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Unitary transformation from color-spin to isospin-spin coupling schemes
for six-quark color singlet states
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We derive a unitary transformation relating color singlet six-quark states constructed in the
color-spin (CS) and isospin-spin (TS) schemes. The chosen orbital symmetries are [42] in the
TS =(01) sector and [33] in the TS =(00) sector. They are important in the description of the NN
system.

I. INTRODUCTION

There are two classification schemes which have been
used in the literature to construct totally antisyrnmetric
states of six quarks incorporating orbital (0), color (C),
isospin (T), and spin (S) degrees of freedom. In the one
called the CS coupling scheme one first combines the

SU3-color singlet [222] and the SU2-spin [f]z representa-
tions to a given SUs symmetry [f]cz. Subsequently one
can couple' this to an SU2-isospin representation [f]T
to obtain an SU, 2 representation [f]csz adjoint to the or-
bital symmetry [f]o chosen. In constructing a totally
antisymmetric state as above one can also permute the
orbital and the isospin symmetries, i.e., couple 6rst CS to

TABLE I. The K([42]pq [33]p'q'
~ [f"]p"q") matrices used in the S X T coupling for S = 1, T =0.

[33]

[42] [33]

11 22 22 22 12 22 Hl Hl

108 108 108 108 [33]

[42] [33]

11 Hl 22 Hl 12 Hl Hl 22

0 0

[411]
0 0

0

[2211] [2211] 24

0 0

0

34-v'2'0 v'I '

[321] 13 [321]
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[33][33]

%1 12 22 H1

[33][33]

[6] 11

TABLE II. The K([33]pq [33]p'q'~ ff"]p"q") matrices used

in the SX Tcoupling for'5 =0, T=O.
4. We shall call this classification scheme the TS scheme.

Each of these two schemes has its advantages. In the
CS scheme the expectation value of the color magnetic
operator

I, = —g A; A. rr, ;-o
i (j

22

[222] 33

[3111]

14

0

[42] 12 —1

[222]

[3111]
14

34

[42]
j1

V2

with A, ; the SU3-color generators, can be easily calculat-
ed. In the TS scheme one has the advantage of being
able to interchange the values of T and S at the group
theory level of calculation of the matrix elements. For
example, results for TS =(01) and (10) are identical be-
fore implementing the spin-spin matrix elements. More-
over, in calculating the matrix elements of the six-quark
Hamiltonian, one can use ' fractional parentage
coef6cients available in the literature of the nuclear shell
model.

To understand the relationship between results ob-
tained in the CS and TS schemes it is necessary to know
the unitary transformation between bases for various sec-
tors. This question has been raised, for example, in Ref.
8.

0 to get a function of dual symmetry, [f]czo =[f]r as,
for example, in Ref. 3.

One can also build totally antisymmetric states starting
from an intermediate representation ff]zz of the SU~
isospin-spin group. The list of all contributing SU& repre-
sentations associated with the orbital symmetries [6]o,
[51]o, [42]o, and [33]o can be found in Table I of Ref.

To our knowledge, the present work is the first to ac-
complish such a task. Our results concern specific orbital
symmetries, the [42]o in the TS =(01) sector and [33]o
in the TS =(00) sector. They play a very important role
in describing the NN interaction at short separation dis-
tances (see, e.g., Refs. 5, 6, and 8). The other symmetries
contributing to the XX state (Sec. III), i.e., the [6]o for
TS =(01} and [51]o for TS =(00) produce only one
state, so they are identical in either scheme.

In Sec. II we shall sketch the method used in obtaining

TABLE III. The K([f]pq[33]p'q'~[2211]p"q") matrices used in the CSXT coupling for S=1,
T =0.

[321][33]

1222 13 22 23 22 12 12 13 12 23 12

[32&] [33]

12 12 13 12 23 12 1222 13 22 23 22

[2211] 24 40 W 40 40
0

40 [2211] 24 8o

34 0

[3111][33]

11 22 14 22 1412 3412

[2211] 24 V20 92o 92o 20

[3111][33]

11 12 14 12 14 22 34 22

0 0 1 0

[2211] 24 0 —
10 10 10

[21111][33]

15 22 15 12 45 12

[2211] 24 g — 0r1 I4
Qs 'Vs

[21111][33]
15 12 15 22 45 22

0 0 1

[2211] 24 0

34 —
5

0

[2211]

[222] [33]

33 22 25 Q1

[2211]

[222] [33]

23 22 33 21

12

24 1 0

34 —
4 4
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TABLE IV. The K([f]pq [33]p'q'~[222]p "q")matrices used in the CS X T coupling for S =0, T =0.

[33][33]

22 22 Hl Hl

mz] r3

22 Hl Hl 22

Pn] az - +z' - Qz'

[411][33]

11 22 13 22 15 Hl 25 Hl

pn] 33 + + 0 [222] Q2

11 Hl 13 Hl 15 22 25 22

[2211][33]

24 22 Hl Hl 34 Hl Hl 22 34 22 24 Hl

pm B

[1 ] [33]

[222] 33

56 Ql 56 22

[222] 25 1

the transformation and shall give results of intermediate
steps consisting of tables of K matrices associated with
both schemes. They can be used subsequently in the cal-
culation of matrix elements of the six-quark Hamiltoni-
ans chosen for NN studies. Section III contains the two
unitary transformations obtained in this work and a dis-
cussion.

