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In the conventional coupled channels resonating group approach it is dificult to investigate the
convergence of the solution with increasing number of distortion channels because of the nonortho-
gonality (and linear dependency) of channel spaces and because of nonuniqueness of the coupled
channels solution. The orthogonalized version of the resonating group method allows us to study
convergence. It is presently done for the n-channels case with one open channel and n —1 (closed)
distortion channels. It is found that the relative motion solutions and distortion amplitudes deter-
mined by the approximate equations converge pointwise towards values determined by the
Schrodinger equation. The converged set of equations defines the effective interaction of two clus-
ters in the elastic energy region; if one cluster is a single particle this definition goes over into
Feshbach's definition of the optical potential in the elastic energy region.

I. INTRODUCTION

There has been increasing interest in the resonating
group model' since it became apparent that this model
can be applied not only to nuclear and atomic physics but
also to the nonrelativistic constituent quark model.
Bencze, Chandler, and Gibson investigated the resonat-
ing group model in relation to the two-Hilbert space for-
malism and showed that coupled channels equations with
only two-cluster channels cannot be equivalent to the
Schrodinger equation. Adhikari, Birse, Kozack, and
Levin showed how the resonating group method can be
embedded into a rigorous integral equations approach.
The trouble arising from the nonorthogonality of channel
spaces has also been widely discussed, both in the coupled
reaction channels method ' and in the resonating group
model. A method of orthogonalizing and renormalizing
coupled channels equations has been proposed by one of
us. It involves diagonalization of the full norm operator.
A more general but similar treatment, based on Penrose's
generalized inverse of the full norm operator, has been
given by Birse and Redish. The latter approach has
been applied to the resonating group model in Ref. 4. Be-
sides practical difficulties involved in inverting large ma-
trices, all these methods have the disadvantage of mixing
channel spaces rather than separating them during or-
thogonalization. For this reason, and for the reason of
easier practical use, another orthogonalization and renor-
malization procedure has been introduced. In this latter
method channels are ordered according to their physical
importance and the Gram-Schmidt orthonormalization
rule is applied. Only the norm operator of one channel
has to be diagonalized, at each step of the recursive pro-
cedure, which is comparatively easy. All other opera-
tions are multiplications of operators. The resulting or-
thogonalized resonating group equation is Hermitian.

All zero-norm states which eventually arise by overcom-
pleteness and by the Pauli principle appear as solutions of
the equation at a chosen unphysical (negative or large
positive) energy.

Intuitively one expects the resonating group approach
to be convergent when all necessary distortion correc-
tions are included in the wave function ansatz. In the
ordinary resonating group approach, however, it seems to
be rather difFicult to study the convergence properties be-
cause of the nonorthogonality of the channel spaces. One
might run into overcompleteness, and consequently into
nonuniqueness of the solution, before one reaches a con-
verged result.

Nonorthogonality and even linear dependency of a test
function space is not at all harmful to the orthogonalized
resonating group method, as has been demonstrated by
an example in Ref. 9. This encourages us to consider the
question of convergence in this model. As a start we con-
sider a simple case, namely an 3-particle two-cluster sys-
tem in the elastic energy range. The elastic channel is
open, all other channels are closed. The closed channels
are represented by a set of square integrable states which
are coupled to the elastic channel via the coupled chan-
nels resonating group equation. We will investigate con-
vergence with respect to increasing number of square in-
tegrable states, the latter being taken from the harmonic
oscillator shell model. The orthogonalization scheme we
use is the one given in Ref. 9.

In Sec. II the orthonormalization of function spaces
and the orthogonalized resonating group equation will be
discussed. The question of convergence is studied in Sec.
III. Concluding remarks are made in Sec. IV.

II. THE ORTHOGONALIZATION PROCEDURE

The general formalism of orthogonalizing the resonat-
ing group equation has been given earlier. A recursion
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relation has been given which leads from the ordinary
resonating group equation to a resonating group equation
in which the elements of the matrix Hamiltonian are
defined in orthogonalized and renormalized function
spaces. The recursion relation uses only objects which
appear explicitly in the ordinary resonating group equa-
tion. The theory presented in Ref. 9 applies to coupled
two-, three-, and multicluster channels, with and without
distortion corrections.

Presently we are interested in the question of whether
the solution of the orthogonalized and renormalized
resonating group equation converges towards the true
solution of the Schrodinger equation, when the number of
distortion corrections is increased. We restrict our inves-
tigation to the case in which only one two-cluster channel
is open. The distortion corrections are then square in-
tegrable A-particle states. We use the name "channel"
also for these distortion corrections because of their for-
mal similarity to closed channels.

