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The elastic and inelastic a scattering to states of the ground state and y band in "Mg has been
measured at 54 MeV. The data have been analyzed with the coupled-channel method based both on
conventional Saxon-Woods type potentials and double-folding potentials. Coupled-channel calcula-
tions utilizing the results of this analysis give a good overall agreement with existing data in the en-

ergy range 28 —120 MeV. The deduced isoscalar transition strengths compare very favorably with

corresponding electromagnetic properties as well as with phenomenological interacting boson-
model and microscopic shell-Inodel calculations. The only serious discrepancy between isoscalar
and electromagnetic properties, the 22 ~2+, transition strength, persists further on. The shell-

model calculations have been carried out based upon the Wildenthal interaction. They account
very well for both the energies and the dynamic properties of the ground state and y band of Mg.

I. INTRODUCTION

In the last two decades the nucleus Mg has been ex-
tensively studied both theoretically and experimentally.
Despite its small number of nucleons the low-lying levels
of this strongly deformed nucleus can be explained
reasonably well in terms of the collective models as
members of K =0+ and 2+ rotational bands. They are
strongly populated by inelastic scattering of protons,
deuterons, He, and e particles. Since these collective ex-
citations are expected to be purely isoscalar, probes of
different isospin should provide identical spectroscopic
results.

In recent years a considerable amount of elastic and in-
elastic a-scattering data on Mg in a wide energy range
have been reported in the literature. ' ' In order to ana-
lyze the data, coupled-channel (CC) calculations have
been performed either within the symmetric-rotational
model for the states of the E =0+ ground-state band, or
within asymmetric-rotational models which also include
the states of the K =2+ band. Such calculations assum-
ing a triaxial quadrupole deformation of the Mg nucleus
succeed in reproducing the data for states of the K =0+
band, but fail in reproducing the data for the 3,+ and 42+

members of the K =2+ band by more than 1 order of
magnitude. " In consequence, a direct coupling between
the ground state and the 42+ state has been found neces-
sary. The coupling has been treated both in an
asymmetric-rotational model which includes terms of
F42 and Y4 z, and in a mixed rotational-vibrational
model. " These procedures result in predictions for the
inelastic-scattering cross sections which reasonably agree
with the experimental data. Similar results have been re-
ported for the inelastic scattering of protons, ' ' deute-
rons, and He particles" on Mg.

As we will show in this paper the additional hexade-
capole coupling between the ground-state band and the
K =2+ band can be taken into account consistently, if in
the coupled-channel calculations the extended
asymmetric-rotational model of Baker is used instead of
the usual model of Davydov and Filippov. In this ex-
tension the asymmetric-rotor shape is generalized to have
additional hexadecapole-shape components. The applica-
tion of this extended model to the nucleus Mg allows us
to calculate the energy values of the rotational states.
Comparison. with th'e experimental level scheme results in
the determination of the coefficients of both the quadru-
pole and hexadecapole terms. That means that there are
no free adjustable parameters to describe the coupling
from the ground state to the 42+ state, once they have
been fixed by comparison with the experimental excita-
tion energies.

In CC analyses of inelastic o. scattering, generally opti-
cal potentials of the Saxon-Woods type have been used.
Calculations utilizing a semimicroscopic single-folding
model have been reported by Rebel et al. Recently a
double-folding model with a density-dependent form of
the M3Y effective interaction has been applied to +-
particle scattering. The model gives a good account for
elastic a scattering in the energy regime from 25 to 120
MeV for nuclei in the mass region between ' 0 and

Pb. ' By use of the distorted-wave Born approxima-
tion (DWBA) the model has been extended also to analy-
ses of inelastic a scattering as well as of (p, a) and (a,p)
reactions. But to our knowledge double-folded poten-
tials have not been used so far in CC analyses of (a, a')
processes.

This paper primarily deals with the analysis of 54-MeV
elastic and inelastic cz-scattering data on Mg taken at
the Heidelberg accelerator laboratory. Cross sections
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have been obtained for the excitation of the first four
states of the ground-state rotational band and the first
three states of the E =2 band (y band).

The paper is divided up into three major parts. First,
the results from the present experiment are analyzed
within the CC method using the quadrupole and hexade-
capole transition amplitudes evaluated from the extended
asymmetric-rotational model of Baker. Second, double-
folded a potentials are used in the CC analysis-. Finally,
these results are considered as a basis for improved
optical-model and CC analyses at other energies. Cross-
section data for the elastic and inelastic a scattering
which are available in the literature in a wide range of en-
ergies are reanalyzed consistently in the framework of the
extended asymmetric-rotor model using double-folding
potentials. Nuclear quadrupole moments, isoscalar tran-
sition rates, as well as the energy dependence of the real
and the absorptive part of the optical potential are de-
duced and compared to results of the phenomenological
interacting boson approximation (IBA) and rnicroscopi-
cal shell-model calculations.

II. EXPERIMENT
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The measurements have been performed with the o.
beam from the Max-Planck-Institut, Heidelberg, tandem
accelerator in connection with the post accelerator. The
incident energy was 54.1 MeV. Isotopically enriched
(98%) Mg targets on carbon backing with areal densi-
ties of typically 200 pg/cm were used.

The scattered a particles have been measured with the
multigap magnetic spectrograph which simultaneously
recorded spectra at 29 different angles. The particle
detectors were nuclear-track plates which have been
developed and scanned under a microscope after the ex-
posure. In four exposures 95 particle spectra have been
recorded. Beam monitoring was accomplished in the
usual way by means of a Faraday cup and by a monitor
detector additionally built in the spectrograph.

