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We discuss the restoration of the chiral symmetry in the case of the N-X interaction on the basis
of the cloudy bag model. A quantum-chromodynamics-based many-body theory of confined quarks,
confined gluons, and pions is developed. In terms of the Green's functions and vertex functions of
these fields, the energy shift due to gluon and pion exchange between quarks is calculated systemati-
cally and the short-range and long-range parts of the eA'ective nuclear potential are obtained. For
the short-range part, a soft repulsive core is obtained using the cloudy bag model parameters and
the main contribution comes from the gluon exchange, as expected. The height of the core, howev-
er, is sensitive to the {poorly determined} subtraction required to remove the kinetic energy of the
relative X-X motion. For the long-range part, an explicit formula, which is the same as one-pion-
exchange potential, is obtained, but the strength of this part is 30% lower than that of one-pion-
exchange potential when f is chosen as 93.0 MeV.

I. INTRODUCTION

A precise description of the S-E interaction is an un-
solved fundamental problem in nuclear and hadronic
physics. Since the meson-exchange theory of the nuclear
force proposed by Yukawa in 1935,' there has been con-
siderable progress in unraveling its complexity. Howev-
er, because of its complexity many problems are still
open, especially the short-range behavior of the S-S in-
teraction. Even if contributions from the vector mesons
have been included, one can only deal with this part of
the problem serniphenornenologic ally. On the other
hand, the quark-gluon theory of hadronic structure has
been developed since the 60's. Therefore one hopes that
the nuclear force can be derived at the quark level. Even
though some work based on the nonrelativistic potential
model, ' the bag model, ' various nontopological
soliton models, and the Skyrme model have repro-
duced some of the properties of the nuclear force and
low-energy scattering data, many problems remain and
improvements are needed.

Obviously a more solid theoretical foundation is
desired. QCD is the most promising theory of the strong
interaction. In principle the nuclear force can be derived
from fundamental QCD. Because of the obvious com-
plexities of QCD, there is no reliable method to calculate
it. Although some studies of the interaction between nu-
cleons have been made by lattice calculations, the ap-
proaches so far have been too simple. Hence semi-
phenomenological models which are QCD motivated are
still used. The chiral symmetry is important for under-
standing the low-energy phenomena. As the first step,
the cloudy bag model (also the chiral bag model) is a
good starting point. It contains the basic features of
QCD such as confinement, asymptotic freedom, and
chiral invariance. In addition, many analytical results

have been obtained through this model. Using the mod-
el, we will develop a formulation in which a unified quark
description of the short- and long-range parts of the nu-
clear force can be obtained. For the short-range part of
the effective nuclear potential, the kinetic energy ( KE„~)
of the relative motion of two nucleons should be subtract-
ed from the energy of six-quark system. In the bag
model this correction has been argued to be of roughly
the same size as the center-of-mass motion correction.
Taking this to be exactly the case and using the
Donoghue-Johnson method for calculating it, a soft
repulsion appears. The main contribution comes from
one-gluon exchange. The size of this repulsion, however,
could be significantly decreased if one uses the Wong-Liu
method for estimating this correction. For the long-
range part, an explicit formula of X-N interaction which
is the same as the one-pion-exchange potential (OPEP)
can be derived and its strength could be determined by
the bag model parameters. In principle, this framework
is also suitable for dealing with other meson fields and
could provide a method for the meson exchange interac-
tion at quark level. In the bag model, the nonperturba-
tive efFects are considered as boundary conditions. Then
the "residual interaction" is calculated perturbatively.
Unlike other works which treat the gluon and pion fields,
as the classical fields and the energies are also calculated
classically, we use the many-body theory of confined
quark, confined gluon and pion to study the efFects of
gluon and pion exchanges. These fields are expanded in
terms of their eigenmodes and. quantized. The quarks
and gluons are confined inside the cavities so that their
eigenvalues are discrete. Then we find the corresponding
Green's functions and vertex functions, respectively.
After that, the contributions from the various Feynman
diagrams (including the self-energies) are easy to calcu-
late systematically. In the chiral or cloudy bag model, a
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II. MANY-BODY THEORY OF PIONS,
CONFINED QUARKS AND GLUONS

FOR THK ONE- AND TWVO-CAVITY CASKS

In the original bag model each baryon is a cavity with
quarks and gluons. First, consider a six-quark system
with three quarks in one baryon and three in another
baryon. The distributions of quarks in the two-baryon
system depend upon the relative separation between the
two baryons. %'hen two bags approach each other they
can overlap and consequently form a new bag which can-
tains six quarks. The shape and size of this bag depends
on the configuration of the six-quark state. For the long-
range part of the interaction there are two individual
bags. If only quarks and gluons are considered, there will
not be any interaction between these two bags and the
quarks are confined in two separate regions. So in the ab-
sence of a new mechanism the original bag model cannot
describe the long-range interaction between baryons.
Such a new mechanism is provided by chiral symmetry,
i.e., by requiring the underlying dynamics to be chirally
symmetric. This introduces the pion at a dynamical lev-
el. Because of the coupling of the pion to the quarks, the
energy of the whole system, i.e., quarks, gluons, and
pions, will change as the distance of two baryons
changes. Namely, an e8'ective nuclear potential can be
derived at all distances. To calculate the energy of the
six-quark system, one needs the Green's functions and
the vertex functions for the one- and two-cavity cases.
Our starting point is the Lagrangian density of the
cloudy bag model. For the chiral bag model the formula-
tion and the results are similar. The Lagrangian density
of the cloudy bag model can be written as follows.