In the resonating group model, the A-particle
Schrodinger equation

is projected into the restricted function space

(2)

We let the first channel i =1 be a two-cluster channel,
which means that the internal motion state PP' is a prod-
uct of (exact) ground states of the two clusters, while y'P'
is a state of relative motion of the two clusters; the opera-
tor A denotes antisymmetrization. For 2 ~ i ~ n, the PI

'

are A-particle shell model states and the y', ' are ampli-
tudes. The total center of mass component is subtracted
out of H and factored out of 4. We choose the harmonic
oscillator shell model for P~z ', . . . , P'„', because separat-
ing out the center of mass motion is easy in this model.

From (1) and (2) we get the ordinary resonating group
equation by variation of the relative motion function y'i '

as well as of the amplitudes y'; ', 2 & i ~ n, in

The upper index (n) indicates that orthogonalization and
renormalization have been carried out with respect to all
n channels. In this paper we do not want to calculate the
quantities H ."' by the recursion relation of Ref. 9. We
want to obtain them as matrix elements of H -taken be-
tween orthogonalized channel states, with a special treat-
ment of zero-norm states.

We start with the first channel, i =1. The states form-
ing the channel space are A IPP'& Ir &, where r is the c.m.
distance of the two clusters. These states do not form an
orthonormal set, because their scalar products are the
norm kernel in r space, N 'll'(r, r'), which is not a delta
function. In order to orthonormalize the i =1 space, we
solve the eigenvalue equation

The operator X'ii' is not compact. It is the sum of the
unit operator plus a compact operator. Whenever com-
pactness becomes relevant, we will have to use this latter
form and treat the unit operator separately. The problem
at the moment is to calculate the inverse of N 'I] . Since
we have assumed rigorous cluster ground states, we do
not expect that N &i' has eigenvalues equal to zero. But
in order to standardize our treatment, we allow also for
zero eigenvalues, say q»= . =g, =0. The ortho-
normalization should not affect the zero-norm eigen-
states. Therefore we replace, in the eigenstate representa-
tion of the norm kernel, pl by pl, with

'9i i= ' ' ='9I m=1

for m+1~v .

With these new eigenvalues we define N', ,
' by

The inverse of X'I, ', as well as the square root of the in-

verse, obviously exist. The orthonormalized basis of the
i = 1 space can now be written as

We get
[to evaluate the expression on the right-hand side one in-
serts the unit operator I I

r'
& & r'Id r' between I/I '& and

(N'll') ' ]. With the orthonormalized i =1 basis we
define the projector P

&
onto the i = 1 space,

PI =a ly'I" & & y'I" l~ =~ ly'p &(N'&'&') '&yI 'l~

The upper index (0) indicates that no orthogonalization,
or renormalization has as yet been performed. The tilde
reminds us that the function space used may have zero-
norm components. The quantities H',-. ' and X',"' are ei-
ther numbers or operators, depending on how many vari-
ables are integrated over by & P'; 'I and I

P' '&.

The orthogonalized and renormalized resonating group
equation reads

With this operator we can now remove from channels
i =2, 3, . . . all overlaps with the i = 1 channel. We get

This completes the transition from upper index (0) to
upper index (1).
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Next we renormalize A
l
P(2" ). We calculate

~(() ( y(() lA l

y() ) ) (12)

which is just a number. When it is zero, we leave every-
thing as it is and replace the upper index (1) by (2), every-
where. When it is nonzero, we renormalize A

l
P~z" ),

the microscopic Hamiltonian, taken with normalized
states, or they are zero.

(3) Equation (5) is Hermitian. Solutions at different en-
ergies are orthogonal to each other.

(4) The solutions of the coupled channels Eqs. (5) are
related to the microscopic state of the resonating group
ansatz (2) by

A ly( ) ) —A ly( ) )(~( ) )— (13)

The projector on i =2 space (consisting of only one state)
becomes

P A ly(2)) (y(2)lA (14)

Taking out overlaps with A lg(2 ') from the higher chan-
nel states leads to

A p(„"&=(&—p, )Alp(„"& .

(15)

m

H', ", ' = (y', "'lAHA ly', ") ) + y lu, , )E(u,
v=1

(y(")lA ly(")) =0
II(n)

(P', "'lAHA lP,'"') otherwise
for 2~i ~n,

H'"'=(y;'"'lAHAly'"'), for iWj .