With an energy resolution of better than 100 keV in
the particle spectra all members of the ground state and
the y band up to E =8 MeV could be well separated.

Figure 1 shows the scattering on the 4I+-22+ doublet at an
angle of 23.5'. The solid lines are the result of a peak-
fitting procedure with the line shape being adjusted to
reproduce the elastic-scattering peak.

The final states evaluated are the 0,+ (g.s.), 2, (1.37
MeV), 4,+ (4.12 MeV), and 6,+ (8.12 MeV) states of the
ground-state rotational band and the 22+ (4.24 MeV), 3,+

(5.23 MeV), and 42+ (6.01 MeV) states of the y band.
Differential cross sections have been deduced in the angu-
lar range between 6.5 and 170. The main uncertainties
in the evaluation of the cross section were those due to
target thickness and beam current integration. The error
in the absolute cross sections is estimated to be about
15%%uo.

III. OPTICAL-MODEL ANALYSIS

First we consider only elastic a scattering on Mg
over a wide energy range. The optical-model (OM)
analysis was carried out in the framework of the double-
folding model of Kobos et a/. The real part of the opti-
cal potential is described by

Uf(r)=& /dr, f dr2pT(r, )p (r2)
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where r is the separation of the centers of mass of the col-
liding target nucleus and the a particle, pT(r, ) and p (rz)
are the respective nucleon densities, and A, is an overall
normalization factor. For the effective interaction t the
density-dependent form of the M3 Y nucleon-nucleon in-
teraction has been chosen. For the density distribution of
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FIG. 1. Part of the o. spectrum at 23.5 representing the dou-
blet 4~+22+. The solid lines show the result of the peak-fitting
procedure with the line shape adjusted to the elastic-scattering
peak.

FIG. 2. Elastic o. scattering on Mg: Experimental data and
optical-model fits, calculated by using the double-folding poten-
tials at incident energies 22.0, 28.5, 42.0, 50.0, 54.1, 65.7, 81.0,
104.0, and 120.0 MeV (Refs. 1 —3, 6, 7, 11,and this work).
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FIG. 3. Real and imaginary parts of the optical potential as used in the calculations of Fig. 2.

the target nucleus pT we used the experimental charge
distribution ' obtained from electron scattering and un-
folded from the 6nite charge distribution of the proton.
Since N =Z for Mg, neutron and proton distributions
can be assumed to be identical. For the density distribu-
tion of the a particle a Gaussian form was used. De-
tails of the numerical computation of the potential UF(r)
are described in Ref. 28.

The imaginary part of the potential was chosen in a
"model-independent*' form as a Fourier-Bessel series of
six terms

+'(r)= P ~ jo v r
v= 1 C

with a cutoff radius R, =10 fm.
The optical-model code GQMFIL (Ref. 33) was used to

And acceptable fits to the elastic-scattering data. The ad-
justable parameters are the normalization factor A, of the

real part and the six Fourier-Bessel coefficients of the
imaginary part of the potential. Cross-section data at in-
cident e energies E =22.0, 28.5, 42.0, 50.0, 54.1, 65.7,
81.0, 104.0, and 120.0 MeV (Refs. 1 —3, 6, 7, and 11) were
reanalyzed in this way. The results are shown in Fig. 2.
The quality of the Ats compares well with a similar
study on ' O(a, a). For larger angles, however,
discrepancies are observed between the optical-model fits
and the experimental data. They indicate that the
optical-model analysis cannot be expected to describe
correctly the angular distribution for elastic sattering on
the strongly deformed Mg nucleus over the entire angu-
lar range.

The real parts of the renormalized folding potential
and the imaginary parts are shown in Fig. 3. The renor-
malization factors A, , the volume integrals and the rms ra-
dii are listed in Table I. The real potentials are found to
be very similar in shape to equivalent local potentials de-
rived from u-' 0 resonating group calculations. For

TABLE I. Renormalization factor A, of the double-folding potential for the real interaction as we11 as
volume integrals and rms radii for the optical-model analysis of the elastic a scattering on Mg.

Estab

(MeV)

22.0
28.5
42.0
50.0
54.1

65.7
81.0

104.0
120.0

1.33
1.28
1.14
1.15
1.10
1.10
1.17
1.11
0.93

JR /4A
(MeVfm )

389.59
370.70
323.56
322.70
307.92
301.41
312.79
286.90
231.80

(r2 )1/2

(fm)

3.854
3.856
3.858
3.860
3.860
3.863
3.866
3.872
3.877

JI ~4~
(MeV fm')

37.26
40.68
96.36

116.13
129.24
129.04
138.92
145.30
121.15

(t2) 1/2

(fm)

3.518
3.813
4.141
4.260
4.678
4.202
4.651
4.540
4.278
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the imaginary potentials one observes an increase of the
surface absorption with increasing energy. The strong
absorptivity of the Mg nucleus due to its high collectivi-
ty is rejected in large values of the volume integral
Jl/4A of the imaginary part of the optical potential. In-
'specting both the volume integrals and the rms radii of
the imaginary potential, a steep monotonic increase of
these values with increasing energy is observed, whereas
the normalization factor A, and in consequence the
volume integral J~/4A of the real part of the potential
decrease with increasing energy. Comparing these results
with the values resulting from the analysis of ' O(a, a),
the values for A, and consequently for J~ /4A are found to
be lower in the case of Mg. This effect is expected from
the virtual excitation of collective states in Mg as dis-
cussed in Sec. V.