(2.1)

and

Z', = [ ,' yy„(a„@)+,'(a„y—)y—„y a]8(u),-—(2.2)

baryon or in our case a nucleon —a cavity with quarks
and gluons inside —is surrounded by pions. When two
nucleons get close and overlap, a six-quark cavity is
formed but at long range these two cavities are separated.
In this paper we do not discuss the continuous transition
from two separated cavities to overlapping cavities.
However because the quark field couples to the pion at
the bag surface, the Green's functions of the pion field
which describes emission and absorption on one cavity
and between two cavities are found.

The outline of this paper is as follows: in Sec. II the
many-body theory of confined quark, confined gluon and
pion fields is introduced. We emphasize the deterrnina-
tion of the Green's functions for the one- and two-cavity
cases. The details associated with the eigenmodes and
the interaction matrix elements of these fields needed for
perturbation theory can be found in Appendices A and B.
In Sec. III the expressions of the short- and long-range
parts of the efFective nuclear potential are derived. Sec-
tion IV contains numerical results and further discussion.

D„"= [2;g, +j0( I~I If )(5;, g;—n; )]a„,
LOG =( —1/4I'„'g" ')8(u),

F„'„—:a„A;(x)—a A„'(x) gf,I„—A„(x)A'„(x),
Xloo=(ig, fy„A;!2IfgA „')8(u),

Xl(z = ,'P—ex—p(iy,v"~If )@I,8(au),

(2.3)

(2.4)

(2.5)

(2.6)

where g, n, and A „' are the quark, pion, and gluon fields,
respectively, and f is the n decay constant and A,"s are
the generators of SU(3,C). If, I, are the unitary matrices
in the Qavor and color space, respectively.

1 inside (or on) A,
0 outside A .8A =' (2.7)

A represents the region occupied by the baryons. It is
one cavity or two cavities for the short- and long-range
part of the interaction, respectively. Here we use the sur-
face coupling of quark and pion, as the usual chiral and
cloudy bag model. It has been shown that gnder cer-
tain transformation the surface coupling is connected
with the volume coupling.

The Green's functions of the di8'erent fields are defined
as follows:

iGF(x ixz ) =—& Ol T [y(x i )y(xz )]IO &

=Q (xi )Q'(xz), (2.g)

«'(x ixz) —= & yol T [~(xi )~(xz )] lgo&

= &0~ T [7r(x, )7r(x, )]0&
=m" (x, )m" (xz ), (2.9)

iD„'„(xzxz ) =iD„„(xixz )5'

&y ~T[A„(x—, )A (x, )]~/, )
= A„(x, ) A „(xz)5'", (2.10)

for such configurations. In order to determine these
Green's functions, the diferent fields should be expanded
in terms of their eigenmodes. The eigenrnodes of the
quark and gluon fields confined in a spherical cavity have
been discussed before. ' ' The majn results are surnma-
rized in Appendix A. Because the quark field couples to
the pion field at the bag surface, one also needs the prop-
agator of the field between two cavities. It will be dis-
cussed at the end of this section. Now we concentrate on
the one-cavity case. After some calculation, the Fourier
transformations of the quark and gluon propagators are
the following:

where ~0) is the vacuum state and ~Po) is the six-quark
state. Because the configuration of the six-quark state
can be mixed in single quark quantum numbers, in gen-
eral,

(2.11)
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GP(r, r2, co)= fdr e' 'GF(xix2)

U„(r, ) U„(r2) V„(r, ) V„(r2)+"' "'
co En +l'g co+En l'g

Red &(RR, O) = lim —g.j&(g)n&(g)
1

0R
1 1

2l+1 Z
(2.21)

with

D44(r i r2) = —D'(r i r2)

(J sc)2

A,"(r, ) A, *(r2)
D,,(r, r„co)=j —— 2 (kA. )2

D4 (r, r2) =0 .

(2.12)

(2.13)

(2.14)

(2.15)

For the long-range part there is a two cavity system.
Generally speaking, due to the coupling of quark and
pion these two bags should be deformed. For simplicity
of the calculation, we still use the spherical approxima-
tion. %'hen two bags are not very close, it should be a
good approximation.

Because quarks and gluons are confined inside the
bags, the quarks in dift'erent bags do not exchange gluons.
The Green's functions of quark and gluon fields are the
same as that in one bag case. The Green's function of the
pion field between two bags can be expressed as

0 dCO i~'[&$ t2] 0(XiX2) e ~ ( 1N 2N CO)
2m

U„(r), V„(r) are the positive- and negative-energy solu-
tions, respectively. P,(r) represents the Coulomb mode
functions of the gluon field. The A„(r) are the corre-
sponding magnetic mode (A, =mg) and the electric mode
(A, =el) functions. These modes are combinations of the
harmonic, spin-harmonic, and vector-harmonic functions
with the spherical Bessel functions which satisfy certain
boundary conditions. Some of the eigenvalues and the
detail expressions of these eigenfunctions can be found in
Appendix A. In the cloudy bag model, the pion field can
be expanded in terms of plane waves, i.e.,

dk

(2.16)

where co,—:( k +m )
' . The Fourier transformation of

the Green's function is

where
ik rl N

—ik r2N

4 (r»r2N, co) =(2~) fdk
(COk

—i 71)
(2.23)

(2.24)

When the separation, d, between two bags (&,&') is
larger than the diameter, 2R, of the bag. We obtain (see
Fig. 1)

ik (rN —rN, )

b, (r, r, co)=[2~] fdk
C0 (COk i 'g )

= X ~Pi'("N"N ~)
II'm

o I 1
ik.r —ik r'

b, (rr', co)=
3

dk
(2ir ) co —(cok i g )— (2.17)

In a spherical coordinate frame this becomes

b, (r, r', co)= g hi(rr', cci)Yi* (O', P') Yi (0,$),
lm

(2.18)

where

j&(kr)JI (kr')
b, &(rr', co)= —f dk k .