With this definition, Eq. (5) has the following properties.
(1) The diagonal elements H;"' of the matrix Hamil-

tonian consist of two parts. In the first part the micro-
scopic Hamiltonian is represented on the basis of states
with nonzero norm. The second part is e times the pro-
jector onto zero-norm eigenstates of the channel. Either
the first or the second part is missing when the channel
space consists of only one state. The energy e is chosen
to lie outside the energy spectrum of interest, which
means that e has either a large positive value, or a value
which is more negative than the ground state energy of
the system.

(2) The channel coupling Hamiltonians are either phys-
ical transition amplitudes, i.e., transition amplitudes of

The i = 1 space remains as it is, but nevertheless we re-
place its upper index (1) by (2). This then completes the
transition from upper index (1) to (2).

We continue in the same way. The last step will be the
renormalization of A l(I)"„') and replacement of all
upper indices (n —1) by (n). We then have constructed
an i =1 space consisting of a continuous set of func-
tions Alg, "') r) and the i =2, i =3, . . . , i =n spaces
A lPz"'), A i/3"'), . . . ,A l(()'„"') consisting of only one
state each. All basis states are orthogonal and have ei-
ther unit norm or zero norm; so far, the number of zero-
norm states is finite.

In terms of the orthogonalized basis states, the ele-
ments of the matrix Hamiltonian of (5) are defined in the
following way:

l

qy ) —y A
l

y(n) ) l+(n) )
i=1

(17)

(5) The zero-norm states which have been detected dur-
ing the orthogonalization process appear as solutions of
(5) at E =e. At EAe the solutions of (5) are orthogonal
to the zero-norm solutions.

III. CONVERGENCE WITH INCREASING NUMBER
OF DISTORTION STATES

with

(19)

The symbol 1 at the right-hand side of (19) means that
there is no internal motion state at all in this channel
while y'„+1 is a function of all particle coordinates.
Without the first n channels, g'„+1 would just be the mi-
croscopic state g, and 4 would be Ag. Our goal is now
to show that the i =n +1 channel becomes less and less
important as n increases.

We shall proceed in five steps. (1) We derive the ortho-
normalized resonating group equation for the new ansatz
(18) and (19). (2) We show that the solution of the
Schrodinger equation, when decomposed into channel
states, satisfies the new resonating group equation and
that (3) the microscopic state obtained from the solution
of the new equation satisfies the Schrodinger equation (1).
(4) We use the completeness relation of harmonic oscilla-
tor shell model states to show that, with increasing n, the
norm of y'„"+(" goes to zero. (5) We show that the
difference of the solution of the n-channels equation and
the solution of the (n +1)-channels equation converges
pointwise to zero.

Step 1

We orthonormalize channels space (18). Equations (9)
and (10) remain unchanged, (11) is replaced by

A
l 0."+)& =(I—pi )A l 0"+)& .

(20)

Linear dependency is not harmful to the orthonormal-
ized resonating group equation. We want to take advan-
tage of this feature and enlarge our ansatz (2) in such a
way that it will always form a complete space. We sim-
ply add the complete space as an additional channel. In-
stead of (2) we write

n+1
(18)
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Equations (12)—(14) remain unchanged while (15) is re-
placed by

A ly3" & =(1 P2)A ly(3" &, H""+ =H"" for ]. (i j ~ nIj LJ 7 (25)

For values of i and j between 1 and n, the elements
H,'"+"are identical to those given by (16),

(21) In addition we have

N n+i, n+1l un+ i, v) ln+), vlun+i, v) (22)

is solved and zero-norm eigenstates are detected. This
equation has a simple structure. The original norm
operator N„'+, n+1 has been the unit operator in
particle space (except for the total c.m. degrees of free-
dom), and N(„"+), „+i has been obtained by subtracting
out all states which are included in the first n channels.
A11 these latter states are now zero-norm eigenstates of
(22), and all other states are unit-norm eigenstates of (22).
No renormalization is needed and we can just replace the
upper index (n) by (n+ I). The projector onto i =n +1
channel space is

P„+i=1—g P; . (23)

The (n +1)-channels orthonormalized resonating group
equation, which follows from ansatz (18) and (19) be-
comes

n+1
(H(n+ i) Eg ) l+(n+1) ) —0

j=1
(24)

A ly(.'+)
i & =(x —P, )A ly(.'+)

i & .

The subtraction process continues until the projector P„
has been formed and the i =n channel state has been pro-
jected out from the i =n+1 space, provided that the
i =n channel state is not a zero-norm state.

