-Wouthuysen Hamiltoni-
an and the pair interaction in the diagrammatical expan-
sion scheme do not always coincide and the difference be-
tween them is not necessarily gauge invariant. Insofar as
we use H„we have to use the contact interaction in the
Foldy-Wouthuysen theory instead of the so-called pair.
Stichel and Werner and Riska' made use of the in-
teraction caused by the minimal substitution in the
meson-nucleon vertex, but the minimal and Foldy-
Wouthuysen seagulls are different. In fact the minimal
substitution in (4.9) gives us only three terms,

The gauge-invariant interaction

o"HIe, yI
4m

(4.31)

C. Meson retardation and nucleon recoil

The second term in the expansion (4.10) gives rise to
the retarded potential

V =g2 q, e 'qrq2 'q2d3

(2~)'

In the position space we write qp as

V„;,= —1,I ~w (r),
where

d q —i r i 2w(r)=g f e ' 'D'(q )= —,
' J r dr u(r) .

(2') r

(4.32)

(4.33)

(4.34)

Since the meson energy can be written as the nucleon en-
ergy difference,

re =[T,v], (4.35)

can be produced if we make the substitution in (o"p)
rather than in p . The last term in (4.28) is the result of a
minimal substitution of V in H . We again find that the
minimal prescription for the explicit p dependence is not
enough to generate the electromagnetic interaction as re-
gards isospin-dependent potentials.

H,s'"= (4p AIe, yj+iV A[e, p] —o AX VIe, pI ) .
m

(4.30)

we obtain

1r, = —
~
—p, V, . (4.36)
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This leads to the retarded potential 2= 1
p& 'e»'q (4.38)

p7
ret

If we insert

1
p& Vp2. Vw(r} . (4.37)

into (4.32), we get (4.37).
We apply our method to Eq. (4.37) to construct the ex-

change current. The minimal substitution of p; produces

J„t"(x)=—[e),r).v'2j
2

6(x—r, )Vp2 V w(r)+(1~2)1 (4.39)

and the minimal substitution of V produces

J;,,'(x)= —e(r, Xrz), 5(x—r, )p, pz Vw(r)+(1++2) .
1

m

The latter is represented in the momentum space as

1
J;;,'(q, k) =ie(r~ Xr2). , [p~p& (q+ —,'k}w(lq+ —,'kl )

—
p~ (q —

—,'k)p~w(lq —
—,'kl }] .

(4.40)

(4.41)

On the other hand, the current

J„,(q, k) =J;,', (q, k)+ J,",'(q, k)

must satisfy (2.82) or

k J;„(q,k)=ie(r, Xrz), [ V,'„(q+ —,'k) —V;„(q—
—,'k)]

1=ie(+, Xr2), [p, (q+ —,'k)p2 (q+ —,'k)w(lq+ —,'kl) —p, (q —
—,'k)pz (q —

—,'k)w(lq —
—,'kl)] .

(4.42)

(4.43)

Therefore we have the constraint

k J;,,"(q,k)=ie(&, Xrz), p, (q —
—,'k)p~ (q+ —,'k)[w(lq+ —,'kl) —w(lq —

—,'kl)]1

m

which is solved for

1
J«,"(q,k)=ieg'(r, Xr,)» p, (q —

—,'k)p, (q+ —,'k)
m

(4.44)

[(q—
—,'k) +p, ][(q+—,'k) +p ] (q+ —,'k) +@~

In deriving this we have used w (q}=—g /(q +p ) and

1

(q —
—,'k)'+ p' (4.45)

q 1

[(q+ —,'k) +p ]

1

[(q—
—,'k)'+V']'

[(q—
—,'k) +p ][(q+—,'k) +p ] (q+ —,'k) +p (q —

—,'k) +p
(4.46)

The current operators J„,'," and J,,", obtained from
minimal substitutions have the counter terms in the nu-
cleon recoil current operator in the usual diagrammatical
method. The recoil current, which is studied by Friar
in full detail, is the contribution from the time-ordered
diagram in which a nucleon interacts with the elec-
tromagnetic field before a meson emitted by one of the
two nucleons is absorbed by the other nucleon. The lead-
ing part is canceled by the wave function renormaliza-
tion, but a finite quantity is left. The recoil current in-
teraction becomes

where

r=~r
and

I' P=[H„y] .