JT 0 CO (COk i')
= ( i CO )Ji ( CO i'

& )[Ji ( CO r & ) iil i ( tier & ) ] (2.19)

ji(x) and ni(x) are the spherical Bessel functions of first
and second kind, respectively. When r, r' are on the same
sphere, the expression is as follows:

Ai(RR, co) = fgJ'i(g)ni(g)+i gJ'i —(g)],1
(2.20)

where g—=coR. In particular, when g =0 we have FIG. 1. The coordinate frame for two cavity case.
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Here "right" quark creation and annihilation operators are
defined such that

API(r~r~, co) =—( —1)™i'' [(2l + 1)(21'+ 1)j'~1' —m ~ I+ j'
+ +

bLma bsma I bema (3.1)

l L l' l L /
X g (2L +1) 0 0 0 0r i

L

j I (kr~ )j I (kd)j i (kr~. )
X dk. k~

~

CO (COI l YI )

(2.25)

III. EFFECTIVE NUCLEAR POTENTIAL

Many works have been done in order to understand the
X-N interaction from the quark degree of freedom, as
mentioned above. Some, :of these works employed the
Born-Opperheimer approximation, while some did not in
particular for scattering case. In this approximation, one
calculates the energy of the two-quark system (i.e., two
subsystems of three quarks at quark level) as a function of
their static separation. The energy of the system calcu-
lated this way is the effective potential. As the first step,
we compare the "nuclear efFective potential" derived in
the approximation with the empirical one and that from
the meson-exchange theory.

The definition of the distance of two baryons is clear in
the discussion of long-range part of their interaction. In
this case, each nucleon is a cavity surrounded by its pion
field. The distance of two nucleons is defined as the sepa-
ration of the centers of these cavities. Because the pion
fie1d exerts pressure on these two cavities they may not be
spherical and the shape could depend on the quantum
numbers of the whole systems. However, in this paper
we wil1 treat them as spherical. For the short range the
definition of "distance between two nucleons" is not
clear. As two nucleons come close enough they will over-
lap and form a six-quark bag of deformed shape. These
quarks are indistinguisable and therefore the meaning of
"a nucleon" inside this deformed six-quark bag is ambi-
guous. The usual way is to construct a configuration of
the system which contains two separate subgroups of
three quarks and let each subgroup have the quantum
numbers of a nucleon. The criteria of chosing the
configuration could be either the quark distribution den-
sity of bic enter or the consideration of group
classification. In both cases the I' state of quark in the
cavity should be included and the cavity could be de-
formed. But it is shown' that for the short range ((0.7
fm) the di6'erence between the results of ellipsoidal cavity
and that of the spherical cavity is small. So in our calcu-
lation the spherical cavity approximation is used. Of
course in the medium range the deformation of the cavity
is important, however we will not treat it here.

A. Six-quark states for two nucleon overlap case

Following DeTar's work the six-quark states are con-
structed for the calculation of the short-range nuclear
force. In terms of s and p quark states, the "left" and

b+ b+ +P b+ (3.2)

—uTdT ut —u TuldT —uldT u T

—dTuTul —ut, uTdT —dTuluT) .

(3.3) ,

Replacing each quark state by the "right" quark creation
operator, there will be the "right" proton creation opera-
tor Pz ( T ). Similarly, one can find all nucleon operators.
%'ith these operators in hand it is direct to write down
two nucleon states for the diFerent (T,Mz. ,S,Ms) chan-
nels. For instance, the six-quark state of (T=O, S=l,
Ms =0) is as follows:

(X(p))'"lr =0,S = i,M, =0)

=(p~+(T)nL+(L)+pg (l)&L+(T)

+n;(&)p;(T)+n+(T)p,+(l))lo), (3.4)

where X(p) is the normalization coeRcient and l0) is the
vacuum state. It is easy to see each term in these states
has the form of b„+b„+b„+b„+b„+b„+l0) where b„+ is the

quark creation operator and n; represents all quark quan-
tum numbers. The coe%cient of each term is a function
of p. The distance 6 between two nucleons is defined as

6—= Jg,+zg~d r,
(I+@ )

(3.5)

where P, and g are the space parts of s and p state wave
functions, respectively.

The E-5 curves calculated for those states are given in
Sec. III. It should be pointed out that the framework of
our work can also be used for other forms of six-quark
states. Ma" has calculated the contribution from pion
exchange to the short-range part of the nuclear force for
the six-quark states constructed by group classification.
Her results are quite similar to ours.

where "L" and "8"indicate the "left" or "right" quark
operator, s and p are the radial quantum numbers of the
quark states, m is the magnetic quantum number, and u
represents all other indices including the flavor and color
variables. p is a parameter which connects with the ratio
of the s component and p component. p changes from 0
to 1 while the "left" and "right'* orbits vary from com-
plete overlap to orthogonal. From the well-known spin-
isospin states of a nucleon, the creation operators of
"left" and "right" nucleons can be expressed in terms of
the corresponding quark operators. For example, the
spin-up state of a proton can be written as

P(T)= —(2u T u T di+2u T d l u T+2d 4 u T u T
1

&is
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B. Energy shifts of six-quark system due to gluon
and pion exchange

In terms of the Green's functions and vertex functions
given above, one can calculate the energy shifts due to
the coupling of the fields for a given physical state l4o &.