In the last step, which leads from upper index (n) to
(n +1), the depleted i =n +1 space is renormalized. The
eigenvalue equation

H'"+"=
& {t)'"+,"lAHA lP'"+") for j & n,n+1,J

H'"+" =
&
p'"+"lAHA lp'"+") for j & n,

7
(26)

H(n+ I) —
&y( n+1) lAHAly(n +) ) ) + y P

Let us recall again our somewhat unconventional nota-
tion. In order to be able to write down orthogonalized
multichannels equations in a concise way we have intro-
duced the quantities lP" ). They are not internal motion
states in the ordinary sense because they contain projec-
tion operators operating on the relative motion states
ly'". ). A somewhat extreme case in terms of notation is
p„"++)"), which is purely a projection operator.

Step 2

Suppose we had found a rigorous solution g of the
Schrodinger equation (1), at an energy E &Eo, where Eo
is the energy of the first inelastic threshold. In order to
insert this solution P into (24) we have to decompose it
into channel states by means of our projection operators.
We get the vector of states

AP lf)+g'c lu'"+" (27)

The prime at the sum symbol indicates that the sum in-
cludes only zero-norm states. The coefBcients c; are ar-
bitrary; lu

"+") =1 for 2 i n. Inserting (27) into (24)
and using (25) and (26) we get

n+1 n+1

g (H'"+"—ES,, )lp,'"'")= y &p;'"'"IA(H E)A I&'"+"&—& 0,'"+"IAP, 0&+(~—E)X'c,-lu, -&
j=1 j=1 V

=&y( +')lA(H —E)Alp)=0,

provided that

c; „=0 for EKE . (28b)

Here, we have used (23) and the fact that, according
to our definition of the projection operators,
Algj("+")&P'"+"lA is equal to P~. Since eAE is as-
sumed to be true for all physical energies E, the
coefficients c; must be zero. The transition from a mi-
croscopic solution g of the Schrodinger equation to the
vector of channel states or amplitudes ly(;"+") is unique,
and this vector of channel states or amplitudes satisfies
the orthonormalized (n+1)-channels resonating group
equation (24).

Together with (25) and (26), (24) becomes
n+1
y &y'"+"IW(H EM l$ ) lx'"+"

&

=
& y';"+"IA(H —E)A

I
+ & =0 . (30)

Step 3

Suppose we had found a vector of states or amplitudes
ly(;"+") which satisfies (24) at an energy E &Eo. The
corresponding microscopic state is

n+1
lql ) —y A ly(n+ 1) ) l+(n+ )) ) (29)
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The e terms have not been written because no zero-norm
components are present in the column vector (lg,'"+")).
Each one of the equations (30) tells us that (H E—)l+ ) is
zero when projected onto a channel space. Since, accord-
ing to (23), the sum of all projectors is unity in the com-
plete space, and since lV) satisfies all (n +1) equations
(30), it also satisfies the Schrodinger equation (1). It fol-
lows that the solutions of (24), inserted into (29), yield
solutions of the Schrodinger equation (1). Our way of
detecting zero-norm states has given us aO zero-norm

states. Therefore the solution vector ( ly(,."+")) is unique
for EKE, provided that the solutions of the Schrodinger
equation are uniquely determined by the boundary condi-
tions.

Step 4

Suppose we had found a solution of (24) at an energy
E &Eo. We consider the last component of the vector
(lg;"+' ) ) and calculate its norm,

(y'"+ "ly("+")'~ = (g("+')l(y("+')l~ ly("+)) ) lg(&+)) ))~2+n+1 +n+1 +n+1 n+1 n+1 +n+1

(31)

(32)

Later on we will need some information on the rate of
convergence. We may ask which are the largest
coefficients in an harmonic oscillator expansion of
ly(„"++,") and from which part of the compound state
wave function do they arise? Large coefficients of states
with many harmonic oscillator quantz can arise either
from singularities, from discontinuities, or from a long
range of the expanded function. We have assumed
smooth potentials and have excluded resonances of ap-
proximately zero width. Our compound state is a smooth
and bounded function. Slightly below the inelastic
threshold Eo, however, it has a long range because there
will be an exponential tail reaching far into the inelastic
channel. At E =Eo —6, with 6 being a small positive
energy, this tail will be proportional to exp( —~r), with
~=(2pb, /))i )'~ . The harmonic oscillator expansion
coefficients C&LM of such an asymptotic function are
known from the algebraic version of the resonating group
method. ' With I. and M being the orbital partial wave
quantum numbers of the inelastic channel and X being
the radial harmonic oscillator quantum number we have

C~IM ~const(4N +2L +3)

Xexp[ pro(4%+2L +3) ~ ],— (33)

where ro is the width of the harmonic oscillator basis,
ro =&A'/()M co ). The exponential decrease of these
coefficients will become important in our further con-
siderations.

