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Choice of finite-temperature single-particle potential
and preservation of thermodynamic relations
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A method for choosing and deriving a suitable single-particle potential for many-body calcula-
tions at finite temperature is suggested. With this potential one can readily determine the self-
consistent correlated chemical potential and consequently the resulting equations of state rigorously
satisfy a number of basic thermodynamic relations. Application of our method to a Brueckner-
Hartree-Fock nuclear matter calculation yields results in remarkably good agreement with the
Hugenholtz —Van Hove theorem.

Introduction. Nuclear matter equations of state (EOS)
are a subject of much current interest. ' There have been
numerous attempts to derive them microscopically, start-
ing from a given nuclear Hamiltonian. In doing so, there
is nevertheless a basic and rather subtle difhculty. Clear-
ly we cannot calculate the various thermodynamic quan-
tities of nuclear matter exactly; we must make some ap-
proximations such as the Hartree-Pock (HF) and the
Brueckner-Hartree-Fock (BHF) approximation. Many of
these approximations are, however, nonconserving in the
sense that the thermodynamic quantities obtained with
these approximations are not compatible with certain
fundamental thermodynamic relations.

A well-known case is the zero-temperature BHF
theory of nuclear matter; it very seriously violates the
Hogenholtz —Van Hove (HVH) theorem. Several au-
thors ' have suggested that this violation may be
largely reduced if certain two-body cluster contributions
to the mass operator are included. To carry out finite-
temperature EOS calculations one has to first find a suit-
able method to overcome the above nonconserving
diSculty; to our knowledge rather little seems to have
been done in this area.

In this Brief Report we wish to propose a general and
fairly convenient method for choosing an auxiliary single
particle (s.p. ) potential U such that the resulting EOS and
several related thermodynamic quantities can rigorously
satisfy certain basic thermodynamic relations. We shall
describe the definition and derivation of such a potential
in the next section. A main point is that this U must be
chosen in consistence with the approximations adopted in
the calculation of the thermodynamic potential Q. For
example, if one chooses to calculate 0 with certain
classes of ring diagrams summed up to all orders, then
one should employ a corresponding ring-diagram s.p. po-
tential U '" . And if one decides to calculate 0 using a
HF approximation, then a corresponding HF s.p. poten-
tial U "must be employed. A central advantage of do-
ing so is that we can determine the self-consistent corre-
lated potential rigorously and with convenience. It is pri-
marily because of this that we are able to preserve a num-
ber of basic thermodynamic relations. We have carried

p= VXfk
k

(2)

where p is the density of the system and V its volume.
This gives only the zeroth order chemical potential po.
[Eq. (2) is equivalent to p V= —( tlQO/Bp )Tv if
(t)e'k/t)p)Tv=0. ] Rigorously, one should derive p from

out some preliminary numerical calculations to verify the
validity of our method. As presented in the application
and discussion section, the results of our nuclear matter
calculations using the Bonn (k-space) (Ref. 8) potential
fulfill the HVH theorem remarkably well. Some addi-
tional results and general discussions related to our ap-
proach are also presented in this section.

Formahsm. A standard starting point for carrying out
microscopic calculations of many-body systems at finite
temperature is the thermodynamic potential Q which can
be expressed as a linked-diagram expansion. Let us in-
troduce an auxiliary s.p. potential U and rewrite the nu-
clear Hamiltonian H as (TKE+ U)+( VttN

—U) =Ho-
+H, . TKE and V» represent respectively the kinetic
energy and the nucleon-nucleon (XN) interaction. The
s.p. energies and wave functions defined by Ho are denot-
ed respectively by e; and ~i ). One hopes to choose a U
such that certain important properties of H are well ap-
proximated by those of Ho. But how to choose such a U7

For the zero-temperature case this problem has been
rather extensively studied. ' Here we wish to study a
method for deriving a suitable U for finite-temperature
many-body calculations.

The unperturbed thermodynamic potential Qo corre-
sponding to Ho is

1&o=g 4fk+ g(fkinft +fk»fk)
k k

where fk is the Fermi-Dirac distribution function
[1+exp(jRk)] ', fk= 1 fk, and P is the inv—erse tem-
perature 1/(kttT), ktt being the Boltzmann constant.
Note that 'Fk =ek —p where p is the chemical potential.
For simplicity, it has been a common practice to deter-
mine p from the familiar relation
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Some representative diagrams of Q;„„the interacting part
of Q, are given in Fig. 1. Because H&=V&& —U, Q;„,
contains diagrams with —U vertices. The lowest-order
diagram of this type is diagram (i} given by gk Uk fk. We
define Q „, as Q;„, with diagram (i) subtracted. Diagram
(ii) is the familiar HF interaction diagram. Diagram (iii)
is a fourth-order particle-particle hole-hole ring diagram
of Q;„,.