In the bag model the nonperturbative effects such as the
confinement and vacuum pressure are represented by the
boundary conditions. The remainder is regarded as "re-
sidual interaction" and can be calculated perturbatively.
To the order of g, and f, the interaction Hamiltonian
density can be written as follows.

~t(x) =&,")(x)+&)2)(x),

(x) ~i QQ(x)

(3.6)

'g Ax b'„2 if g(x) A „'(x) (3.7)

=if 'P(x)y~r mI, Q(x)5(r —R) . (3.8)

According to Hubbard's modification of the Gell-
Mann-Low theorem the energy shift due to &t is

hE =&/pl g ( i)"—
, f i5(t) )d x„.. . , f d x„T(&1(x))gft(x2). . .&t(x„))lIt)p&„„„„„,d .

n=1
(3.9)

In our case lPo& is the six-quark state considered. Because there are only quarks in lPo& the first-order perturbation is
zero. The lowest modification is the second-order perturbation which is given by

g~(2) —gE(2) +g~(2)
QC Q~ ~

~EQG 2 &Apl f d"x)»(t) )f d'x2T[~l QG(x) )~I QG(x2)]lko&

bEg =
2 &&pl f d x))'5(t) )f d x2T[~l g~(x) )~t g~(x2)]lpp&

(3.10)

(3.1 1)

(3.12)

By substituting the &t into Eq. (3.9), one can find the contributions from the difFerent diagrams according to Wick s
theorem. The effect of the vacuum polarization has been represented by the bag parameter B and will not be calculated.
The diagrams involved are in Fig. 2.

The expressions corresponding to these diagrams are as follows:

~Esz, g~=

X g, 0, (2J+1)
J 2 2

j~( )
X fdg. g —[1—

(
—1) +'+']

x, +g —x„2
jg(~)

[ 1 ( )/+) +)']x, +g+x„2 (3.13)

1 1
AE =+IN, Qm 32 2 fP+3

tl2 Pl 3 n4

11223344&VK V K V K +VK

&v K +~1 &v K +~2 &v K +&3 &v K +~4
1 2"2 3 3 4 4

X(2j2+1)(2j,+1)(2j~+1)]'

1/2

[(2j,+1)

g —'[1—
( —)

' '][1 —( —)
' '](—)'

JM

J3 J J4
—p3 —M p4

—P1 M P&

1
when g'=0 (i.e. ,co, =co k ),2J+1 4 4 3 3

X gj J(g)nJ(g) $=0—, (3.14)
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where n;—:(v, K,p, f, c, ).

2

~EIN, QG j 6(rl )d xl I d x
A=el, el, mg

D„'"(x,,x2)

X (QoII1I[p(x, )y„A,'If/(x, )p(x )y,A, If/(X2)]l(to)

Rs 1=+
8 R n ] 112 n3 l14

(Polb„+b„b„b„ lgo)5f f 5f f

x g (c, l1' c2&&c3lx lc4& y g II'NJM (3.15)

where

a A, =cl, mg, el NJM

~NJM (Klp 1 r K2P2r K3P3, K4P4 D NJM (K1P 1 & K2P2 )D NJM K3P3, K4P4 )R 3. .

1
for A, =cl

(~sc )2

(3.16)

D NJMs represent the vertex functions of the coupling between quarks and gluons. The detail forms are given in Appen-
dix B. The self-energy due to gluon exchange is

2

aZsF « ——— ' —y &yolb„+b„lyo) &cI(X')2Ic & y . y A'(vK, v'K'),
tl v'J~' A. =cl, el, mg

where the A matrices are defined in terms of the D QJM$

A"(vK, v'K') = y y (~NJ) '(IDN, M(vKp, v K p ) I' —IDN, M(vKp, v'K p ) I'),
NJ Mp'

A ( v, K'vK)= g g (coNJ) [(e, e ~ o—JNJ] —IDNJM(vKp, v K p )I
NJ Mp'

+(e, +e ., +ctJNJ) 'IDNJM(vKp, v'K'p')I ) for A, =el, mg,

(3.17)

(3.18)

where v', v', p' denote negative-energy states.
It should be pointed out that the expressions of the

self-energy are general and they can be simplified in cer-
tain cases. For instance, for the closed shells they are in
the more compact form.

Because the spectra of quark and gluon are discrete,
these expressions are the summations. Each term in the
summations consists of two parts. The first part indicates
the structure of the six-quark states, i.e., the
( go I

b„+b„+b„b„ I Po ) and ( go I
b„+b„ I Po ) part. Because

there is a parameter p in lgo), these two factors as well as

FIG. 2. The self-energies and interaction energies due to
gluon and pion exchange.

(3.19)

the energy are functions of p. Unlike the usual case in
particle physics, I go) is not an eigenstate of the occupa-
tion representation but a linear combination of' those
eigenstates. Another part of these terms is the interac-
tion matrix elements for the given quark states. They
consist of Green's functions and vertex functions for the
fields. The sum over v', ~', and J in the self-energy due to
pion exchange involve all possible intermediate states of a
quark and a pion so it contains infinite terms. The sum
over hE&N & also includes all possible angular momen-
tum states of a pion. But the angular momentum of a
quark in lgo) is bounded; the whole summation has finite
terms. For the gluon case the situation is similar. The
sum over A, represents the difFerent modes of gluon and
NJM are their radial and angular momentum quantum
numbers.

