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Causality and the Coulomb sum rule in nuclei
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The spectral function in the Jost-Lehmann-Dyson representation of causal commutators is deter-
mined for the nonrelativistic limit of inclusive lepton scattering from nuclei. From this an extrapo-
lation of the Coulomb sum rule to higher-momentum transfers is performed which is consistent
with the requirement of causality.

I. INTRODUCTION

Deep-inelastic scattering of leptons from nuclear tar-
gets has been discussed extensively in the last years in
conjunction with a modified quark structure of nucleons
inside the nucleus. ' Even in the kinematical region where
the scattering takes place predominantly on individual
nucleons, basic features seem not to be understood: The
energy integral over the longitudinal cross section at con-
stant momentum transfer (the Coulomb sum rule) does
not approach experimentally the number of protons as
predicted by nonrelativistic models. This may be due to
experimental limitations, correlations, final-state interac-
tions of the ejected nucleons, or relativistic effects. Ac-
tually, relativistic Fermi gas models show a totally
different behavior of the Coulomb sum rule at high q
(Ref. 6) than the nonrelativistic descriptions.

However, these models are unsatisfactory as they
neglect recoil effects and do not obey general principles of
relativistic quantum field theory. One of these principles
is causality, i.e., the requirement that two points in
space-time cannot communicate with each other if they
are separated by a spacelike distance. It is the purpose of
this paper to investigate these effects on the Coulomb
sum rule by using a causal representation of the inclusive
cross section. I will use the representation derived by
Jost, Lehmann, and Dryson (JLD), although a similar
one due to Deser, Gilbert, and Sudarshan (DGS) (Ref. 8)
has also been discussed in the literature. '
II. THE JOST-LEHMANN-DYSON REPRESENTATION

Consider the inclusive scattering process of a lepton
whereby energy v and four-momentum q„ is transferred
to a target with four-momentum P„. As is well known, '

the hadronic tensor 8'„ for this process can be written
as the Fourier transform of the commutator of two elec-
tromagnetic currents j„,viz. ,

W' = f d x e " (P~[j„(x),j,(0)]lP) .

From this the structure functions 8 &, 8 z measured in
an inclusive experiment may be obtained by a suitable
projection. "

X%;(u,A, ) . (3)

The spectral functions 4(u, A, ) are only nonzero in the
region

lul ~M ~'- [M —(M' —u')'"1'=—g(u) (4)

That the restriction of causality (2) is embodied in the
JLD representation can be easily seen by transforming
Eq. (3) into'

W;(v, q )=f d x e'q

X f dA, ~4;(x, k )b, (x, A, ) .

Here 4;(x,A, ) is the Fourier transform of 4;(u, A, ) with
respect to u and b, is the causal commutator for free
fields. From its explicit form'

sgn(xo )
~(x ~ )= [8(x )J [A,(x )' ]I (6)

[Jo(z) is a Bessel function of order zero], we see that it
indeed vanishes for x„~0. Thus the spectral function 4
can be viewed as the weight function for the superposi-
tion of contributions from free fields with mass A, .

In addition, the JI.D representation incorporates the
threshold condition

W, =0 for lvl + —q„'/2M,

and the leading singularity in Eq. (6) gives rise to the scal-
ing behavior

The commutator appearing in Eq. (1) has an important
property: If x„ is spacelike, the operators commute since
the points x and 0 cannot communicate with each other,

(P~[j (x),j,(0)]~P)=0 for x (0 . (2)

Jost, Lehmann and Dyson (JLD) have shown that this
causal requirement puts certain restrictions on the possi-
ble form of the matrix element in Eq. (1). In particular,
in the rest frame of the target P„=(M,O) the structure
functions W; (i = 1,2) can be written in the form

W;(v, q )=sgn(v) f d u f dA. 5[v —(u —q) —
A, ]
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v&2~ —,
' f d'u 6(u q —Mxs )f dk ql2(u, k ) =F2(xs )

for

q„~—~, v~ ~, xz = —q„/2M=fixed,

provided the integrals exist. '

III. DETERMINATION OF THE SPECTRAL FUNCTION
IN THE NONRKLATIVISTIC LIMIT

Despite the above-mentioned advantages, the JLD (or
DGS) representations have not been used extensively.
This is mostly due to the belief that the spectral function

is not a function that has much direct physical
significance and is purely an artificial expression in a cer-
tain mathematical form of the fact that the commutator
vanishes outside the light cone. "' Actually, the spectral
function may contain singularities' or even be a distribu-
tion.

