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A frequently employed approximation in momentum integrals in few-body problems is to assume
that the integrand is sharply peaked in regions where the bound particles have low internal momen-
turn. If justified, this allows one to remove portions of the integrand and evaluate them at their
peak-value momentum points. In the extreme case, the only remaining term in the integral is the
momentum wave function, whose integral corresponds to a position-space wave function evaluated
at zero interparticle separation. The validity of this approximation is examined for systems of two
and three strongly interacting particles.

I. INTRODUCTION

where %(p) is a two-body momentum wave function, and
f(p) describes other aspects of the momentum dynamics
of the problem at hand. If the momentum scale of f(p)
is much greater than that of %(p), that is, the wave func-
tion characterizes weak binding, then it is tempting to
simplify the integral by considering %(p) to be sharply
peaked at p=O, and then removing f(p) from the in-
tegral, leaving

Jd'pf (p)+(p) =f(p=O) I dp'(IpI)

= If(p=O)]i+(r=O)] (1.2)

where 4(r=0) is the wave function evaluated at zero in-
terparticle separation.

Factorization thus provides a great simplification of
typical integrals encountered in strong-interaction prob-
lems, and gives an appealing picture of a process in terms
of one or two momentum scales. It has been utilized fre-
quently and in many ways, from nuclear transfer reac-
tions' to high-momentum transfer processes involving
quarks in hadrons.

Given the complexity of exact calculations, the validity
of factorization as a consistent approximation has had
relatively few tests. For the case of electromagnetic form
factors of composite systems, there have been several
studies of their behavior in the limit of very large

Factorization is a highly desirable procedure for sim-
plifying calculations involving strongly interacting parti-
cles. The basic idea can be examined by considering the
integral

p+p

momentum transfer. Most recent studies have concen-
trated on studies of quarks in hadrons, including the de-
velopment of perturbative QCD methods, but there are
also earlier works which address this question within the
context of nonrelativistic particles interacting via poten-
tials. These latter papers primarily address them-
selves to obtaining analytic limits as functions of "well
behaved" potentials. One of them provides a quantita-
tive calculation which illustrates the approach to an
asymptotic limit for the case of many particles interact-
ing via 5-function potentials.

Our purpose in this paper is to examine the quantita-
tive range of validity of the factorization approximation
for two simple models which we hope are representative
of realistic applications. The first is the problem of multi-
ple scattering of scalar nucleons from a scalar deuteron,
and the second involves the calculation of form factors of
two-body bound states, be they deuterons composed of
nucleons or hadrons composed of quarks. In general, we
find that, up to momentum transfers of q =200 fm
factorization provides at best a qualitatiue picture of the
integrals which they replace, and becomes quantitatively
accurate only under certain specialized conditions.

II. MULTIPLE SCATTERING OF SCALAR NUCLEONS

We begin by considering a model of elastic scattering
of a scalar nucleon from a bound state of two scalar nu-
cleons, which is designed to mimic the proton-deuteron
problem. Since our goal is to study factorization, all
consequences of identical particle symmetries are ig-
nored. At particle energies in the GeV region, a
multiple-scattering series can converge quite rapidly.
The rate of convergence of such a series is a separate
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study —our concern here is to see whether the individual
terms can be factorized.

As illustrated in Fig. 1, the multiple-scattering series
for the elastic scattering amplitude (P'p'~T~Pp) can be
written in terms of the free three-body Green's function
Go and the two-body scattering operator t as

(a)

a'

~ ~ ~

(P'p'~r+tGot+tGotGot+ Pp), (2.1)
p&

where P and P' are the initial and final momenta of the
bound state, and p and p' are the initial and final momen-
ta of the projectile. The first term in the series represents
single scattering, sometimes called the impulse approxi-
mation. We shall return to the role of factorization in
single scattering later in this paper. It is the double-
scattering term which is most convenient for examining
factorization

P p

FIG. 1. The multiple-scattering series for scattering from a
composite two-body target (a), along with definitions of momen-
turn variables used in the text (b).