The contributions from the quark kinetic energy, gluon
exchange, and pion exchange are polynomials of p. The
order is from 0 to 6. We define G(p) as the contribution
from the quark kinetic energy and gluon exchange.

6

G(p) 1=o
EQo(P) =-

+X
l =0
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P(p)
ErN g (p)=

&(p

6

g Pip
1=0

g N(p'
(3.20)

where X(p) is the normalization coefficient. Similarly,
the contribution from pion exchange is defined as

The I 6~], IP& J, and [XI J for the different (T,Mz, S., Ms)
channel are given in Table I ~

So far we have found the expressions for the energy
shift due to pion and gluon exchange in terms of the per-
turbation calculation. They are the most important and
difficult part of our task. To derive the effective nuclear
potential, one needs the entire energy of the six-quark
system. It can be written as follows:

=1E(p, ,R)= [—n, (p)w, +n (p)w ]+ [n, (p)E, &o+n (p, )E &o+E,N &o(p)]

1 1 Zo E,+, '
3 [n.(p)E., g +np(p)E~, Q +EIN, Qn(p)]+-', ~&R'— (3.21)

where n„B, and Z are the parameters in the bag model.
The first terms within a bracket are the kinetic energies
of s and p quarks. The second set of terms is the effect
due to gluon exchange which includes the self-energies of
s,p quarks and their interaction energies. The third is
due to the pion-exchange effects. The last three terms are
the volume energy, zero-point energy and correction of
center-of-mass motion, respectively. As mentioned in the
Introduction, in order to get the effective nuclear poten-
tial one should subtract the contribution due to the rela-
tive motion of two nucleons. The effective potential
should be expressed as the following:

,V=sM(6q) —2M (3q) —( KE„&) . (3.22)

So far there is no reliable estimate of (KE„&). It is be-
lieved to be roughly equal to the correction for the
center-of-mass motion. Since the center-of-mass
motion correction in the bag model can be approximately
expressed as c osnt/R, some realistic calculations, such as
the present one, which employ a value of Zo obtained
from a fit to the hadron spectrum without an explicit

center-of-mass motion correction, in fact already impli-
citly include this correction. The last term in (3.21),
which has been called the center-of-mass motion correc-
tion above, should thus be viewed, not as this correction,
but as an approximate representation of the correction
associated with the subtraction of (KE„,). It can be
seen that the energy of the six-quark system depends on
the parameter p which is related to the internuclear dis-
tance. Subtracting the masses of two free nucleons from
it yields the effective nuclear potential.

C. The effective nuclear potential between nonoverlap bags

According to the energy shifts b,E (d, R) (Refs. 52
and 53) the eff'ective nuclear potential between nonover-

lap bags can be expressed as

V&&(d, R)=E (R)+E (R)+DE (d, R) —m& —m&, ,

(3.23)

where

TABLE I. The contributions from the quark kinetic energy, gluon exchange, and pion exchange for
the di6'erent (TS) channels. G(p): Contribution from quark kinetic energy and gluon exchange
(o.&=1.55). P(p): Contribution from pion exchange. N(p): Normalization coeKcient.

G(p)
P(p)
N(p)

p

12.44
15.26
1.0

—8.28
27.89
0.0

T=O MT=0
165.93
277.45

15.0
T=O MT=0

p

S=1 MS=1
—39.79

166.66
0.0

S= 1 MS=0

197.71
282.23

15.0

—8.28
27.89
0.0

19.54
16.22
1.0

G(p)
P(p)
N(p)

12.44
14.12

1.0

—9.33
25.18
0.0

164.32 —44.07
246.07 125.69

15.0 0.0
T= 1 MT=0 S=O MS=0

193.53
251.22

15.0

—9.33
25.18
0.0

19.05
15.20
1.0

G(p)
P(p)
N(p)

12.80
17.58

1.0

—9.14
31.57
0.0

166.78
309.64

15.0

—45.08
168.12

0.0

197.31
316.80

15.0

—9.14
31.57
0.0

19.68
19.03

1.0
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NN' +oo 4bE (d, R)= ——' P f d x,i5(t, )

X f d xz gib (xixz} f —5 rz R, ——
oo

X5 r~ .—R2+ — . N—[$(x, )ysr)$(x, )
d 1

NN'

X f(x2 )y 5' f(x2 )] $0

Assuming the quark's states all are in 1s1&2, one bag's energy is
(3.24)

3 4 3 Zo
E[R) = X1 1+ 7TBR

R
+ [3+self+ Ein ]+ [3Eself+Ein ]yR 3

R R QG QG 2 Qm Qa (3.25)

If the radius R of the bag is equal to that of the isolated bag (of course, when a nucleon approaches another one, their
radii may have to change) it implies E (R ) =mz, hence we have

+NN' ~E(d, R)
NN'

2

Using

1 +1—1

4f 2 4mR (x, ,
—1) jll'm

fdQNdQ~", f (NN'l g cr' r~~'
aCN

g z 'r~&~INN'~, f bP(RR o)
b EN'

XI;* (e„y~)r, , (e„', (3.26}

(3.27)

the effective nuclear potential of two separated nucleons being in various channels is given by
2

y T,S,M
(d, R) 5

25

72m R f
I

(3.28)

where

Vi= —,(Io —2I2), T= 1(MT=1)S=1(M, =1)
=

—,(Io+4I2 ), T = 1(MT = 1 )S = 1(M, =0)
=

—,(Io —
2I2 ), T = 1(MT =0)S= 1(M, = 1)

, (Io+4I2), T—=1(MT=0)S =1(M, =0)l
= —Io, T = 1(MT = 1)S=0

Io, T = 1(MT—=O)S =0
= —(Io —2I2), T =0 S =1 (M, =1)
= —(Io+4I2), T=0 S =1 (M, =0)

=3Io, T=O S =0
and

j i (kR )jL (kd)
II =— kdk.