IV. COUPLED-CHANNEL ANALYSIS

A. The extended asymmetric-rotational model

IP /P2I = O.O
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FIG 5 All owed ranges in the combination of the parameters
y& and y4 calculated in the extended asymmetric-rotational
model for the deformed nucleus ' Mg with ~P4/P, ~

=0, 0.1, 0.2,
0.3, and 0.4.

1
app=Ppcospp and aqua

=a = —P siny2 —2 Q2 2 2 (4)

In this model the moments of inertia are connected to the

The nucleus Mg is considered to be permanently de-
formed and the excitations of low-lying states are treated
within the triaxial rotor model. In this model the shape
of the nucleus is given in the body-fixed system

R (0') =Rp 1+ g a& Y& (A')
A,p

with a&„=a& „and a&„=0for odd k and odd p.
The usual model of Davydov and Filippov is restrict-

ed to triaxial quadrupole deformation (A, =2) and charac-
terizes the intrinsic deformation by the deformation pa-
rameter Pz and the asymmetry angle yz with

mass parameter B and the deformation parameters pz and

yz by

6„=4B Pepsin ( yz
——', k ~)

with the axes k = 1,2,3 of the body-fixed coordinate sys-
tem. If @2=0 the nucleus is an elongated ellipsoid of re-
volution with a symmetry 3 axis. If @2=~/3 the nucleus
is an oblate ellipsoid of revolution with a symmetric 2
axis. For the asymmetry case 0(y2&~/3, the resulting
energy levels as a function of yz are shown in Fig. 4 as
dashed curves. A comparison with the experimenta1 en-
ergies for the 2,+, 4,+, 22+, 3,+, and 42+ states of Mg re-
sults in an asymmetry angle @2=23' for the triaxial de-
formed nucleus.

In this model there is no direct first-order coupling be-
tween the ground state and the 42+ state. Therefore we
have considered in our analysis the following terms in the
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FIG. 4. Rotational energies of the deformed nucleus M g
calculated in the asymmetric-rotational model of Davydov and
Filippov (Ref. 25) (dashed lines) and in the extended
asymmetric-rotational model of Baker (Ref. 24) with
y4= —53.4' and b =P4/P, = —0.281 (solid lines).
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FIG. 6. Comparison of the experimental energy levels for the
ground state and y band of Mg with predictions of the extend-
ed asymmetric-rotational model, shell model, and interacting
boson model.
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multipole expansion of the radius R:

R (Q') =Ro 1+P~cosy2 Y20(Q )

+ P2siny &[ Y»( &' ) + YQ —2( + ) ]
2

+P4cosy4 Y4O(A')

+ —P4siny4[ Y4q(A')+ Y'4 ~(Q')] . (6)
2

'

In this extended asymmetric-rotor model the moments of
inertia are given by

6, =4P2B [sin (y —
—,'m)+ —,'b cos y

+b sin y„+—4'&5b cosy4siny4],

62=4P2B [sin (y2 ——', n)+ ,'b cos y—4

+b sin y4
—

—,'&5b cosy„siny4],

e3 4P2B [sin ( y2
—2Ir ) + —,

' b sin y4]

(7)

with b =134/P2 and B =B2 =2B„(Ref 24), .B2 and B4 be
ing the A, =2 and A, =4 inertial mass parameters, respec-
tively.

The rotational Hamiltonian H„, can be expressed in
terms of the moments of inertia of the deformed nu-
cleus. The nuclear wave function %1M of the nth rota-
tional state with spin I may be written as a superposition
of the eigenfunctions of the symmetric-rotator JIM',

+IM g ~ IK PIMK
K =0,2

with

(8)

AIMS(si )
2I + 1

16m. (1 +5xo)

x [DM (, ) + (
—1)'DM

where DMx(E;) are the Wigner rotation matrices and E;
the Euler angles. The expansion (8) is dependent of the
choice of the K axes. Defining the 3 and 2 axes as men-
tioned above the states of the ground-state band as well
as the states of the y band are represented by a mixture
of K =0 and K =2 states. Diagonalizing the collective
Hamiltonian M, , in the pIMIc basis the energies of the
states and the band-mixing coefficients AIK are ob-
tained.

First we calculate the rotational energies and the

band-mixing coefficients with y2, y4, and b =P4/f32 as
free parameters. The comparison of these calculations
with the experimental energies for the rotational states of

Mg mentioned above results in a strong restriction of
the range of these parameters. In detail we find that (i)
the inclusion of hexadecupole components does not alter
drastically the deformation angle y2 (the range of y2 is re-
stricted further on to values near 23'), (ii) for the defor-
mation angle y4 values around y4= —50' are acceptable,
and (iii) the b dependence of the deformation angles y2
and y4 is weak.

In Fig. 5 the allowed ranges in the combinations of the
two parameters y2 and y4 for some given values of the
parameter b =f34/P2 are indicated. In order to compare
our results with the well-known results of the Davydov
model, in Fig. 4 the rotational energies (calculated with
y4= —53.4' and b = —0.281) as a function of y2 are
shown as solid curves, whereas the values of the Davydov
model are shown by dashed curves. The experimental ro-
tational energies are reproduced best by a deformation
angle y2=23. 2 in combination with the values for y4
and b as given above. The resulting energy levels, calcu-
lated with this parameter set and normalized to the 2,+

state at E„=1.37 MeV, are given in Fig. 6 together with
the experimental values. We find that the energy values
and the corresponding band-mixing coe%cients calculat-
ed in this way are very similar to those known from the
Davydov model. This is valid for all calculations in
which the parameter combinations indicated in Fig. 5 are
used.