(P'p'~ T Pp)z= J d 1 J d n%' (l)t(k, a', p, a) —t(p', b';k, b)&I&(n),
1

e

where the variables

(2.2)

a= —'P+1; a'= —,'P'+n; b= —,'P —I b'= —'P' —n; k=p+a —a'

are illustrated in Fig. 1, and the energy denominator is

(2.3)

2 p2e=p +
2m 4m

&2

2m
k

2777

b2

2m
(2.4)

Nonrelativistic kinematics are used throughout this paper.
The double-scattering contribution is dificult to evaluate because the integral has six dimensions, and because the in-

tegrand is singular at points where the energy denominator vanishes, corresponding to kinematically allowed physical
intermediate states. The calculation is further complicated by the fact that the two-body t matrices must be evaluated
at off-energy-shell kinematic values. If valid, the factorization approximation offers a tremendous simplification of the
double-scattering integral:

(P'p'~T~Pp)2~r„„„„~~= ~%(r=O)~ t(p —
—,'q, —,'P';p, —,'P) —t(p', —,'P', p —

—,'q, —'P),1

e
(2.5)

where q is the momentum transferred to the bound state.
In order to study the factorization approximation to

double scattering, we make a further simplifying assump-
tion, namely that the momentum scale of the off-shell ex-
trapolation of the t matrix greatly exceeds that of all oth-
er momentum scales in the problem. The t matrix can
therefore be set equal to a constant and removed from the
integral. The "test" of factorization then becomes one of
determining whether the energy denominator can also be
removed from the integral. For realistic models of
nucleon-nucleon scattering, this assumption is highly
questionable. Nevertheless, it is an assumption which is
used regularly in medium-energy nucleon-nucleus studies.
Its effect is to make the integral more likely to be factor-
izable. Conversely, if the momentum scale of the off-shell
t matrix is low enough that it cannot be ignored, then the
range of validity of the factorization approximation will
be even smaller than what we will find it to be.

Factorization as described here can be tested in at least
two ways. One is simply to compare the results of the

six-dimensional integration with the factorized approxi-
mation. The other is to examine the size of the contribu-
tion from the region surrounding the singularity of the
Green's function. For the purposes of a test, the t ma-
trices can be set to unity (or any other real number to set
the scale). The Green's function can be written as

1 1=P — ivr5[e] . —
e e

(2.6)

At best, the factorized approximation can predict only
the contribution from the principal value of the Green's
function, since the wave function peaks do not satisfy the
kinematics of the delta function. Thus, factorization as-
sumes that the delta-function contribution is small com-
pared to the principal-value part. Comparing real and
imaginary parts of the exact integral therefore provides a
good indicator of the validity of factorization.

The double scattering contribution involves two three-
dimensional internal momenta. The energy denominator
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can vanish when the internal momenta are configured to
correspond to a physically allowed three-particle breakup
channel. The real part of the energy denominator there-
fore requires a principal-value integration over the singu-
larity. The intuition behind factorization suggests that
the dominant contributions to the integral come from the
region 1=n=O. Except for very small values of momen-
tum transfer, the energy denominator is not small in this
region, so one might expect the contribution from the
singularity to be small. However, for the actual numeri-
cal calculation, it was necessary to use a mapping of
momentum points which were actually centered on the
singular point. This was done as follows. For every mo-
menta I and n correspond to a two-particle internal
momentum k and cluster momentum K. In the three-
body center of mass, the energy denominator is

10
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T=2 GeV PARIS

i@5(e)

—FAC

p2 p2e= + —ek —O~,
2m 4m

where ek =—k /m and

Qz=K /2m+K /4m .