(wk —i') (3.29)

IV. RESULTS AND DISCUSSIQNS

A. Soft repulsive core and intermediate-range attraction

The bag model parameters used in our calculation are
those taken from fitting to single baryon spectrum,

hence

n, =1.41, 8' =0.151 GeV, Zo=1.31 . (4.1)

These parameters were achieved without the correction
of center-of-mass motion so that part of Zo here should
be regarded as this correction. Hence in this case the last
term in Eq. (3.21) provides roughly the subtraction of
(K.E.„,). As usual in the chiral bag model, the correc-
tion of center-of-mass motion in our paper is calculated
following Ref. 51 and it is roughly 0.75/R for nucleons.
It should be pointed out that in some papers, say
%"ong's, the correction could be much larger than that
and in this case the strength will be lower.

For a given p, the energy of the six-quark system is
minimized with respect to the bag radius. By substitut-
ing Ro into Eq. (3.21) and substracting the masses of two
free nucleons, we obtain the effective nuclear potential.
There are some uncertainties in the calculations of the
self-energies. The differences of those values given by the
different calculations is still sizable. %'e shall discuss this
situation in the next section. The results here do not in-
clude the effects of the self-energies. The tentative calcu-
lation shows that the inclusion of self-energies does not
change the basic behavior of the effective potential.

The short-range part of the effective nuclear potential
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is shown in Fig. 3. In this figure the potentials of all pos-
sible channels (TMTSMs) for a two nucleon system are
given. Figure 4 shows the contributions from pion ex-
change.

It can be seen that in our formulation the basic proper-
ties of the potential derived from the quark degrees of
freedom are similar with that of the empirical potential
used in nuclear physics. For the short range there is a
"soft" repulsive core with a strength of about 300 MeV
and the potential is attractive in the intermediate range.

It can be seen that the properties of the short-range po-
tential are dominated by the gluon exchange between
quarks as expected. The calculation also shows that the
finite size of the nucleon has an important effect on the
contribution of pion exchange. In the short range the
effect of this exchange for all channels is repulsive. This
is different from the pointlike model. But in the inter-
mediate range the contribution turns out to be attractive
just as the pointlike model.

B. Long-range part of the interaction

0

O~ -ioo

0

V,"='(d,R)=-,'[V ' ' ' (d, R)

I I I I I I

0.4 0.8
a(fm)

FIG. 4. The contributions from the pion exchange for the
different ( T,MT, S,M&) channels. The denotations of curves are
the same as in Fig. 3.

The line joining the centers of the two nucleons is
chosen as the Z axis, the tensor and center potentials
therefore can be expressed, respectively, as

—V
' ' ' (d, R)].

Using (3.27), each channel's potential is given by

(4.3)

V '(d R)= —,'[2V ' '
(d, R)

+V ' ' * (d, R)],

I 'I I
)

I

~oo~

(4.2)

2

T=O, S=1(d
72~'R 'f '

'2
X1 1 1VT=1, S=1(d R)—

72Ir'R 'f '
L

( —IO),

(4.4)
VT=o, S =1(d R )

25
72~2R 2f 2 x 1

—1
I2,

VT=1 S=1(d R)=

r

r

25 X1—1

( —
—,'1~ ),

72Ir'R 'f '

VT=0, S =o(d R )

V ' (d, R)=

72Ir'R 'f'

25

72Ir R f
2 (4.5)

It is easy to derive the IO, I2's analytical forms immedi-
ately

I
-~oo-

0 OA 08
a(fm}

FIG. 3. The short-range effective nuclear potentials for the
different ( T,MT, S,M& ) channels. The solid, dashed and
dotted-dashed curves represent (0,0, 1,1), (0,0,1,0), and (1,0,0,0)
channels, respectively.

2 2
1 m~c

ch pR — sh pR P
1LIR (1MR ) pd

1 L=0,
— 1+ '+

Pd (1Md)
L=2,

(4.6)

where p=(m c/A').
Hence we obtain the effective nuclear potential for the

long-range part from (4.2) —(4.5).



39 CHIRAL-QUARK-GLUON DESCRIPTION OF THE NUCLEAR FORCE 2045

1 25( inc )

3 72m-'R f
2

~ — chyle — sh pR m c1 1 2

2 (pR)2 pR
r

3 3 - exp( —pd)Xr, r2 (oi o2)+ 1+ +
q Si2

(pd)

3 3 2 exp( —pd)
A r, rz (cr, o2)+ 1+ + Si2 m c ~

ijd (pd) Pd
(4.7)

where

A =0.0564 for f =93 MeV and R =0.913 fm

(Ref. 57).
In the OPEP model, 3 =0.081. So the strength is

about 30% lower than that of OPEP. This result is con-
nected to the fact that the gz is small in the cloudy bag
model. In this model, gz =1.09. With this value of g„,f should be 77.13 MeV, to get the right value of fz „.
In this case, A =0.082 which is close to that of OPEP.