Also shown in Fig. 6 are energy spectra obtained from
microscopic shell-model calculations and interacting bo-
son approach calculations which are discussed in Sec.
IV C in detail. Whereas the IBA result is of similar quali-
ty as the asymmetric-rotor spectrum, the microscopic
calculation gives a significantly superior reproduction of
the experimental energies, especially in the y band. This
may be an indication that the high-lying states of the y
band contain admixtures of noncollective configurations,
which cannot be described within the IBA or the
asymmetric-rotor model.

B. Coupled-channel calculations using Saxon-Woods
and double-folded a optical potentials

For the elastic and inelastic a scattering on deformed
nuclei, coupled-channels calculations are adequate to an-
alyze the experimental data. In order to solve the cou-
pled equations we have to calculate the coupling matrix
elements

(lI„(VCP[l'I„', ):=((Y, X%I),~ ]Vc, ]( Y,, Xei", ),M )

with

= z z
K =0,2 K'=0, 2

I n I„,K (10)

( Yi X fix )JM
= g i '( lImM

~ JMi ) Yi ( & )JIM~,
mM

are the band-mixing coefficients of the wave functions of the actual nth state with sp'n I and AMI; are t e
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eigenfunctions of the symmetric rotator both given in Eqs. (8) and (9).
The coupling potentials Vcp are derived from the Legendre expansion of the deformed interaction potential

V [r,R (0')] transformed from the body-fixed to the space-fixed system,

V [r,R (0)]=V~;,s+ Vcp,

Vcp =
A. ,p(A, WO)

Ii =0,2

vz (r) —(D„,(c;)+D. „,(E;) Yi (0),
2

with 0' referring to the body-fixed and 0 to the space-fixed system.
The radial shape of the transition potential for the excitation of collective states is given by the radial form factor

ui, (r)

ui, (r)= f V[r, R (0')][Yi (0')+ Yi (II')]dA', /=2, 4, +=01

1+5~
Following Tamura the matrix elements (10) can be evaluated as

(tI. IV,pit'I„', ) = ggu„.(r)(e,"[[g& &[~ql, ) W(tI, t I', u),

(12)

(13)

where 3 (tI, t'I', t&J) is an angular momentum factor explicitly given by Tamura and ui (r) are the radial form factors
of the coupling potential given in (12). Comparing Eq. (12) with the general ansatz for the coupling potential given by
Tamura, the transition operators Qi&

"& are just the rotation matrices

(a) 1

The reduced matrix elements of the transition operator (14), with respect to the target states (8),

1
&4'rllQ&'ll'Pi&= X X ~Ii~l"x 4n —(+; +D;—,& Ag)

K =0 K'=0 2
(15)

specify the nature of the target. Together with (9) the basic matrix elements of the right-hand side of (15) can be calcu-
lated as follows.

v=0.

&yl~[~D', o~~yl~ &=ti~~(2I'+I)'"(I'm0II&) with IC =K =0 or 2.

40 (+;2 +D, —2 4I 2( & IPP2 '(+;2 +D —p pIQ)
=(21'+ ( &' (1 &2 2lIO&

with E =0, K'=2 . (16)

Therefore the reduced matrix elements in (13) are prod-
ucts of these basis matrix elements (16) and the appropri-
ate band-mixing coefIicients.

In the coupled-channels calculations the u-nucleus in-
teraction is described by a deformed optical potential
V(r, R). Both Saxon-Woods and double-folded a poten-
tials have been used. The size and shape of the deformed
Saxon-Woods potential is parametrized in the usual way
by introducing the expansion (6) for the radius parameter
RO in the terms of both the real and imaginary part of the
potential. In order to gain a properly deformed folding
potential, in the first step the potential calculated by the
double-folding procedure is expanded in a Fourier-Bessel
series of 10 terms. Now both the real and imaginary part
of the potential are described by Fourier-Bessel functions
as given by Eq. (2). Subsequently, in the second step the
cutofF radius R, is expressed by the expansion (6). In all
calculations the Coulomb potential is deformed in the

usual way.
The CC analysis of the experimental data at 54 MeV

has been performed using a modified version of the code
EcIS. In the calculations all states displayed in Fig. 7
have been included. We started our calculations with the
parameters set y2=23. 1', y4= —54.4', and b = —0.28 by
using the corresponding band-mixing coefFicients. In the
course of the calculations both the deformation parame-
ters y2, y4, P2, and P4 and the potential parameters are
adjusted to obtain an optimum reproduction of the exper-
imental cross-section data. In this fit we ensure that only
those combinations of parameters are considered, which
reproduce the excitation energies (see Fig. 5). The final
results of our coupled-channels analysis are shown in Fig.
7, together with the experimental data. For both kinds of
optical potentials which have been used in our calcula-
tions, a good agreement between experimental and calcu-
lated data has been found. This is especially valid for the
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TABLE III. Band-mixing coeScients Ar'K for the 2+ and 4+
levels of the ground state (g.s.) and the y band in Mg resulting
from the extended asymmetric-rotor model.
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0.3353
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0
0
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C. Isoscalar transition rates and quadrupole moments

For a given mass distribution p(r) the normalized mul-
tipole moments are given in the body-fixed system as

qz, .= fp(r)r [Yz,(O')+ Yz, (Q')]dr1

&+&~

with fp(r)dr=1 .