We know that f is a solution of the Schrodinger equation
at E (Eo. Hence (I P, )l (()(—is a square integrable
state. From the last term of (31) we see that n —1 further
states are projected out of this state. As a consequence of
the completeness of harmonic oscillator shell model
states the norm of the remaining state, which is the norm
of lg'„"++)"), goes to zero with increasing n,

g(8'"+"—E5; )lf'"')=0;
j=1

(34)

here we have used (25) which allowed us to replace the
superscript (n) at the Hamiltonian matrix by (n +1).
Equation (24) becomes

n+1
(Q (n+)) ~g )lg (n 1) )+0

j=1
(35)

Step 5

We want to compare, for given boundary conditions,
the solutions ( ly(.")) ) of (5) with the solutions (ly~("+") )

of (24). Equation (5) can be obtained from (24) by drop-
ping the last row and column of the matrix (H,' "+")and.
by dropping the last element of the column vector
(lg'"+")). Intuitively one might think that this drop-
ping of terms cannot make much difference when n is
large, because of (32). That this intuition might be
wrong, can easily be demonstrated by an example: When
the spectrum of (24) contains a resonance of zero width
and when the width of the corresponding resonance of (5)
approaches zero only as n goes to infinity, then the solu-
tions of (5) and (24) can diff'er rather much in the vicinity
of the resonance, for any given n.

Before we go on we have to make some restrictions.
We assume that we are dealing with a physical system
which means that no resonance state has infinite lifetime
(zero width) and we assume that all microscopic poten-
tials are bounded operators (no hard core). In order to
compare the solutions of (5) with those of (24) we formal-
ly solve these two equations. We do this in two steps.
First we diagonalize the submatrix (H "+"),2 i,j n.;
recall (25). The many zeros obtained by this diagonaliza-
tion enable us to construct, in the second step, the
Green's function needed for the formal solution. When
quantities are affected by the diagonalization of the sub-
matrix we denote it by a hat. Equation (5) then becomes
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Q {n+1) g (n+1) G (n+1)1
i1 ~ (~+1) i1 l n

E —m"
/l

(36)

We compare the solutions of (34) and (35) with each other
and then go back to (5) and (24).

In Appendix A we derive the matrix Green's function
(C {j"+")of the operator appearing in (34). The element
0 'll+"(E;r, r') is the usual Green's function which cor-
responds to the equation which is obtained from (34) by
formal elimination of channels i =2, . . . , n. In terms of
this Green's function the other elements of (0 ';"+")are

Q {n+1) G (n+1) Q (n+1) 1
1j 11 1j E—~~ (n +1) '

JJ

(n+1)— ~ (n+1) Q (n+1)
H (n+1) 11

//

gH (n+1)
1j E —H -".

~i '~n1—5;.
E —H;,'~

( +1), 2,J

Operating with this matrix Green s function on the ma-
trix equation formed by the 6rst n equations of the set of
equations (35) we get

~g
(n+))) —

~g
(n) ) = —G {n+1) y {n+1)+M y {n+1) y {n+1) ~g(n+)) )1 1 11 l, n+1 ~ lj y(n+{) j,n+1 n+1

J =2 JJ

(37a)

n
~g(n+1) ) ~g(n) ) g (n+1) Q (n+1) H (n+1)+ ~ Q (n+1)

/ / ~ (p/+1) /1 11 I,n+1 ~ lj
ll J =2 y („+1)~ j,n+1 lg nn++1

JJ

(37b)

We want to show that the right-hand sides of (37a) and (37b) go to zero as n goes to infinity. This is not a trivial conse-
quence of the fact that the norm of f '„"++,"tends to zero, because some of the factors in front off '„"++1"are unbounded.
We have to consider three types of unboundedness.