C. Effects of the self-energies

There have been some discussions on the self-energy of
quark for both gluon and pion exchange in the spherical
cavity case. It was shown that the quark self-energy
operator associated gluon exchange can be written as fol-
lows.

XI(q)= A m ~ lim lnA
P —+ oo

+an integral including a linear term of k,
where A is a constant, m is the mass of quark, and k is a
four-dimension vector. Because of symmetry the later
term vanishes after integration. So this self-energy is
finite for the massless quark and it is logarithmic diver-
gent for the massive quark. On the other hand, the self-
energy due to pion exchange is linear divergent even for a
massless quark. This may be connected with the surface
coupling. In this case there is 5(r —R ) in the interaction
Hamiltonian density. To avoid this divergence, a nonlo-
cal interaction is introduced due to the finite size of the
pion. Although the finite self-energy is found the numeri-
cal results depend on the form of the nonlocal interac-
tion.

The inclusion of self-energies leads to at least two
consequences: (1) The self-energies of quark in the s state
and p state are different. The ratio of s state component
to p state component in the system is dependent on the
separation of two nucleons. The greater the distance the
more p state quark component there is in the
configuration. So if the self-energies of a p quark is
bigger than that of a s quark there will be more attrac-
tion. On the other hand, if the self-energies of a s quark
are bigger the repulsion will increase. (2) When the self-
energies are included, the parameters of bag model will
change. For example, employing a four-dimensional
gaussian interaction associated with the pion-quark cou-
pling the parameters are the following:
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APPENDIX A: EIGENMODES OF QUARK
AND GLUON FIELDS IN A SPHERICAL CAVITY

Some parts in this appendix are not new. For conveni-
ence the most useful results are collected here. The equa-
tions and boundary conditions satisfied by the free quark
and gluon fields in a bag are the following:

iBQ=O, inside the bag,

iris= g,
'at the bag surface,

(Al)

U A „=0, inside the bag,

n„.F" '=0, at the bag surface,
(A2)

where p is quark field and A„ is gluon field. F~" js
defined as

+„' (x)=&„&'(x) d A„'(x) gf,„,Ab(x—)A'( )—
and

(A3)

2'2 (A4)

Solving the Dirac equation in a spherical cavity, the solu-
tion of positive energy for massless quark is as follows.

g, (r)y".(r )

if, (r)y",(r )
(A5)

a, =1.66, Z0=1.55, 8' =116 MeV,

and the ratio of the contribution from gluon exchange to
that from pion also changes.

A tentative calculation has been made to include the
efFects of self-energies. No significant difference was
found.
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TABLE II. The quark spectrum.

1

2
3

5
6
7
8
9

10

—E(S)2)

2.0428
5.3960
8.5776

11.7365
14.8878
18.0356
21.1816
24.3264
27.4704
30.6139

1(Pi/2)

3.8 11S
7.0020

10.1633
13.3165
16.4639
19.6101
22.7550
25.8992
29.0428
32.1860

3.2039
6.7578

10.0042
13.1969
16.3691
19.5311
22.6873
25.8399
28.9901
32.1386

2(d3/2 )

5.1231
8.4076

11.6120
14.7894
17.9542
21.1121
24.2657
27.4166
30.5656
33.7132

3{dg/p )

4.3273
8.0S96

11.3764
14.6096
17.8083
20.9892
24.1595
27.3230
30.4819
33.6376

3(fsiz )

6.3771
9.7536

13.0089
16.2180
19.4046
22.5784
25.7443
28.9048
32.0616
35.2157

where

f,(r) =E„R sgn(w)jT(x, r IR),
(A6)

(A7)

y", (r) is the spin-harmonic function. The relations be-
tween j, I, I, and K are

1=j —
—,'sgn(~) .

X, =2j&(x, ) (x „+x)/x

TABLE III. The spectrum of the gluon propagator.

0.0000
4.4934
7.7253

10.9041
14.0662
17.2208
20.3713
23.5195
26.6661
29.8116

(I) Scalar
2.0816
5.9404
9.2058

12.4044
15.5792
18.7426
21.8997
25.0528
28.2033
31.3521

(II)

or longitudinal mode
3.3421
7.2899

10.6139
13.8461
17.0429
20.2219
23.3905
26.5526
29.7103
32.8648

Magnetic mode

4.5141
8.5838

11.9729
15.244S
1 8.4681
21.6666
24.8501
28.0239
31.1910
34.3S34

5.6467
9.8404

13.2955
16.6093
19.8624
23.0828
26.2833
29.4706
32.6489
35.8205

2
3

6
7
8
9

10

2.7437
6.1168
9.3166

12.4859
15.6439
18.7963
21.9455
25.0928
28.2389
31.3840

3.8702
7.4431

10.7130
13.9205
17.1027
20.2720
23.4337
26.5906
29.7441
32.89S4

(III)

