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Cluster-model calculations of exotic decays from heavy nuclei
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A cluster model employing a local, eA'ective cluster-core potential is used to investigate exotic
decay from heavy nuclei as a quantum tunneling phenomenon within a semiclassical approxima-
tion. Excellent agreement with all reported experimental measurements of the decay widths for
' C and "Ne emission is obtained. As an added bonus, the width for a particle emission for
' Po is also calculated in good agreement with experiment.

Four years ago Rose and Jones ' startled nuclear physi-
cists by successfully observing a new type of naturally
occurring radioactivity in the form of ' C emission from a
223Ra source (which was itself produced in the decay
chain of 22 Ac). This result was soon reproduced and
confirmed, with better statistics and unambiguous charge
and mass identification, by Gales et al. Subsequently,
' C emission was also observed from several other isotopes
of radium. 3 In addition, another new form of natural
radioactivity involving Ne emission from 'Pa, U,
and U (Refs. 7-9) has recently been identified, and has
stimulated the search for more exotic decay modes in
which there is ejection of even heavier nuclei like Mg and
Si.

Several theoretical descriptions of these exotic decays,
of varying degrees of complexity, have already appeared
in the literature'o ' and they generally produce lifetimes
which are within factors of between 10 and 100 of the ex-
perimentally observed values. In this Rapid Communica-
tion we wish to point out that all the available lifetime
measurements on exotic decays from heavy nuclei can be
successfully reproduced, to within factors of between 0.1

and 0.5, by a simple extension of the Buck-Dover-Vary
cluster model' to treat the heavy nucleus as an appropri-
ate ' C or Ne cluster plus core system.

This model describes the interaction between a cluster
and a core in terms of a simple, local potential V(r) which
may be obtained from a double folding integral involving
the cluster and core densities p~(r~) and p2(r2), and an
effective nucleon-nucleon potential U(

~
r t

—r2 ~
). Hence

—Vo [I +cosh (R/a )]V(r)-
cosh(r/a) +cosh(R/a) ' (2)

where Vo is the depth of the potential and R and a are re-
lated to its radius and diffuseness. The single-particle
Schrodinger equation is now solved with this potential,
and the bound- and resonant-state solutions are identified

V(r) „„pt(rt)p2(r2)U(( r+r2 —rt ~
)d rtd r2,

and this may itself by closely approximated by a simple
three-parameter form such as

V(q) -P&(q)p2( —q)U(q) . (3)

This form is particularly convenient when we wish to con-
vert nuclear charge densities p, h obtained from electron
scattering, to the desired matter or point densities p. Fol-

with the states of relative motion of the cluster about the
core.

The main requirements of the Pauli exclusion principle
are satisfied by choosing the quantum numbers of relative
motion n (the number of interior nodes in the radial wave
function) and L (the orbital angular momentum) to obey
a Wildermuth condition, 2n+L ~ N, where N is a con-
stant integer chosen large enough to correspond to the
microscopic situation in which the cluster nucleons all oc-
cupy orbitals above those already occupied by the core nu-
cleons. Any remaining effects of antisymmetrization may
be absorbed into the effective potential.

One of the major successes of this model was its ability
to predict a decay widths for a large number of states in
' 0 and oNe (Refs. 13-15) in excellent agreement with
experiment, in contrast to earlier calculations employing
Fermi function potentials, which typically overestimated
these quantities by factors of 5 or more. In these cases the
critical difference seems to be a far better description of
the shape of the barrier by the folded potential, and we
shall now investigate the emission of ' C and Ne from
heavy nuclei with this model and show that similar
successes may be achieved there.

For some very simple parametrizations of the nuclear
densities and N-N interaction, the folding integral of Eq.
(1) may be performed analytically in coordinate space.
Some convenient two- and three-parameter representa-
tions of the charge densities of ' C and Pb are suggest-
ed in Ref. 16, and if these are adopted, together with a
Dirac b function for U, then the six-dimensional integral
of Eq. (1) may be analytically reduced to a one-
dimensional integral, which is ideal for numerical approx-
imation using a Gauss-Hermite quadrature. More gen-
erally however, it is convenient to take the Fourier trans-
form of Eq. (1) and then make use of the convolution
theorem to transform the folding integral to a product of
the individual transforms of the densities and interaction

2097 1989 The American Physical Society



2098 B. BUCK AND A. C. MERCHANT

lowing Cook' we write

P(q) -(1+N/Z) p.h(q)/pN, gh(q) (4)

If) and a spinless cluster, in a state of unique relative or-
bital angular momentum L, then this gives a width I
where

for a nucleus containing N neutrons and Z protons where

plv, h(r) a /8nexp( —ar) (5)

and a is chosen to reproduce the nucleon mean square
charge radius through

(2Ii+1) F62 ' ~r,

(2II+ 1)(2L+ 1) 4p

where p is the reduced mass of the cluster-core system,
k(r) is the semiclassical wave number

]/2

(r )Iv 12/a 0.76 —0.11(N/Z) fm (6) k(r) - 2 [Eo VT(r)] (10)

cos(qR ) — sin (qR) coth (nbq )R (8)

An N-N interaction with an analytic form for its Fourier
transform, such as a Dirac b function or a Gaussian, thus
allows a completely analytic evaluation of V(q), which
can in turn be inverted by standard techniques.