To order 1/m

(4.48)

(4.49)

H,"'=—I", I 2w(r) —I, I 2w(r), (4.47)
—[e,r] o"H+[e, r]gAO .

2f7l
(4.50)
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Thus we find
1H,"'= Ie„r,.rzj z A(r, ) Vpz Vw(r)

2m
1+e (1 i X 7z)q z pi A(ri )pz Vw (r)

1+e(~, Xrz), o, H(r, pz. Vw(r)2'
1—e(ri Xrz), — Ao(ri)pz Vw(r)+(1~2) . (4.51)

in our approach because it is an interaction which is
gauge invariant by itself and therefore is not accessible by
our approach. The fourth term, which is proportional to
the scalar potential, is the exchange charge density in-
teraction caused by the nucleon recoil. The charge densi-
ty operator is found to be

1p„,(x)= —e(riXrz), 5(x—r, )pz Vw(r)

In Eq. (4.51) the first two terms exactly correspond to the
currents J„'," and J,",,

' obtained from minimal substitu-
tions in the retarded potential. The third term is absent

I

+( I+-+2) .

In the momentum space it is written as

(4.52)

I

p„,(q, k)= ieg (r, X—rz), .2 gp + qo

[( +—'k) + ] [( ——'k) + z]z (4.53)

where

(4.54)

~ =1
~o = I z (q+-,'k» (4.55)

are the meson energies before and after the photo-absorption, respectively.
The nucleon recoil is not the only origin of the charge density operator. The mesonic interaction also brings about

the density

gp+qo

[( i k)z+ 2][( + i k)2+ 2]p „(q,k)=ieg (r, Xv'z), (4.56)

The sum of these density operators,

&p(q, k) =p„,(q, k )+p „(q,k),
becomes

(4.57)

2q.k go
$p(q, k) = ieg (~i X rz),'

[(q—
—,'k)'+ p'][(q+-,'k)'+ p'] (q+-,'k)'+ p'

9'o

(q —
—,'k) +p

(4.58)

The meson retardation also a6'ects the current operator. In the mesonic current diagram, meson propagators are ex-
panded in I/m,

1

[(q—
—,'k)'+p' —eo][(q+-,'k)'+S ' —eo']

1 1 go go

[(q—
—,'k) +p ][(q+—,'k) +p ] [(q—

—,'k) +p ][(q+—,'k) +p ] (q+ —,'k) +p (q —
—,'k) +p

(4.59)

The first term in this expansion gives us the static approximation of the mesonic current. In the preceding subsection
we have seen that in the static approximation the mesonic current is exactly reproduced by our method. The second
term brings about the correction due to meson retardation,

t2 2

J„,(q, k ) = ieg (z, X ~z),2
2 2 2 2

qo'
[(q—

—,'k) +p, ][(q+—,'k) +p ] (q+ —,'k) +p (q —
—,'k) +p

%'e decompose this into two parts,

J„,(q, k) =J'„,(q, k)+5J(q, k),
where

(4.60)

(4.61)
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J,'„(q,k) =ieg'(r, X rz).qoqo

[(q—
—,'k) +p'][(q+ —,'k)'+p'] (q+ —,'k)'+p' (q —

—,'kl~+p, ' (4.62)

5J(q, k) =ieg (rI X rz) (qo qo)

2g go

[(q—
—,'k) +p ][(q+—,'k) +p ] (q+ —,'k) +p~

q0

(q —
—,'k) +@~

(4.63)

One sees that 5J(q, k) and 5p(q, k) obey the continuity
equation

k 5J(q, k) —(qo —qo)5p(q, k)=0 . (4.64)

The remaining current J'„„(4.62), exactly coincides with
J„,', (4.45), just that found by our approach. Thus it is
proved that our method can reproduce current operators
up to divergence-free four-currents. It should be stressed
that our results are valid beyond the nonrelativistic
framework: The scalar-meson exchange gives rise to the
two-body charge density, and yet the condition (1.2) is
fulfilled.