10'

10
50 100

o 0

150

Expanding p(r) in spherical harmonics

p(r)=yp, (r)Y, (n')
1m

it yields

(18)

E), (de g) (19)

FIG. 7. Elastic and inelastic o. scattering on ' Mg at 54. 1

MeV: Experimental data and CC analysis fits calculated with
the double-folded optical potential (solid lines) and a Saxon-
Woods potential (dashed lines). In the calculations all states
have been included.

results of both, the 3+ and 4+ state of the y band.
The best-fit values of the deformation parameters yz,

y„, P2, and P4 are listed in Table II, together with the re-
sulting volume integrals and rms radii of the potentials.
The corresponding band-mixing coefficients are given in
Table III. We note that the deformation parameter Pz
obtained from calculations using Saxon-Woods potentials
is somewhat larger than that obtained from calculations
with folding potentials. But since the shape of the de-
formed Saxon-Woods potential is different from that of
the deformed folding potential, different values for the
deformation-strength parameters P can be expected. We
will find, however, in the following section that the mul-
tipole components of both, the deformed Saxon-Woods
and folding potentials, calculated with the respective P
values, are very similar.

According to the so-called theorem of Satchler, the
normalized mass distribution can be replaced by the nor-
malized potential, if the real part V of the effective
scattering potential can be described by a folding ansatz
with a density-independent effective NN interaction (im-
plicit folding procedure). In this case we get

f V (r, R )r [ Y~,(II') + Y~, (A')]dr

&+&~ f V (r, R)dr

f uq, (v)r + dr
(20)

with the volume integral J~ and with u&, (r) given in Eq.
(12).

In reality the effective XX interaction is density depen-
dent and Eq. (20) has to be corrected accordingly.
Within the method of implicit folding these corrections
have been calculated ' ' to be in the order of a few per-
cent for quadrupole excitations. Recent explicit folding
calculations ' for inelastic a scattering accounting also

TABLE II. Deformation parameters, ' volume integrals, and rms radii for both the double-folding
and Saxon-Woods optical potentials used in the CC analysis of the elastic and inelastic a scattering on

Mg at 54. 1 MeV.

Potential

Double folding"
Saxon-Woods'

0.273(3)
0.326(5)

—0.077(3)
—0.077(4)

JR /4A
(MeVfm )

376.95
405.66

( F2 )1/2

(fm)

3.860
4.058

Jr /4A
(MeVfm )

71.40
67.14

( p2) I/2

(fm)

4.453
4.483

'y2 =23.2', y4 = —53.4 .
A, = 1.351.
Vo = 103.78 MeV, ro = 1.437 fm, a =0.670 fm, W =8.71 MeV, rr = 1.921 fm, a l =0.349 f
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mrsr. . =Zeqi„= Ui (r)r dr .A, +2

R
(21)

After transforming the ISA, moments into the space-fixed
system, the reduced ISA matrix elements for a transition
I, —+If can be written as

Mrsr(I ~If. ) ' X mrsx & q'r IIQi. II+r' &

using the transition operator Qi ' given by Eq. (14) and
the reduced matrix elements &~pr" llQI 'll'Pr" & defined by
(15). The ISA, transition probability is then given by the
B (ISA, ) value as

B(ISA,,I, ~II)=(2I;+1) 'Mrsr (I, ~If ) . (23)

Further on the diagonal IS2 matrix elements are relat-
ed to the spectroscopic quadrupole moments of the excit-

for dynamic density dependence give even smaller correc-
tions. Therefore we used Eq. (20) without any correc-
tions for the density dependence.

The isoscalar moments mls&, can be expressed then by
the normalized potential moments q& multiplied by the
nuclear charge Ze for easy comparison to the electromag-
netic moments

ed states of Mg by

16m I(I —1)
5 (I+1)(2I+1)(2I+1)(2I+3)

XMrs 2 (I~I)

1/2

(24)

The multipole moments q&„of the deformed nuclear
potentials as given by Eq. (20) have been evaluated nu-
merically. Though the deformation parameter P2 is
different for both potentials, as already mentioned above,
the corresponding multipole components are nearly iden-
tical. The values obtained are mrs2o=(18. 8+0.3)e fm
and mrs22=(10. 0+0.3)e fm, calculated with the folding
potential and mrs2o = (19.0+0.3 )e fm, and mrs22
=(10.0+0.3)e fm calculated with the Saxon-Woods po-
tential. This agreement confirms the expectation that
similar to electromagnetic studies also in hadron scatter-
ing the basic spectroscopic information is contained in
the multipole moments mls& of the deformed scattering
potentials and not in the deformation parameters Pz and

P4 which strongly depend on the specific potential ansatz.
The values of mrs2o obtained in our study are within l%%uo

of that obtained in Ref. 18.
In Table IV we compare the deduced B(IS2) and

TABLE IV. B(IM, ) and B (EA, ) values in units of e fm as well as static quadrupole moments Q2+ for Mg.