In practice, we take the shape of V(r) from this folding
procedure, but adjust the precise value of its depth to
reproduce exactly the cluster-core separation energy (as
determined from the mass defect tabulations of Wapstra
and Audi' for each individual case. When this is done, it
is also found that the results are insensitive to the exact
value of N ( 2n+L) over a wide range.

Even when the cluster-core potential has been deter-
mined, the width of the resonant states for ' C or Ne+
core systems cannot be calculated by the usual quantum-
mechanical procedures of watching the phase shift rise
through n/2 as the energy is varied, or by numerically
solving the Schrodinger equation using complex arithme-
tic, since we are trying to obtain a width of 10 6 eV or
less for a state whose energy is around 30 MeV ('4C clus-
ters) or 60 MeV ( Ne clusters). Instead, we make use of
the two-potential approach to the decay of a quasistation-
ary state recently developed by Gurvitz and Kalber-
mann.

In the semiclassical limit, this leads to an expression for
the decay width of a resonant state in terms of the three
turning points ro, rj, and rz (in order of increasing dis-
tance from the origin) of the total cluster-core potential
VT(r) (which contains nuclear, Coulomb, and centrifugal
terms) and the energy Eo of the equivalent bound state in
the related potential V~(r) obtained by fiattening off the
barrier at its maximum value (occurring at r rq). In
other words, V~ (r) VT (r) for r ~ re and V~ (r)
-VT(rz) for r ~ rg. This essentially leads to the Gamow
formula with a well determined pre-exponential factor. If
we assume that our heavy nucleus decays from its ground
state (spin I;) to produce a core in its ground state (spin

Bearing this in mind, the universal symmetrized Fermi
density function proposed by Burov, Eldyshev, Lukyanov,
and Pol' to fit the electron scattering data for all nuclei,

ppsinh(R/b)
cosh(r/b)+cosh(R/b) '

is extremely useful since it admits an analytic evaluation
of its Fourier transform as

4n bRpo

h(b )

and F is the semiclassical bound state normalization fac-
tor

+ I'
I ÃF cos k(r')dr' ——dr =1."'0 k(r) ""0 4

We make the Langer modification, in which L(L + 1) is
replaced by (L+ —,

' ) 2, so that three turning points are al-
ways obtained and all our integrals are well defined.

We have checked this procedure against quantum-
mechanical width determinations for states of the a- Ca
and a-a systems, and found it to be satisfactory.
Specifically, we found 0.045 and 29.0 eV for the widths of
the 8+ and 10+ members of the yrast band in "Ti, com-
pared with values of 0.051 and 27. 1 eV obtained from a
numerical solution of the Schrodinger equation using
complex arithmetic. ' Also, we obtained a value of 5.6 eV
for the width of Be in its 0+ ground state, compared with
the value of 5.8 eV found by Buck, Friedrich, and Wheat-
ley. We now proceed to use this method to calculate de-
cay widths for ' C and Ne emission from heavy nuclei.

The Wilmermuth condition 2n+L ~ N requires us to
place all the ' C or Ne cluster nucleons in orbitals out-
side the Z 82 and N 126 proton and neutron shell clo-
sures. Therefore, each cluster proton contributes at least
5 quanta to N, and each neutron contributes at least 6
quanta. Allowing minimum values of 10 and 28 quanta
for internal motion of ' C and "Ne in their respective
ground states, we arrive at the conditions 2n+L ~ 68 for
' C and 2n+L ~ 106 for Ne clusters. As mentioned
above, the results do not depend critically on the exact
values chosen for N 2n+L.

We produce the simplest possible folded potential by
using a Dirac 8 function for the N-N interaction and
Burov charge densities with R 6.557 fm and b 0.515
fm for the core and R 2.214 fm and b 0.488 fm for ' C
in Eqs. (7) and (8). The depth of the folded potential is
fine tuned to reproduce the cluster-core separation energy
with respect to the heavy parent nucleus. The energy Eo
and width I are then calculated as outlined above assum-
ing a Coulomb potential appropriate to that of a uniform-
ly charged spherical core of radius 5.5 fm interacting with
a pointlike cluster.