To conclude this section we supplement two remarks.
It is well known that there exists an ambiguity in the
choice of the meson energy q0. We note that any choice
gives us one of unitary-equivalent potentials. %'e can
transform (4.37) using a unitary transformation of the
two-nucleon wave function,

H,'=H, +i [S,H, ] . (4.71)

The retardation in the meson exchange is strictly
necessary in the proof of the Poincare invariance of the
nuclear interaction. There is in either of (4.37) or (4.69) a
term of the form

1 1
r, —r~=r — r PP — (cr, —~~) XP .] 2

8m 2 8~2 1 2 (4.72)

In terms of this the static potential becomes

~
(P V) w(r) .

4m

Such a total-momentum-dependent term should not ap-
pear. In fact, it is canceled out by a relativistic correc-
tion: The nucleon position operators r] and rz are related
to the relativistic internal position operator r to
0 (1/m ) as

with

0'=e' 0,

S =~).AS' .

(4.65)

(4.66)

u(~r, —rz~)=u(r)+ (P.V) w(r)1

4m

+ ~(o, —o~) Vu(r)XP .1

Sm
(4.73)

V;,t
-~ V„;,+i [S',T] .

If we choose a generator

(4.67)

1 1S'= ,'i [T,w (—r)]= p, Vw (r) — p~. Vw (r),
2fPl 2m

(4.68)

we get a new retarded potential

V;„= [(p, V)'+(p, V)']w(r) .
I

(4.69)

This is equivalent to the choice,

1 p 1
(4.70)

Applying our method to the potential (4.69) results in
difFerent current operators from those given above, but
we can prove again that the current operators have their
counter terms in the diagrammatical expansion scheme.
Recall that, owing to the unitary transformation, the
electromagnetic one-body interaction is also modified as

To order g the retarded potential undergoes a
modification,

The second term cancels the P dependence in the retard-
ed potential and the third term cancels that in the instan-
taneous potential.

V. DISCUSSION

%'e have developed a method of constructing the ex-
change current operator from an arbitrary nucleon-
nucleon potential. Taking the charged pseudoscalar and
scalar mesons as illustrative examples, we showed that
the contact and mesonic currents can be generated from
the meson-exchange potentials without recourse to the
explicit evaluation of diagrams. Close and Osborn '

solved the continuity equation for isospin-independent
potentials and it is found that current operators are in
agreement with those deduced from the potentials by
minimal substitutions. Our method proposed in this pa-
per is more general and is applicable to charge-exchange
potentials.

The diagrammatical method involves complications
due to meson retardation, nucleon recoil, wave function
renarmalization, relativistic corrections, and so on. On
the contrary, our method is simple and straightforward.
Once the nonradiative potential is given, current opera-
tors are deduced without knowing such complications.
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Furthermore, our method is not limited to one-boson-
exchange models. It can be used as a guiding principle in
the construction of current operators in microscopic nu-
clear interaction models.

It is a matter of course that the gauge invariance alone
cannot determine all the currents. We have experienced
such an instance in the scalar-meson-exchange retarded
potential. For another example, the p meson has the
anomolous magnetic moment interaction which has to be
added to the usual minimal coupling. The anomoulous
part is only responsible for the current which is gauge in-
variant by itself, and therefore it is not accessible by our
approach. But our method can be utilized in the follow-
ing way: We usually calculate exchange-current opera-
tors from some field theoretical model, and then take ma-
trix elements of them between nuclear wave functions
which are eigenfunctions of the nonradiative Hamiltoni-
an 00 = T + V. Calculations of wave functions and
current operators are performed on quite di6'erent basis.
However, the nuclear potential V and the exchange-
current interaction Hamiltonian are constrained by the
gauge-invariance condition. If we employ exchange-
current operators constructed in a field theoretical model
while using a phenomenological potential, this condition

is not satisfied and the gauge invariance is violated. If we
calculate an exchange-current interaction by using some
field theoretical model, we split it into two parts,

where

~ v ~min +~~, I +0~, II
em em em em

is written in terms of the theoretical potential V as
prescribed in this paper. The four-divergence-free
current interaction 50, satisfies the requirement of
gauge invariance by itself and is not related to the poten-
tial. After this separation the theoretical total Hamil-
tonian becomes

II =a, +II,'"+a,' +ca, (5.3)

When we go to the phenomenological potential, we also
make a replacement of V in H, . Then the calculation of
matrix elements does not violate gauge invariance even
when we use any phenomenological nuclear forces.
Furthermore, the model dependence is limited to 50,
which should be calculated from the underlying field
theory.
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