B (ISA)
(a, (z')

Folding potential Saxon-%'oods potential
Theory

Shell model'

B(EA, )

IBA-1 Expt. '

B{ISA,)

(d, d')

21
4+
6+
3+
4+
4+
2'
2+
2+

31
3+
4+
4+
61+

4+
4+

0+
21
4+
2+
2+
3+

+

2+
4+

21
4+

21
4+
4+
01+

0+

76+4
111+10
106+20
135+50
38+12
67+45
5+1

33+10
6+6

9+ 10—6

8+2s
0+1

26+11
7+6

200+ 130
6100+600

77+5
113+11
108+20
137+50
39+12
69+45
5+1

33+10
6+6
+10

38 zs

0+1
26+11
7+6

170+90
3600+400

80
108
101
142
39
92
6.6

20
1.9

11
17

1.7
17
10

5X10
3900

83
102
85
79
47
20
10
43
4.6

10
20

1.0
26
16

86.2+4. 1

94.4+ 16.4
140+ 148

140+25
58.4+12

4.1+0.4
8.2+0.8

8.2+1.2

4.1+0.8

362+60
4500+ 1200

83+5
107+14
118+20
146+60
40+18

4+1
39+14

0+500
9200+2800

Quadrupole moments Q2+ (efm')

2+
4+
6+
2+
4+

'This work.
Reference 23.

'Reference 44.
Reference 45.

'Reference 46.

—15+2
—14+9
—24+18

15+4
—16+5

—16+2
—14+9
—24+18

16+2
—16+5

—17.3
—20.0
—15.3

17.5
—11

—14.4
—12.2
—9.5

14.2
1.2

—18+2' —16+4

16+10
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8(IS4) values and the static quadrupole moments Q +

with experimental 8 (EX) values and electric quadrupole
moments as well as with results of shell-model and
IBA calculations. In addition the isoscalar properties
as derived from deuteron scattering ' are shown. Since
X =Z for "Mg, the isoscalar and the electric properties
for the low-lying collective states are expected to be very
similar.

The uncertainties quoted in Table IV on the results of

this work have been derived from the error matrix on a
fit procedure, where the strengths of all transitions

leading to a specific state have been object to a simultane-
ous variation.

Indeed there is good agreement of the electromagnetic
properties with both, the a-scattering and the deuteron-
scattering results, the only serious discrepancy being the
2&+~2,+ transition. As already discussed in Ref. 21 the
hadron scattering cross sections for the 22+ excitation re-

~ I I
j
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FIG. 8. (a) Elastic o, scattering on Mg: Experimental data and CC analysis fits calculated by means of a double-folded potential
at incident energies 28.5, 42.0, 50.0, 54.1, 65.7, 81.0, 104.0, and 120.0 MeV (Refs. 2, 3, 6, 7, 11, and this work). (b) same as {a),but in-
elastic scattering to the 2&+ {1.37 MeV) state. (c) same as (a), but inelastic scattering to the 4l+ {4.12 MeV) state. {d) same as (a), but in-
elastic scattering to the 22+ (4.24 MeV) state. {e)same as {a),but inelastic scattering to the 3&+ (5.24 MeV) state. (f) same as (a), but in-
elastic scattering to the 42+ (6.01 MeV) state.
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quire for their reproduction a B (IS2,23 ~2,+ ) value
which agrees very favorably with collective and micro-
scopic models, but disagrees seriously with the results
from the y decay. The use of this B(E2) value in the
CC-calculations results in 22 cross sections being ap-
proximately 50% too low. Whether this is due to some
subtile shortcomings in the CC analyses or whether this
indicates a possible isovector admixture in the 22 excita-
tion, has still to be considered as an open question.

The IBA calculations were performed in the frame-
work of IBA-1 (Ref. 47), where no distinction is made be-
tween neutron and proton bosons. The total number X of
bosons was taken as the number of nucleon pairs above
the ' 0 core, i.e., 4 =4. The energy spectrum of Mg
closely corresponds to the O(6) limit of the IBA-1 Hamil-
tonian, which loosely resembles a triaxial rotor. Howev-
er, the experimentally observed large static quadrupole
moments and transition rates crucially require the in-
clusion of the Q X Q term. Therefore the full SU(6) Ham-
iltonian of IBA-1 was employed with its five parameters
being adjusted for an optimum reproduction of the exper-
imental excitation spectrum (Fig. 6) and the dynamic
properties (Table IV). The eA'ective boson charge in the
E2 transition operator was adjusted to the
B (IS2;2, ~OI+) value derived form deuteron scattering.
For a more careful and general treatment of sd-shell nu-
clei within the framework of IBA we refer to Ref. 48,
where more sophisticated IBA versions, discriminating
between neutrons and protons in the same shell, are dis-
cussed.

For the shell-model calculation of Mg we assume an
inert core of ' 0 and consider all possible configurations
of eight valence nucleons in the states of the 1sOd shell.
The single-particle energies for the valence states with
respect to the ' O core were deduced from the empirical

energies of nuclei A =17 (F.,
= —4. 15, —3.28, and 0.93

MeV for i =d~&~, Ist&2, and d3/2 respectively). For the
residual interaction between valence nucleons we have
chosen the 2-dependent effective interaction proposed by
Wildenthal. The transition rates and quadrupole mo-
ments have been evaluated assuming single-particle oscil-
lator functions with an oscillator length of b =1.82 fm
and an additional effective isoscalar charge of 0.4e.