(a) A finite number of energies 8,';"+" may lie in the elastic region. When E approaches one of them, say
E~8 {kk+", then (E —8 {kk+") ' goes to infinity. In order to show that 8 '1", +"8'1k+" compensates this pole, we fol-
low the treatment given in Sec. 9.2 of Ref. 2. We need a Green's function C ', 1+""(E;r,r') which is defined similarly to
G {){+"(E;r,r') but with omitted elimination potential 0'{)k+"8{k)+"/(E—A'kk+") of the kth channel. From the
resolvent equations

(n+1) (n+1)
Q (n+1) Q (n+l), k Q (n+1) 1" "1

Q (n+1), k
11 11 11 ~ (~ +1) 11

kk

(n+1) (n+1)
G (n+1) g (n+1) k g (n+1) k lk kl

G {n+1)
11 11 11 A (~ + 1) 11~ kk

(38b)

(n+1) (n+1)
g (n+1) lk g (n+1) k lk

Q (n+1) 11 E Q(n+1)+P (n+1) Q (n +1) kP (n+1)
kk kk k1 11 1k

(39a)

(n+1) (n+1)
Q (n+1)— kl

Q (n+1), k

g (n+1) 11 E Q (n+1)+P (n+1) g (n+1),kg (n+1)
kk kk k1 11 1k

Inserting (39a) into (37a) we get

(39b)

n

~g. (n+1))
~g

(n)) — (n+1) ~ (n+1) + ~ Q (n+1)
1 1 11 1,n+1 ~ 1j

J=2
jWk

Q. (n+1) (n+1)
y („+1)~~ j,n+1 ~X n+1

P (n+1)
+Q (n+1),k 1,n+1 ~(n+1) )

Q (n+1)+P (n+1) Q (n +1),kg (n+1) + +1
kk k1 11 1k

(40a)

As is shown in Sec. 9.2 of Ref. 2 the quantity 8 {k",+"0 ',", +""8(1k+" appearing in the denominator is a complex num-
ber. Its imaginary part is essentially the width of a Breit-Wigner-type resonance. Since we have excluded resonances of
zero width, the factor in front of

~f '„"+,") in the last term of the right-hand side of (40a) remains bounded. The singu-
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(n+1)
( n+I) P ( n+I) ~~( n+ I) )P (n+I) 1,n+1 ~ n+1

11

(n+ I) (n+I)
11 p („+I)~~ in+, I ~f n+ I I p („+I)~~ in+, I lL n+ I

11 11 11

P (n+I) Q (n+1),ig (n+I)
il 11 li P (n+ I) (n+I) )g (n+I)+H (n+I) 0 (n+1),ig (n+1))(E Q (n+I)) E Q (n+I) i, n+I n+I

11 i1 ax 11 11

(n+1)
il

Q (n+1),kg (n+ I) O(n +I) )P (n+ I)+P (n+ I) Q (n+ I) iP (n+I) 11 I, n+I A. n+I
11 il 11 li

(~+~)
i, a+I ~(n+I) )P (n+ I)+P (n+I) Q (n +1),ig (n+I) "+

11 i1 I 1 li

larity at E =8 (kk+" disappears when 8 (kk+" is a nondegenerate eigenvalue. It also disappears when 8 (kk+" is a de-
generate eigenvalue, because we can apply (39a) to each of the degenerate terms.

The same sum over j which is present in (37a) is also present in (37b). For E~Bkk+" with iAk and
8(kk+"WA'I;"+" we repeat the treatment which has led from (37a) to (40a) and get the same conclusion. For
E~A' ',,

"+"we apply (39a) and (39b) in the following way:

and

g (n+I)
Q (n+1)H(n+I) 1 (n+1)[~(n+1)%

y („+I)~ 11 Ij y („+I) j,n+llf n+I
11 JJ

(n+1)
il

Q (n I+), P((n+I) 1 g (n+ I) ~(n+I) )
Q (n +I) +g (n+I) g (n+I), i+ (n+I) j E P (n+I) j "+ ~ "+

11 i1 11 li JJ

Inserting these relations into (37b) we get

~g, (n+ I) ) (g. (n) )— P (n+ I)
i1

Q (n+l), kg (n+I) ~O(n+I))
g (n+I)+Q (n+I) Q (n+I) i+ (n+I) 11 I "+I "+I

11 i1 11 li

(n+I)
il g (n+1), i

P (n+I)+P (n+I) Q (n+1),iH (n+I)
11 i1 11 li

n

J E (n+1) J~n n

JWl

(n+1)
+ in+ I ,

~

(„+I)
~g (n+ I)+g (n+ I) G (n I+) i+ (n I+) "+I

11 il 11 li

(40b)

Again we see that the singularity at E =8,',"+"disap-
pears and the factor in front of

~f '„"++,") remains bound-
ed. This is true also when P(kk+"=H';;"+" for some
kAi, because (39a) and (39b) allow us quite generally to
replace a denominator (E —8 (kk+") by a resonance
denominator E —8 'kk+"+8 kl "GA''Ik+" with an ap-
propriate Careen's function G.