4.9734
8.7218

12.0636
15.3136
18.5242
21.8539
25.0128
28.1678
31.3201
34.470S

Electric mode

6.0619
9.9675

13.3801
16.6742
19.9154
23.1278
26.3224
29.5053
32.6801
35.8489

7.1402
11.1890
14.6701
18.0085
21.2815
24.5178
27.7313
30.9294
34.1167
37.2960

3

5
6
7

9
10

4.4934
7.7253

10.9041
14.0662
17.2208
20.3713
23.5195
26.6661
29.8116
32.9564

5.7635
9.0950

12.3229
15.5146
18.6890
21.8539
25.0128
28.1678
31.3201
34.4705

6.9879
10.4171
13.6980
16.9236
20.1218
23.3042
26.4768
29.6426
32.8037
35.9614

8.1826
11.7049
15.0397
18.3013
21.S2S4
24.7276
27.9155
31.0939
34.2654
37.4317

9.3558
12.9665
16.3547
19.6532
22.9046
26.1278
29.3325
32.5246
35.7076
38.8836
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The eigenvalues y are given by

j,(y, )+sgn(~)'jT(y, )=0 .

where YJJM and YJJ+1~ are the vector-harmonic func-
tion. The eigenvalues and normalized constants of those
modes are given by

The negative-energy solution V,„(r) has a form simi-
lar to U,„„(r)except that the eigenvalue is —y, .

For the gluon field, we have the following results.
In the Coulomb gauge, the eigenmodes connected with

the instantaneous Coulomb interaction can be expressed
as

d„[rJJ(~NII«&)]l, =ll =o

jJ(~N'J) =0

(A15)

(A16)

4NJM(r) +NJ+ JJ(~NJr /+ ) +JM(r )

The eigenvalue is given by the boundary condition

(A10)
(%Nil ) =

—,
' jJ(coNf )[1—J(J+ I )/(coNf )2],

(&''NJ) '= ,'JJ'+i-(~X, )

(A17)

(A18)

d fj J(aJNJ«&)]I, =R =0.
dr

The normalized constant is

(Al 1)

The electric and magnetic modes of the transverse wave
are

1/2

ANJM(r) = &NJ~
J+1 e1 ~ —3/2

—(aJ&0) [1 jo(2aJ]0)] X =1 J =0
(~cl)—2 (A12)

—,
' jJ(aJNJ)[1 —J(J+1)/(aJNJ) ], otherwise .

The lowest-lying states of a quark and a gluon are given
in Tables II and III. It should be mentioned that the
lowest eigenvalues of Coulomb mode of gluon field is
zero. It cannot be substituted into the calculation. It
was shown that for color singlet states this contribution
vanishes. So in the summation this eigenvalue can be
simply omitted.

APPENDIX 8: THE MATRIX ELEMENTS
OF QUARK-GLUON COUPLING
AND QUARK-PION COUPLING

Employing the Racah-%igner technique, one can cal-
culate the vertex function DNJM(v~p, v'~'p'). For simpli-
city, the radial function of gluon-field can be rewritten as
follows.

jJ+, NJ JJ+&w r) (A13)

pNJ(r) =NNJR jJ(k N„-r),

l m~( ) ~mgg —3/2 ~

(km[

ll NJ+)(r)=&NJ& '"jJ+i(kN'Jr) .

ANhc(r) =~Nf& '"JJ(~Nf«&»JJM(r» (A14) The simplest one is in the Coulomb case
I

+NJM(v~l" v~P ) fd r~ U lU l''
=f dr r QNJ(r)[g, (r)g, (r)+f„,(r)f, (r)]( —

)
+'+'+'

0

J' J J
X & [1+( )J+I+l']

2 0

' 1/2
(2j + 1)(2j'+ 1)(2J+ 1)

4m

For the electric and magnetic modes, using the following useful formula

(l—,'jlT~(Yk, cr)ll' —
—,'j') =ax. ( —)J ' (2j'+1)' (2k+1)'~ .

where

a„=(x'—x)/[k (k + 1)]'i

ak, = —(k +x +x')/[k (2k + 1)]'i

ak+, =(k + 1 —x —x')/[(k + 1)(2k + 1)]'

x =(l —j)(2j+1),
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and

x'=(l' —j')(2j'+ 1),
we have

NJM( O' P ) f d NJM pU ' 'p'

=i f dr r [h NJ, (r) +h NJ+, (r)][g (r)f (r) —g ~ .(r)f,(r)]

(a' —v)[g „(r)f,.(r)+g, , (r)f (r)] —h Nz, (r) — hNJ+, (r)J J+1
~y2 [(2J'+1)(2j +1)J(J+1)]

[4n(2J +1)]'
J 'I ' 'I J

1+ I'+J+ t—„M„',' —,' o ['+ ]

And for the magnetic mode one gets

DNfM(&&@, v & p ) f d

=i f dr r h Nf(r) [g„„(r)f, (r)+g, , (r)f„(r)] (v+a')

(B4)

j+j —J —p —]/z [(2J + 1 )(2j + 1 )(2j'+ 1 )]'
[4m"J (J+1)]'

1 [1 (
)I'+ /+I]

—p M p' 1 1 P

(B5)

Because quark Geld and pion Geld are coupled at the bag
surface, it is useful to write down the expressions of the
quark wave function and pion Green's function at the
surface. They are

g, (r) =R -'"

6((RR,co)

2(x +~)
A(x..)

lj(x..)l
' (B8)

U .„(r)=g,„(R) „y~=g„.(R)
lo r

(B6)
[gj((g)—n((g)+gj ( (g)] g=coRAO,1

1 1 s—0 .
2I +1 R

(B9)

V„„(r)=g, (R) „X"-.=g, (R)
i o' r

(B7) From these, it is easy to get the matrix elements of
quark-pion coupling.
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