(2.7)

100
Q (fm)

I

150

In place of the radial variables ~k~ and ~K~, we use @ and
e, where 0~ 8 ( ao and 0~ e'~ 8, and therefore
~k~ =&me and ~K~ =Q—43m(A' —e). The energy denomi-
nator can be written as

FIG. 2. Factorized versus exact double scattering for the
Paris potential.

p2 p2e= +
2m 4m

(2.8) + 12n2P2q2 1
t n + 0 ~ ~

l=n =0
(2.11)

All of the singular behavior is therefore contained in the
integration over 6'. By choosing integration points for 6
which are symmetric about the singular point, the in-
tegral becomes stable enough that it is more efficient and
in fact more accurate per integration point to use a
Monte Carlo algorithm. The most em.cient algorithm we
were able to find was the routine VEDAS.

For this test of factorization, different model wave
functions were used. These included the S-state wave
function of the deuteron using the Reid soft core or the
Paris potential, a momentum dipole form

Setting the t matrices to unity, this yields

103

T=2 GeV RSC

10

(2.12)

( +A)( +A)(p)=

and a Gaussian

(2.9)

10 1

(2.10)

Note that the normalization is arbitrary, since we are
only interested in making comparisons between approxi-
mate and exact calculations.

A wave function based upon a short-range repulsive
core vanishes at the origin. Thus, strict factorization im-
plies a result of zero. Of course, what this really means is
that the momentum scale of the wave function is not that
characterized by weak binding, but rather that of the size
of the repulsive core. If the remainder of the integral has
a momentum scale much greater than that of the core dy-
namics, then a modified factorization approximation can
be obtained by expanding the remainder of the integrand
about the point 1 =a =0, and keeping the first nonvanish-
ing term

10o
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10 1 iz5(e)
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FIG. 3. Factorized versus exact double scattering for the
Reid soft core potential.
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FIG. 4. Factorized versus exact double scattering for the di-
pole wave function discussed in the text.

FIG. 6. Factorized versus exact double scattering for a
Gaussian wave function with scale a =2.0 fm.

%'e now present our numerical findings for the case of
2-GeV proton energy. Results for the S-state Paris po-
tential wave function are shown in Fig. 2. Since the wave
function does not vanish at r =0, the form (2.5) was used.
For the S-state Reid soft-core wave function (Fig. 3), the
modified form (2.12) was used. In both cases, the factor-
ized and nonfactorized results bear little relation to each
other. The presence of nodes in both real and imaginary
parts of the exact integrals suggests that asymptotic kine-

matics are far from being reached. The conclusions using
momentum dipole wave functions (Fig. 4) are similar to
these. Note that the contribution from the singularity is
comparable to the principal value integral. For Gaussian
wave functions (Figs. 5 and 6), only very low values of the
wave function momentum scale yield a peak in the
momentum integrals which is sharp enough to justify fac-
torization.

III. TWO-BODY FORM FACTORS

102

T=2 GeV GAUSS +=0.3 fm

PV

in 5(e)

—FAC

Arguments very similar to those discussed above for
hadronic multiple scattering can be found in studies of
form factors of composite objects. One such application
is the calculation of electromagnetic form factors of had-
rons at very large momentum transfer using perturbative
QCD.

Consider the form factor for two scalar particles in a
spinless bound state:

10 1

F(q )= Jd n%t(n+ —,'q)%(n), (3.1)

10

50 100
Q (fm )

150

where q is the momentum transferred to the bound state.
If the composite state is weakly bound, one might expect
the integral over n to be peaked near n=O or else
n+ —,'q=O. If n=O, then we still need to know the wave

function %'(n+ —,'q), i.e., at large momentum values. In
the spirit of factorization, this high momentum behavior
can be exposed by iterating the bound state wave equa-
tion:

(3.2)

FIG. 5. Factorized versus exact double scattering for a
Gaussian wave function with scale +=0.3 fm. which yields an expression for the form factor
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F(q )=f d 1f d n(pt(l) —V+(n), (3.3)
102