For ' C emission from Ra, Ra, and Ra all
ground-state spins are zero, so angular momentum and
parity conservation lead us to the unique value of L 0 for
these decays. For Ra Pb+' C, the parent spin-
parity is 2

+ while the heavy core spin is 2, so that we
again have a unique assignment of L 5. Unfortunately,
the spin of 'Ra is unknown, but since Pb has a spin of
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TABLE I. Calculated and experimental values of the partial widths I (eV) for the emission of the in-
dicated cluster from some heavy nuclei. A consistent geometry of R 6.7 fm and a 0.75 fm is used in
all applications of the cosh potential of Eq. (2). Experimental data are from Refs. 1-9.

r (eV)
System

a+ pb ' po
14C+ 207pb 221Ra
14+ 208pb 222Ra

14C+ 209pb 223Ra
14( + 210pb 224Ra

14C+ 212pb 226

24Ne+ 207Tl 231p

24Ne+ 208pb ~ 232U

24Ne+ 209Pb 233U

Folded potential

6.1 x 10
~4x10

5.8 x 10
2.6x 10
6.5 x 10
4. 1 x 10

cosh potential

1.0x10-'
~ 6x10

9.8 x10
4.8 x 10
1.1 x 10
6.5 x10
4.2 x 10
1.3 x10

~ 2x10

Experiment

2.2x10
1Q 28

6.4x1Q
4.Q x 1Q

9.Qx 1Q

4.2x 1Q

3.8 x 10
3.Q x 1Q

9.9x 10

2, we can calculate an upper limit on the ' C emission
width by treating it as an L 0 resonance and setting the
statistical factor equal to 1. Our results are presented in
Table I, and are clearly in very good agreement with the
data.

Unfortunately, no reliable charge density is available
for Ne, so we have not been able to perform similar cal-
culations for such emissions. However, we did apply our
method to the a decay of 2' Po, using an a particle matter
density of exp( —r /a ) with a 1.41 fm (Ref. 23) and a
Wildermuth condition of 2n+L ~ 22 and obtained grati-
fyingly good agreement with experiment (Table I).

In view of its previous successes in light nuclei, we then
looked for a cosh potential parametrization [Eq. (2)] of
our folded potential to simplify our calculations even fur-
ther. We found that values of R 6.7 fm and a 0.75 fm
in Eq. (2) (with Vo chosen separately for each decay so
that the energy Eo equalled the appropriate cluster-core
separation energy) reproduced the shape of the folded po-
tentials very closely. The corresponding ' C emission
widths and the ' Po~ sPb+a decay width are shown
in Table I and seen to be in excellent agreement with the
experimental measurements. In fact, the values of R and
a for the Pb+a system should be a little smaller to op-
timize the fit to the folded potential, but we have not made
any such adjustment so as to keep our number of free pa-
rameters to a minimum.

Since the same cosh potential geometry is adequate for
Pb-like cores interacting with both a and '"C clusters, we
decided to test it out for the Ne decays also. Our results
(see Table I) are again in excellent agreement with the
measured values. In these decays, 'Pa Tl+ Ne
and U~ Pb+ "Ne have unique assignments of
L 1 and L 0, respectively. However, the decay

U~ Pb+ Ne is from a state of spin-parity 2
+ to

one of spin-parity 2
+ and could have I. 2, 4, or 6. We

have adopted the value L 2, and hence only claim the
status of upper limit for our result.

We were naturally curious to investigate the spectra

produced by our folded and cosh potentials, to see if we
could also describe the excited states of heavy (actinide)
nuclei with our model. However, we found that the ener-
gies of the states in the rotational bands we generated
were almost equal, thus not being as widely spaced as the
measured values. Also, our calculated reduced E2 tran-
sitions strengths 8(E2t;0+ 2+) in the even-even nu-
clei were between a third and a half of the va.lues deduced
from Coulomb excitation experiments.

The decay widths we have calculated range from 10
to 10 eV, and thus represent a substantial probing of
the precise shape of the barrier. It would only be possible
for us to correlate all these values so successfully with ex-
periment if we did indeed have the shape of the barrier
essentially correct. This is the crucial aspect of our calcu-
lation, resulting from our prescription for the cluster-core
potential, which allows us to reproduce the decay widths
so accurately. The inner and outer turning points are
essentially determined by the centrifugal and Coulomb
potentials, and it is the position of the critical middle turn-
ing point r i which truly determines the barrier penetrabil-
ity and hence the decay width.

We conclude that a semiclassical barrier penetration
calculation using a simple cluster model, where the
cluster-core potential is produced by a double folding in-
tegral and may be accurately described by a simple
three-parameter shape, is adequate to reproduce all the
presently available experimental data on '4C and 24Ne

emission from heavy nuclei. In addition, this same pro-
cedure is able to give the a decay width for ~' Po

2osPb+ a disintegration with similar accuracy.
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