(b) In Appendix 8 it is shown that the kinetic energy
part of H does not contribute to the elements 8(Ij+",
2~j ~n+1 of the matrix Hamiltonian. For bounded
potentials these operators are bounded. The term
G ~II+"8I"„++I~f '„"++I") of (37a) goes to zero when n

goes to infinity, for every value of r in G ',", +"(r,r'). The
other terms on the right-hand sides of Eqs. (37a) and
(37b) contain the operators 8'"„++",, 2~ j~n. These
operators contain coupling matrix elements of the kinetic
energy part of H. The kinetic energy operator can couple

harmonic oscillator states which di6'er by two excitation
quanta. The relevant matrix elements are

T~ ~+ I =&N(N +L +1/2) (41)

For given angular mornenturn L and large radial quan-
tum number N this matrix element increases approxi-
rnately proportional to X. %'e have to show that, never-
theless, 8 j("„++'I)~g'„"++I") goes to zero when N goes to
infinity. Let us choose our basis of harmonic oscillator
shell model states such that it includes all states up to a
given (large) number of excitation quanta and excludes all
states with more excitation quanta. And let us choose
the worst possible case for our coupled channels equa-
tion. Let us consider an energy E which is just slightly
below the first inelastic threshold Eo. At this energy
highly excited harmonic oscillator states are needed to
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represent the long exponential tail of the wave function
reaching into the first inelastic channel. The largest har-
monic oscillator amplitudes which we present in

~f '„"++,") will come from this tail. Their dependence on
the number of excitation quanta is given by (33). We see
that the exponential decrease with &N of these ampli-
tudes overrides the linear increase with 1V which is
present in 8 '"„++",, for all values ofj. At E =ED conver-
gence has to break down because the compound state
part of the wave function is no longer normalizable. In
(33) this feature is expressed by the fact that a becomes
zero at E =ED.

(c) The number (n —1) of harmonic oscillator shell
model states can be much larger than the maximum num-
ber N of excitation quanta. Up to now we have only
shown that in (37a) and (37b) the individual terms in the
sums over j go to zero. We still have to show that they
go to zero fast enough to override the increasing number
of terms in the sum. This is easily shown. For 3 parti-
cles the number of Cartesian (or Jacobi) coordinates is
3 A (or less, if we separate out the center of mass motion).
If we distribute up to (2%+L) harmonic oscillator quan-
ta over 3A oscillators we find that there are fewer than
(2N +L) "possibilities. This factor is clearly overridden
by the exponential decrease of the terms in the sum.

This completes our investigation of the convergence
property of the orthogonalized n-channels resonating
group equation (34). The result is equally valid for Eq.
(5), because (5) and (34) differ only by a unitary transfor-
mation in the closed channels subspace. We have found
that with increasing number of distortion channels the
appropriate relative motion wave function j',"'(r) con-
verges to the true wave function, for every value of r, and
that the compound state or distortion amplitudes y', "',
i ~ 2, converge to their true values, for all i.

We hesitate to call our findings a convergence proof in
the sense of rigorous mathematics. We are physicists
rather than mathematicians. But we felt that, after 50
years of successful applications of the resonating group
method, its convergence properties (with rigorous cluster
ground states) should be investigated.

IV. CONCLUSION

The Gram-Schmidt orthogonalization procedure, sup-
plemented by a special treatment of zero-norm states, has
been applied to the coupled channels resonating group

APPENDIX A

We want to solve the equation

y (y (&+i)—Et) )~g ("+)))= —y ("+))~g ("+ ')
j=l

for 1 ~i ~ n,

by introducing a matrix Green's function for the matrix
operator (8 ',

"+"—E5;.} such that

~f ("+i)) ~g
(")) g Q ("+1)g ("+1)~g ("+i)) (A2)

We formally eliminate from (Al) the equations with i 2,
i.e., we insert the formal solutions (recall that H';"+",
2~i,j ~n, is diagonal)

~g, (n+)) ) (P (n+1)~g, (n+1) )( E P (Pg+i) !1 1

ll

+Q (n +1)~g. (n+ 1) ) )

for 2~i ~ n, (A3)

into the first one of the set of Eqs. (Al}. We get

equation with one open channel and n —1 (closed) distor-
tion channels. When the orthogonal complement of the
n-channels space is added as space of an (n + 1)th chan-
nel, an orthogonalized (n+1)-channels equation is ob-
tained which is fully equivalent to the microscopic
Schrodinger equation. It is seen that the norm of the
(n +1)th component of the solution vector goes to zero
as n increases. It is also seen that the relative motion
wave function of the elastic channel converges pointwise
to the corresponding wave function component of the
true Schrodinger solution when n goes to infinity. The
distortion amplitudes also converge to the corresponding
amplitudes which are present in the true Schrodinger
solution. The converged set of equations defines the
effective interaction of two clusters in the elastic energy
region; if one cluster is a single particle this definition
goes over into Feshbach's definition of the optical poten-
tial in the elastic energy region.