PARIS

q2 b2e=
16m 2m

where

c2

2m

b= — —I; c= +I .3Q
4 ' 4

The strong interaction has the form

V0V= V(q) =
( —,'q+1 —n) +)Lt

as shown in Fig. 7. In the Breit frame,

(3.4)

(3.5)

(3.6)

10
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JD

10
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F(q )(t„„„„d)=~%'(r=O)~ —V21
I =n =0

(3.7)

corresponding to the exchange of a "meson" of mass p.
Following the treatment of the previous section, a factor-
ized approximation to Eq. (3.3) is therefore 10 0 50 100

Q (fm )

Equation (3.7) is consistent with the high momentum be-
havior found in other studies of form factors of com-
posite systems of particles interacting via nonrelativistic
potentials. Amado and Woloshyn examined a model of
many particles interacting via 5-function potentials, for
which wave functions can be obtained analytically. ' Our
study of two-body composite systems involves wave func-
tions whose potentials have nonzero range which can be
comparable to that of the wave functions themselves.

We also examine the concept of a "hard-soft" separa-
tion, employed frequently in calculations with perturba-
tive QCD. The basic idea is that the high-momentum

FIG. 8. Factorized versus exact form factor for the Paris po-
tential.

("hard" ) component of the wave function is best calculat-
ed by iterating the wave equation to expose the momen-
turn dependence of the interaction itself. What remains is
then an integral over the wave function, which is assumed
to be dominated by low-momentum ("soft") components
that may be only remotely related to the high-momentum
behavior of the potential.

The parametrization of the strong interaction in Eq.
(3.7) should be directly related to the wave function for
the bound state. We have not made such a connection in
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FICx. 7. Iteration of the wave equation in evaluating a two-
body form factor (a) and (b), along with definitions of momen-
tum variables used in the text (c).

FIG. 9. Factorized versus exact form factor for the Reid soft
core potential.
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FIG. 10. Factorized versus exact form factor for the dipole
wave function discussed in the text.

FIG. l.2. Factorized versus exact form factor for a gaussian
wave function with scale a =2.0 fm.

these model studies. Instead, we take the point of view
that the wave function may describe well the low-
momentum properties of the bound state, while the high-
momentum properties are better characterized using the
properties of the interaction itself. This idea is consistent
with the original spirit behind iterating the wave equation
to expose high-momentum properties.

Our calculations for the form factor are shown by anal-

ogy to the previous section. Results for the S-state Paris
and Reid wave functions are shown in Figs. 8 and 9.
Once again, the factorized expression is a poor approxi-
mation to the exact integral. The factorized approxima-
tion for the momentum dipole wave function (Fig. 10) is
qualitatively similar to the exact form factor, but the
momentum dependence is still not reproduced at the
highest momentum transfers shown. For Gaussian wave
functions (Figs. 11 and 12), factorization is again success-
ful only for very low momentum scales in the wave func-
tion.
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FIG. 11. Factorized versus exact form factor for a Gaussian
wave function with scale +=0.3 fm.

The idea of factorization of integrals describing pro-
cesses with composite systems at high momentum
transfer provides a simple physical picture, can be proven
for asymptotically large values of q, and greatly
simplifies the nature of explicit calculation. However,
our studies suggest that for many applications, factoriza-
tion is at best a qualitative approximation. The notion of
separating pieces of an integral with widely differing
momentum scales is clear enough, but when the two
relevant pieces are inverse polynomials (as is the case for
many applications in strong-interaction physics), that
separation is rarely sharp enough to justify the approxi-
mation. If the wave function can be approximately
characterized as a Gaussian with very low momentum
content, then factorization can be achieved for realistical-
ly attainable momentum transfers. However, for the par-
ticularly interesting case of the deuteron, there are im-
portant features which make factorization a questionable
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procedure, including the typically polynomial behavior of
its wave function and the short-range repulsion in the po-
tential.

We conclude that the factorization of integrals into
low- and high-momentum contributions, while justified in
an asymptotic sense, must be carefully tested in the actu-
al momentum range of interest.
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