My basic assumption is that this does not happen in the
nonrelativistic limit or, more precisely, that in this limit
the longitudinal spectral function associated with
SL = 8'00 does not vary too much in one of its arguments.
Then the following simplifications can be used: First, for
a spin-zero or unpolarized target VL (u, i, ) can only de-
pend on u =~u~. Second, for v, ~q~ &&M the integration
limits (4) are well approximated by g ( u ) =0,
q

—v & u & q+ v (see Fig. 1). Thus Eq. (3) becomes

where nr stands for nonrelativistic. Furthermore, nonre-
lativistically the three-momentum transfer q =

~q~ is usu-
ally much larger than the energy transfer (recall that for
a quasifree process v=q /2m, where I is the mass of the
constituent) and according to the basic assumption stated
above we may replace +L(u, k, ) by O'L (q, A, ) in Eq. (8).
After an integration by parts we then have the following
integral equation for the spectral function,

SL'(v, q )=4'f dt t +L(q, v t ) —.

This is of Abel's type and can be solved analytically to
give'

1 t) & 1

2 2 2 Z ized(A, —v)
aS,"'(v, q)

c)v
(10)

IV. THE CAUSAL COULOMB SUM RULE

Note that by using Eq. (10) we can always determine a
spectral function to a given nonrelativistic structure func-
tion, since causality is no restriction if the velocity of
light is allowed to go to infinity. As expected, the spec-
tral function (10) lacks an intuitive interpretation. How-
ever, it will be the starting point for the "causalization"
of the Coulomb sum rule in the next section.

S (Lv, q)= —f duu f dA. %t (u, A. ) .
q

—v 0
(8)

The Coulomb sum rule at constant three-momentum
transfer is defined as'

SL(v, q)
C(q)= f dU F (q)

where

V2

C)+v
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FIG. 1. Support of the spectral function %(u, A, ) for the case
q+v&M (target mass). The region in which 0 is nonzero is
bounded by the functions g (u) [see Eq. (5)] and

f (u) =v' —(u —q)'.

F(q)=, A =0.71 GeV
1

(1+q /A )
(12)

is the single nucleon form factor.
Take now the spectral function (10) determined in the

nonrelativistic limit, insert it into the exact JLD repre-
sentation and evaluate the Coulomb sum rule (11). One
may object that this procedure can only yield as much in-
formation as the input, i.e., the nonrelativistic structure
function it contains. However, it is always safer to extra-
polate a function in a form which respects the general
constraints. A well-known example is the use of Pade ap-
proximants for elementary and special functions: Al-
though the coefficients are determined from the power-
series expansion (i.e., from the behavior of the function at
small values of the argument), some information about
the asymptotic behavior is built into the specific form of
the approximant and leads to a vastly improved descrip-
tion. In the same way, the causality constraint built into
the JLD representation of the structure function may
lead to a better extrapolation into the relativistic domain.

Interchanging the order of integration, one then ob-
tains for the "causalized" Coulomb sum rule
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C(q)=
2 f dvv f du u SL'(v, u)F (q)vrq o o (u —q) +v

1

(u+q) +v (13)

Equation (13) is the main result of this paper. It is worthwhile to note several points.
(a) "Causalization" in the present approach is a folding of the nonrelativistic structure function with a Breit-Wigner

function of width 2v in momentum space.
(b) If this width is small compared to the variations of the nonrelativistic structure function, then u =q gives the

dominant contribution in Eq. (13) and one obtains

C(q) =
3 f dv vSL'(vq) f du uF (q) o ~q o (u —q) +v

=C"'(q)
(u+q) +v

because the last integral just gives ~q/v.
(c) One may estimate when these conditions are met: The variations of St"' are due to the Fermi momentum pz and

the proton form factor (12). Since most of the excitation strength lies in the quasielastic region where v=q /2m (m is
the nucleon mass), we see that Eq. (13) reduces to the nonrelativistic description if q «(mph) or q «(mA}' . An
alternative way of looking at these causality corrections is to introduce

4(t, q)= f dvS(v, q)e' ',
and keeping c (the velocity of light) explicitly. Then Eq. (13) can be written as

' oo Qo

C(q)= dt du u lmq&"'(t, u )(e "" —e "~"+ ~),
F2(q) vrq o o

(14)

and exhibits clearly the retardation eAects due to the
finite velocity of signals. Furthermore, using the energy-
time and momentum-position uncertainty relations it fol-
lows from Eq. (14) that causality corrections are small if
the interaction time t is large compared to the extension
of the object probed.