H (n+1) E+ ~ Q (n+1)
11 ~ 1j

J=2
~ (n+1) ~+(n+1)) — ~ (n+1)+ ~ H (n 1+)

j1 ~+ 1 1n+1 ~ 1j
JJ J=2

H (n+1) [ (n+1) g
j,n+ )~X n+1

JJ

(A4)

The operator appearing on the left-hand side is well known. It has an ordinary three-dimensional Green s function
which we denote by 6 ',", + ". By formally solving (A4) with this Green's function we get

~g
("+)))=

~g
(&)) g (&+)) p (&+i)+ m y (~+))

1 1 11 1,n+1 ~ 1j
J =2

(n+)) ~~(n+)) g

y („+i) j,n+1 ~A, n 1+
JJ

(A5)

We insert ~g',"+") from this equation into (A3) and get
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lg
(n+I) ) = lg

(n) ) y (n+I) g (n+I) y (n+I)+ y (n+I)1 n

1 i E p (n+ I) il 11 1,n+1 1j
11 J=2

Q (n+I) ~~(n +I) g
j, n +I lf n+I

JJ

(A6)

By comparing (A5) and (A6) with (A2) we get the matrix
Green's function (C,'j"+")in terms of C 'I", +",

Q (n+I) Q (n+1)P (n+I) 1
1j 11 ot' J n

JJ

space. The former two parts, together with cluster-
internal potentials, convert into binding energy of the
two clusters. The latter part has the Hilbert space repre-
sentation

for 2 i n
H~ (n+1)

T=ylu.„)T„&u.l . (B4)

g (n+I) p (n+I) Q (n+I)
iJ E H (n+1) 11

11

(n+I)
Ij E H (n+I)

JJ

„5; for 2 ~i,j ~ n .
H (n+1) 1

11

(A7)

We get

H", ,
' =flu„& & u, I & yP) I

TW ly(,"& lu. & & u„l

+terms not containing T

=flu„& T„„q.& u. l+ (B5)

APPENDIX 8

We want to show that the elements H1"+", j ~2, of
our matrix Hamiltonian (H("+ )) do not contain any
contribution from the microscopic kinetic energy opera-
tor. We consider a two-channel equation with an elastic
two-cluster channel, as first channel, and any other chan-
nel as second channel. Using either the orthogonaliza-
tion procedure outlined in Sec. II, or the recursion rela-
tion given in Ref. 9, we get

H(2) (~(0) )
—I/2H(0)(~(I) )

—I/2
12 11 12 22

In (B5), the decision to put A to the right-hand side of T
has been made before decomposing H into pieces which
are not exchange symmetric. Similarly we get

P, V, V

(B6)

This operator appears in the first term of the right-hand
side of (Bl). In the second term appears the product
H'„'(H PI' ) 'XP2' which becomes

H(I0I)(X(I0())-I~((02) = y„ lu„&T„. n., &U, l+ . .
P, V~T

(+(0) )
—I/2H(0)

( a(i (0)
)
—I+(0)(+(I)

)
—I/2 (Bl) =H"'+

12 (B7)

The norm operator N', 1' of the first channel, expressed in
its eigenstates basis, is

(B2)

Let lu„) be the eigenstates of the norm operator N(22) of
the second channel. Then N12' can be expanded as

jV(I02) =flu„)n„.&v l
. (B3)

P, V

The microscopic kinetic energy operator, when acting in
the first channel, decomposes into three parts. Two of
them operate in the internal motion space of the two
clusters, the third one operates in the relative motion

Therefore the two terms at the right-hand side of (Bl)
cancel, except for contributions not arising from T.

Now, the second channel has been arbitrary, in this
consideration. It can consist of one of our shell model
states lP(. '), 2 i~~n, or it can be the complete space
l P'; '), i = n + 1. The feature which has been essential for
getting our result was that the second channel is orthogo-
nalized with respect to the first channel and that the
space of the first channel contains the complete represen-
tation space of the kinetic energy operator of relative
motion. We conclude that our result is true for H'1J+",
j ~ 2. Only the potential operator contributes to H'1"+",
j 2. For bounded potentials the operators H'1" +",
2~j ~ n +1 are therefore bounded.
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