For a given Q;„„let us require that the chosen s.p. po-
tential satisfy the subsidiary condition

BQ„,
(4)

k Bp

Bfk
k BP, rv

This condition and Eq. (l) imply that

S
= —— «0+Q. ) =—&fk

1 1

V BP TV k

which is a rather important result. It means that with
the s.p. potential chosen according to Eq. (4) the true or
correlated chemical potential p given by p V= —(BQ/BP}zv is exactly reProduced by the "unPer-
turbed" Po obtained by Eq. (2). In other words, the above
choice of U ensures P =Pa. Equation (5) has also the im-
portant implication that the physical density correspond-
ing to Q is given by (I/V)gk fk. Note that in deriving
Eq. (S) we have made use of the relation
(B~k/Bp}rv=(BUk/BC 4v.

The above choice of U also ensures that the free energy
density given by f = (Qo+ 0;„,)/ V+Pp rigorously
satisfies the fundamental relation

the relation pV= —(BQ/BP)zv where Q is the full ther-
modynamic potential corresponding to H. As given in
Fetter and Walecka, " corrections to po may be studied
via a perturbation expansion p =po+ p&+p2+ . where
p„denotes the correction nth order in the interaction.
We shall discuss in the following a difFerent and simpler
approach for determining p in a self-consistent way. We
have found, as to be discussed later, that p and po can in
general be very diferent from each other and it is essen-
tial to employ p calculated in consistence with Q in EOS
calculations.

The thermodynamic potential Q corresponding to H
can be written as a linked-diagram expansion

Q=QO+Q;„, =QO —Q Uk fk+Q,'„, .
k

(6)

Hence, our present method entitles us to calculate p using
either —(BE/BV)rN or simply —Q/V. The latter is
clearly more direct and convenient as the calculation of
Q is usually the first step in any finite-temperature many-
body calculation.

As temperature tends to zero, Eq. (7) becomes

where eF is the Fermi energy obtained with our present
s.p. potential, which ensures p=po, and Eo/N is the
ground-state energy per particle. Note that Eq. (8) is just
the familiar HVH theorem. Thus our choice of the s.p.
potential ensures that this theorem is automatically
satisfied.

The above choice of the s.p. potential also leads to a
simpler formula for evaluating the compression modulus
IC. From Eqs. (6) and (7), we have

K=9 B

Bp
pB

Bp
(9)

The correlated p can be calculated rather simply in the
present approach. Thus Eq. (9) provides a more con-
venient way for- calculating K than the usual method
where one needs to evaluate the second-order derivative
off with respect to the density.

%'e have now seen that there are a number of advan-
tages in choosing a s.p. potential Uk which satisfies Eq.
(4). Let us now turn to the solution of Uk from Eq. (4).
This may be easily carried out. We can rewrite
(BQ „,/BP }zv in a functional derivative form as

g ( Bfk /BP )Tv( ~Q '
t /~f k )Tv

k

Then

The independent variables used in most finite-
temperature calculations are p and T. Thus one cus-
tomarily calculates p by way of the free energy F, namely
p = (BF—/BV)rN=p(Bf/Bp)z f. —In so doing, howev-
er, we must employ the appropriately calculated F. We
may calculate it by way of E =Q+pX where p must be
determined in consistence with Q. Our present choice of
the s.p. potential enables us to obtain readily such a p
and consequently F can be readily calculated. Thus, the
validity of Eq. (6) is assured and-the above expression for
pressure becomes

QP=PP f =

Q,'„,

&fk rv

FIG. 1. Some linked diagrams of Q;„,.

is clearly a solution of Eq. (4). It is of interest that this
Uk may be considered as a finite-temperature extension of
the quasiparticle potential employed in Landau's Fermi
liquid at zero temperature. As to be discussed later, Eq.
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The Skyrme interaction has a density-dependent term
—,'t3p 5(r, —rz). Hence R is simply —,', o.'t3p +'. Then the

EOS is readily given by

P = ——00+0,'„,—g fk(U„"+R)1

k

which is just

p =—to+ t3p p
cx+ 1

Qo

V 2
3/2

1+(m p/8)(3t, +5t )

where the t's are the parameters of the Skyrme interac-
tion' and m is the nucleon mass. The above EOS agrees
with that given by other authors (see Ref. 12 and refer-
ences quoted therein), but the present derivation is much
simpler and clearer.

Next we apply our method to a BHF calculation of nu-
clear rnatter. As recently discussed by several au-
thors, the HVH theorem is not satisfied by the con-
ventional BHF theory of nuclear matter. We may write
the BHF Q,'„, as

+ident 2 2 +klkl (+k!)fkf!
kl eI'

(12)

where E is the familiar reaction matrix and Ski —2p and
ek&=ek+e&. I' is a chosen model space such as the
momentum space with k «kz, the Fermi momentum.
Substituting this into Eq. (10), we have

Uk g +klkl(+kl )f!
lcI

(4) does not give a unique solution for Uk. It should be of
interest to look for its other solutions as well. The solu-
tion given by Eq. (10) appears, however, to be a con-
venient and physically appealing one. We note that Eq.
(10) is a self-consistent equation for determining U.

Application and discussion. Let us first apply our
method to a HF nuclear rnatter EOS calculation using
effective Skyrme interactions. ' In this case we have
QI„,= —,

' gm„ fm f„(mn
l V!vtv l

mn ). Here V!vtv stands for
the Skyrme interaction. Since the physical density is now
given by Eq. (5), Eq. (10) gives Uk = UkH" +R where
Uk" —g f (kmlV!vtvlkm ) and R is the rearrange-
ment potential

VNN
mn f f„.