Both, the shell-model and the IBA calculation general-
ly agree very well with the experimental results for the
quadrupole properties of Mg. In the IBA calculation
the 6,+ ~4I+ transition is already effected by the finite bo-
son number % =4 which provides a cutoff' of the Yrast
band at spin 8+, whereas the shell model predicts compa-
rable strengths for the 6I+ —+4&+ and the 4I+~2I+ transi-
tions. Larger differences between the theoretical results
can be observed for the transitions within the y band.
This may support the interpretation which has been
given already above in discussing the energies. The
shell-model description of these states contains noncollec-
tive components, which cannot be described within a
pure phenomenological model. The measurements tend
to favor the shell-model results, though the large experi-
mental errors do not allow a clear discrimination between
both predictions.

With regard to the hexadecapole degrees of freedom
we find in agreement with results of electron scattering
that the ground-state transition to the 42+ state is about a
factor of 20 stronger than that to the 4&+ state. The
IBA- I calculation cannot account for this inversion of
hexadecapole strength distribution, since only s and d bo-
sons are considered in this model. For a proper treat-
ment of the hexadecapole degrees of freedom g bosons
would have to be included. On the other hand the shell-
model calculation can very well account for the hexade-
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FIG. 9. Real and imaginary parts of the optical potential as used in the calculations of Fig. 8.

capole distribution.
Summarizing this section we find in general a very

good agreement between experiment and theory in the
dynamic properties of the ground state and the y band.
All three models, asymmetric rotor, interacting boson
model, as well as the microscopic shell-model calcula-
tions, give comparable results supporting the collective
triaxial nature of Mg.

V. REANALYSIS OF "Mg(a, a') DATA
IN A WIDE RANGE OF ENERGIES

Now, in a last step, the results of 54 MeV are con-
sidered as a basis for improved coupled-channel analyses
at other energies. We reanalyzed the experimental

Mg(a, u') data at 28.5 MeV (Tamura ), 42.0 MeV (Vin-
cent et al. ), 50.0, 65.7, 81.0, and 120.0 MeV (Reed ),
104.0 MeV (Rebel et al. ), and 120.0 MeV (van der Borg
et al. "). The CC calculations were carried out with op-

tical potentials whose real parts are described by the
double-folding procedure. The imaginary parts are
chosen again as Fourier-Bessel series of six terms. In the
calculations the same deformation angles y2 and y4 have
been employed as used in the analysis of our 54-MeV
data. For the deformation parameters P2 and /34 a very
weak energy dependence has been chosen in such a way
that the multipole moments qz stay energy independent.
That means that in the calculations for each energy only
the normalization factor k for the real part and the six
Fourier-Bessel coe%cients for the imaginary part of the
optical potential were treated as free parameters. All the
other parameters have been kept fixed.

In Figs. 8(a) —8(f) the results of the CC calculations are
shown for the transitions to the ground state and to the
2,+, 4&+, 22+, 3&+, and 4&+ excited states of Mg. In most
cases there is a very pleasing agreement between the ex-
perimental and the calculated results. This holds espe-
cially for the transitions to the 22+ and the 4z+ states at all

TABLE V. Renormalization factor A, of the double-folding potential for the real interaction as well
as volume integrals and rms radii from the CC analysis of elastic a scattering on Mg.

Elab
(MeV)

28.5
42.0
50.0
54.1

65.7
81.0

104.0
120.0

1.434
1.344
1.317
1.351
1.436
1.387
1.295
1.273

J~ /4A
(MeV fm')

415.28
381.76
369.76
376.95
393.70
371.30
333.84
319.13

(t2 )I/2

(fm)

3.856
3.858
3.860
3.860
3.863
3.866
3.872
3.877

JI /4A
(M Vf )

26.29
61.76
66.29
71.40
83.59
95.79

110.27
92.45

(r2)1/2
(fm)

3.479
4.156
4.195
4.453
4.334
5.047
5.010
4.354
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incident energies studied. In the calculations also the
coupling to the 6&+ state has been included. Since experi-
mental data for only two incident energies are available,
the results for the 6&+ cross sections are not shown except
the one at 54 MeV, which is included in Fig. 7.

At E =28 and 104 MeV, the experimental cross sec-
tions to the 4&+ and 22+ state were not separated. They
are drawn in Fig. 8(c) together with the calculated results
for the sum of both cross sections. In Fig. 8(d) for both
energies only the calculated 22+ cross sections are shown.
For the ground-state transition at E =42 MeV some
discrepancies between the experimental data and the cal-
culated curve are observed at backward angles. These
discrepancies may be due to an inaccuracy of the experi-
mental data which can be deduced by comparison to the
data at 40 MeV (Ref. 5). Furthermore, the underestima-
tion of the 3&+ cross section in forward direction at
E =28 MeV may be due to an error in the experimental
data, too. But nevertheless, at higher incident energies
some serious discrepancies between experimental and cal-
culation remain and only a qualitative agreement between
the experimental and the calculated 3,+ cross section has
been reached, especially at E = 120 Me V. We note that
CC calculations with an individual optimization of the
deformation parameters 132 and P4 at each energy would
provide distinctive improvement of the results. However,
it is not the intention of this study to find the optimal fit
to the experimental data at each individual energy, but
instead to demonstrate how well all the data may be
reproduced by CC calculations utilizing a deformed
double-folding potential with a unique set of deformation
parameters.