(d) From Eq. (13) it follows that the causal sum rule al-
ways remains positive. This is a nontrivial property of
the approximate spectral function derived in Eq. (10).

(e) The folding in Eqs. (13) and (14) also involves the
single nucleon form factor F (u) which multiplies the
nonrelativistic structure function in order to describe the
extension of the constituents. In this respect the causal-
ized Coulomb sum rule "knows" about the internal struc-
ture of the nucleon although it does not contain explicit
quark dynamics. '

(f) The high-momentum behavior of the causal
Coulomb sum rule can be obtained by expanding Eq. (13)
for large q. One obtains

C(q) —+ f dvv f du u SL'(v, u) —3F (q)~q o o q

Using the energy-weighted sum rule

f d v vSL'(v, u ) =ZF (u )
0 2fll

(Z is the number of protons) and the dipole parametriza-
tion (12) of the single nucleon form factor, the asymptotic
behavior becomes

'I 4

C(q)~ — 1+
16 Ul 4 ~2

V. NUMERICAL RESULTS AND DISCUSSIQN

I have evaluated Eq. (13) numerically for the simple
Fermi gas model

(I +q)' p'
S'L( v, q)=F'(q) fd'p n(p)5 v — q + P

27?1 2&1

—(v~ —v),
which describes approximately the inclusive scattering of
electrons from nuclei. The momentum distribution of the
protons is taken to be

Zn(P)= 3/2 3
e

77 P0
(17)

Figure (2) shows the result for the causal sum rule togeth-
er with the corresponding nonrelativistic expression

C"'(q) =Z erf
2p0

where erf(x) is the error function. It is well known that
the Fermi gas is unrealistic at low-momentum transfer

This has a minimum at q =A and grows rapidly at large q
leading Anally to a divergence of the Coulomb sum rule.
Such a divergence is expected both from the increasing
number of nucleonic resonances, which can be excited,
and from the observed small xz behavior of the structure
functions in the scaling limit. Note that the size parame-
ter A of the nucleon determines the high q behavior in
Eq. (15}.
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because it implies a spatially infinite system. An indica-
tion for this failure is the linear growth of Eq. (18) with
small q, whereas for finite systems C"' starts quadratical-
ly. Consequently, the causal folding on Eq. (13) produces
large effects which would be absent in a more realistic
model. However, at higher-momentum transfer the
model describes the essential features of the spectrum,
and effects of imposing causality can be discussed more
reliably. It is seen that at intermediate momenta the

FICx. 2. Causal sum rule [Eq. (13), solid line] and nonrela-
tivistic Coulomb sum rule (dashed line) as function of the
momentum transfer q. The parameter po in the Gaussian
momentum distribution has been taken as 130 MeV. Also
shown are the results for p0=160 MeV as dotted and dashed-
dotted curves, respectively.

Coulomb sum rule is reduced compared to the nonrela-
tivistic description (in agreement with the experimental
observation ), reaches a minimum around q =700
MeV/c, and starts to increase again. The latter behavior
is expected from the high-q behavior of C(q) derived in
Eq. (15). Furthermore, it can be seen from Fig. 2 that the
reduction at intermediate momenta increases with the
fall-off parameter po, i.e., the nonrelativistic Coulomb
sum rule is less fulfilled in heavier nuclei. ' This is again
qualitatively in agreement with the experimental observa-
tion.

To summarize, I have determined approximately the
spectral function in the JLD representation in the nonre-
lativistic region and used it to extrapolate the nonrela-
tivistic Coulomb sum rule into the relativistic domain
without violating the fundamental principle of causality.
The result [Eq (13) or (14)] exhibits some features which
are in qualitative agreement with the measured data.

It is evident that the crucial assumption which allowed
the determination of the spectral function in the nonrela-
tivistic limit is the smoothness hypothesis introduced to
obtain Eq. (9). Corrections to that assumption can be cal-
culated systematically by expanding

%(u, A, )=%(q, A, )+(u —q) +0%

ai2

starting with the solution (10). The results presented in
this work suggest that already the lowest-order term pro-
vides us with a reasonable spectral function for inclusive
scattering.
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