Bp

U BHF
k k

Qm. ae

Bp

= Uk +Rg+RE (14)

where e stands for (e,"—e „). Q is the Pauli exclusion
operator with Qm„=(1 —fm )(1—f„).

As mentioned earlier Eq. (4) does not uniquely deter-
rnine the s.p. potential U. There may be many solutions
for U, and in the above we have actually selected one
"most convenient" for calculation. By directly evaluat-
ing the second term of Eq. (13) we can obtain a different
set of rearrangement terms R&(k) and RE(k), the former
corresponding to diagram (a) or (b} of Fig. 2 which is just
the M2 diagram of Refs. 2—4 and the latter correspond-
ing to higher order diagrams such as (c) of Fig. 2. It is
numerically more complicated to use R&(k) and Rz(k),
because they both are momentum dependent and we have
to carry out additional self-consistent calculations to
determine an entirely new s.p. potential. In contrast our
chosen solutions R& and RE are momentum independent;
they just provide a density-dependent constant shift to
Uk . It may be mentioned, however, that the use of
R&(k) and RE(k) may be more desirable in terms of the
cancellation of the self-energy diagrams. The conver-
gence property of the diagrammatic expansion of 0;„,is a
matter of much importance. Ideally one would like to
choose a s.p. potential which may improve the conver-
gence of the above expansion. Studies in this direction
will be very useful.

The HVH theorem should be satisfied within the
present framework. Let us now check if this is so. In the
present work, we consider only the zero-temperature
case. We first perform the conventional BHF nuclear
matter calculation' ' using the Bonn (k-space) potential.
Then the nuclear matter pressure is calculated using both
p = (dEO/d V)&, w—here Eo is the ground-state energy of
nuclear matter, and po=p(eP " Eo/X). As s—hown in
Table I, p and po are vastly different. Clearly the HVH
theorem is badly violated here.

Next we repeat the above calculation using the s.p. po-
tential proposed in the present work. In this way the

+—g X„„(Z„}1

mn EP Tv
(13)

k

where the first term is the well-known BHF s.p. potential
Uk "and the second term may be referred to as the ar-
rangement potential. Because of Eq. (5), we can replace
(&/5fk )» by (1/V)(B/Bp)T. This leads to the rather in-
teresting and simple result

(0) (c}

FIG. 2. Diagrams of the rearrangement single-particle poten-
tial.
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TABLE I. Rearrangement potential and the fulfillment of the Hugenholtz —Van Hove theorem. Cal-
culations are performed for symmetric nuclear matter at zero temperature with the Bonn (k-space) po-
tential. The units for the various entries are kF (fm '), p (fm '), columns 3—6 (MeV), and columns 7—9
(MeV fm-').

1.1
1.2
1.3
1.4
1.5
1.6
1.7

0.090
0.117
0.148
0.185
0.228
0.277
0.332

~BHF6F

—18.65
—21.12
—23.19
—24.56
—25.05
—24.41
—22.28

Eo/N
—8.76

—10.10
—11.59
—12.69
—13.48
—13.91
—13.68

1.93
2.23
2.75
3.23
3.97
5.05
6.41

2.68
3.01
3.41
3.84
4.34
4.87
5.42

p = —dEO/dV

—0.487
—0.669
—0.836
—0.866
—0.686
—0.196

1.102

po

—0.890
—1.289
—1.717
—2.196
—2.638
—2.909
—2.855

pz
—0.475
—0.676
—0.805
—0.888
—0.743
—0.161

1.073

pressure is given by ptt =p(eF Eo IX—) where Ep
=a~ "+R&+RF,' here ez " and Eo are the same as
those of po. As usual we have employed a partial-wave
representation and angle averaged Pauli exclusion opera-
tor' to calculate R& and RE. As shown in Table I, p~ is
very much closer to p than po. (The slight difference be-
tween p~ and p are probably mainly due to the average
angle approximation used in our calculations. ) Clearly
our results agree with the HVH theorem remarkably
well. Note that the rearrangement terms R& and RE,
arising respectively from the density dependence of the
Pauli exclusion operator and of the s.p. spectrum, are of
nearly equal importance in achieving this agreement.

In summary, we have proposed a probably useful and
convenient method for choosing and deriving a "conserv-
ing" s.p. potential for finite-temperature many-body cal-
culations. This potential must be determined in con-
sistence with the approximation scheme adopted for the
calculation of the thermodynamic potential. A main ad-

vantage of our method is that the correlated chemical po-
tential can be rigorously determined from the occupation
of the s.p. levels. It is primarily because of this that a
number of basic thermodynamic relations are automati-
cally fulfilled by the present framework. In addition our
formalism also ensures the fulfillment of the relation

bj
(I b V. )T=-

a P

without which the frequently used Maxwell construction
for phase coexistence would become disallowed. We have
recently calculated certain ring diagrams of the nuclear
matter thermodynamic potential. ' The corresponding
ring-diagram chemical potential and EOS may also be ob-
tained using the present method.
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