We stress once more that the ISA, moments mlz& de-
duced from the deformed double-folded a- Mg potential
for the incident energies between 28 and 120 MeV have
been kept identical within 1% with the values obtained
from the analysis of our 54-MeV data. Therefore for all
energies the same B(ISA.) values and quadrupole mo-
ments apply as given in the first column of Table IV.

The optical potentials which derive from the CC analy-
ses are shown in Fig. 9. The renormalization factors A, ,
the volume integrals, and the rms radii are compiled in
Table V. Comparing the results of the OM analyses (Fig.
2, Table I) with those of the CC analyses (Fig. 9, Table
V), some distinctive differences show up.

(i) Real part of the potential. The OM analyses yield a
much larger energy dependence for the potential depth
than the CC analyses do. For both kinds of analyses the
normalization factors A, decrease with increasing energy,
in the OM case from 1.28 to 0.93 and in the CC case from
1.42 to 1.27. Similarly the volume integrals decrease in
the energy range considered from 370 and 232 MeV fm
(OM) and from 415 to 319 MeVfm (CC), respectively,
with the latter values being similar to those found in the
optical-model analysis of the o,-' 0 elastic scattering.
In Fig. 10(a) the volume integrals of the double-folding
potentials are shown as function of the incident energy.
The behavior of the potentials from the OM analysis can
be understood from the backcoupling due to virtual exci-
tation of the collective states included explicitly in the
CC calculations. As pointed out already in Ref. 51 and

1 I I
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FICT. 10. Volume integrals of the real and imaginary part of
the double-folding potentials as used in the calculations of Fig.
2 and Fig. 8: Open circles: Mg (OM analysis); full circles:

Mg (CC analysis). In comparison, the results of the OM
analysis of the elastic a-' 0 scattering (Ref. 28) are given: full
squares: ' 0 (OM analysis).

shown later on explicitly in Ref. 52, a prolate nuclear
deformation —as is the case for Mg —leads to a des-
tructive backcoupling term with the consequence of more
shallow eA'ective potentials.

(ii) Imaginary part of the potential. For both kinds of
analyses absorption terms have been found which are
characterized by a pronounced peak on the nuclear sur-
face. The depth of the potentials in this surface region is
somewhat larger in the OM case than in the CC case.
This result is expected since the strength of the absorp-
tive part in a OM calculation has to take into account all
the couplings to the inelastic channels which explicitly
are considered in the CC calculations. Examining the
di6'erences between the OM and CC potentials more care-
fully one observes that in the CC calculations the surface
peaks are shifted to the nuclear exterior. The difFerences
between the OM and the CC absorptive potentials are
peaked near r =3 fm. That means that the explicit cou-
pling of the collective states strongly reduced the absorp-
tion strength in a nuclear region around 3 fm. In the CC
analyses the resulting volume integrals of the imaginary
potential [Fig. 10(b)], are again similar to the results of
the QM analysis of elastic a-' 0 scattering.

Summarizing we find that the strengths of both the real
and the imaginary part of the optical potential deduced
in CC analyses are consistent with those obtained in an
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OM analysis of the cx elastic scattering on the nonde-
formed nucleus ' O.

VI. CONCLUSIONS

Differential cross sections for the elastic and inelastic
scattering of a particles on Mg at an incident energy at
54.1 MeV have been measured. The analysis of these
data has been performed in the framework of the
coupled-channels formalism. In this analysis we have
used the extended asymmetric rotational model of Baker
which allows to take into account consistently an addi-
tional hexadecapole coupling between the ground-state
band and the y band. Applying this model to Mg we
have calculated the energies of the low-lying rotational
states. The comparison of the calculated energies with
the experimental ones determines the deformation (asym-
metry) angles y2 and y~. Therefore in our CC analyses
there are no free parameters other than P2 and P& to de-
scribe the coupling from the ground state to the 42+ state.

Saxon-Woods as well as double-folded optical poten-
tials have been used in the analyses. For both kinds of
potentials good agreement between experimental and cal-
culated differential cross sections has been achieved. Us-
ing Satchler's theorem we have deduced the multipole
components of the mass distribution, B (ISA, ) values, and
nuclear quadrupole moments. Both kinds of potentials
give compatible results. The value of m~~2o obtained in
our study is within 1% of that obtained by 800-MeV pro-
ton scattering. The deduced 8 (IS2) values and the qua-
druple moments are generally in good agreement with the
corresponding electromagnetic properties with exception
of the 2&+ —+2,+ transition. The discrepancy on that is
further on an unresolved problem. Both phenomenologi-
cal (triaxial rotor, IBA) and microscopic (shell-model)
calculations account very well for the excitation energies

and transition rates of the ground state and y bands in
Mg. There are indications that the description of the

states forming the y band requires a small admixture of
configurations, which are not contained in the collective
model.

Finally, the reanalyses of elastic cx-scattering data
within the OM as well as the reanalysis of elastic and in-
elastic a-scattering data within the CC formalism has
been carried out over a wide range of incident energies.
In these analyses optical potentials have been used whose
real part is given by a double-folding procedure, whereas
the imaginary part is adjusted individually by a Fourier-
Bessel series of six terms. Some remarkable differences
have been found between the potentials which are needed
for the OM or the CC analyses. The volume integrals of
the potentials which result from the latter are similar to
those found in the optical-model analysis of the a-' 0
elastic scattering. That means that accounting explicitly
for the excitation of collective state the CC formalism re-
sults in real and absorptive potential parts which are con-
sistent to those of nondeformed neighboring nuclei.
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