II. THE METHGD

The states of interest for TS =(01) and (00) in the TS
schemes are listed in Table I of Ref. 4. The correspond-
ing color-spin symmetries [f]zz can be obtained from the
inner product [222]c X [f]z. This yields

TABLE V. The l7([42]pq [222]p'q'~[f" ]p"q") matrices used in the SX C coupling for S =1, 0 X C
coupling for [42]o or CS X T coupling for [222]cz, T =0.

[42] [222]

11 33 1233 22 32 %1 25

[42] [222]

11 25 12 ~5 22 ~5 Hl 33

[222] 33 —
12 0 [222] 25 54

[21111] 15

[21111]
15
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TABLE VI. The 17([f]pq [222]p'q'I [f"]p "q") matrices used

in the S X C coupling for S =0 or 0 X C coupling for [51]z or
[33]o.

TABLE VIII. The unitary transformation between the CS
and TS basis vectors of orbital symmetry [33]~, isospin T =0,
and spin S =0.

[2211] 24

[51][222]

11 33 12 33

[2211] 24

[51][222]

11 Q2 12 25 Q] 33

[33]oI 6}Ts

P3~o ~42}Ts

~CS

3&5
20

~CS
2

~io
5

3 ~io
20

~CS
3

11
20

~CS
4

12
20

[33]o(222 }Ts
15
20

5 ~2
20

3+5
20 20

[33][222] [33][222] o~ }Ts 20
10
20

3 ~10
20

4 ~10
20

22 33 12 23 22 25 12 33

[2211] 24 Qi /i [2211] 24

vector in the TS scheme as a linear combination of basis
vectors in the CS scheme. Then we make explicit the
content of each basis state in terms of Young diagrams
associated with orbital, color, isospin, and spin degrees of
freedom and by identification of these diagrams we obtain
equations for the coefficients entering the linear combina-
tions. In all cases the system of equations is overdeter-
mined.

Each antisymmetric state can be expanded as

[f]cs=[42],[321],[222], [3111],and [21111]

for T=O, S =1,
[f]cs= [33],[411],[2211], and [16]

for T=0, S =0 .

(2.1)

(2.2)

TABLE VII. The unitary transformation between the CS and
TS basis vectors of orbital symmetry [42]o, isospin T =0, and
spin S =1.

~CS
1

~CS ~CS ~CS
4

~CS
5

[4»F33 hs
9+5

36
8+5

36
5~

36
11
36

[4»o&»)Ts

[42]o[411hs

9'
45

9 F10
180

8~5
45

8 ~10
180

5~2
45 45

170
180

2S~Z
180

25
45

20~2
180

All symmetries of (2.1) can be combined with the orbital
symmetry [42]o to produce a totally antisymmetric
TS =(01) state, and the same holds for (2.2) in obtaining
a TS=(00) state of orbital symmetry [33]o. We note
that [6]o selects only [222]cs for TS =(01) states and
[51]o only [2211]cz for TS=(00) states. Accordingly,
the unitary matrices we are looking for have to be 5 X 5
for [42]o and 4X4 for [33]o.

Our procedure is straightforward. We write each basis

(2.3)

where Y is the Young diagram associated with the repre-
sentation [f] of the symmetric group S6 and [f] is the
adjoint representation of [f], i.e., F is obtained from Fby

Py
interchanging rows and columns. The phase (

—
) de-

pends on the number I' of transpositions to restore the
normal order in the Young diagram Y; Together with
the factor gI ', where g& is the dimension of [f], it
represents the Clebsch-G-ordon coefficient of the inner
product of [f]X[f] leading to [1 ]. Equation (2.3) is
subsequently rewritten in terms of the diagonalized
Young- Yamanouchi-Rutherford representation where
the last pair of particles has definite symmetry. The next
step is to make explicit the content of [f] and [f] as
inner products of various S6 representations. In the TS
scheme [f]=[f]o X [f]c and [f]=[f]TX [f]s. In the
CS scheme [f]=[f]o and [f]= I [f]cX [f7& I X [f]T.
An inner product of two S6 representations [f'] and [f"]
can be expanded by using the corresponding 86 Clebsch-
Gordan coefFicients. We use the factorization property
of S„coefFicients into a K matrix and a S„ 1 coefficient
and write them as in Ref. 4 as a product of a K matrix re-
sulting from two sequent factorizations and an S4
Clebsch-Gor dan coefficient. Following the notations
given in Appendix A of Ref. 4 we have

If~&= g«[f']p'q'[f"]p"q"l[f]pq)

[42]o(2211}Ts
11
20

8
20

F10
20

5'
20

4'
20

XS(f, ,3 'f;,-X"If„3)
x

I [f']p'q'y')
I [f"]p"q"y" ) (2.4)

[42]o~321$Ts 18
45

29
45

2 F10
45

10 '
45

8'
45 where the summation runs over p'q', p "q", and y' and

y". Here p labels the row of the 6th particle, q the row of
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the 5th particle, and y is the remainder of the Young dia-
gram Y after the removal of the 6th and 5th particle, i.e.,
a diagram of the S& representation fzq. In the diagonal-
ized Young- Yamanouchi-Rutherford representation the
indices pq appear either in a symmetric pq or in an an-
tisymmetric pq combination only. The factor S in (2.4) is
the Clebsch-Gordan coefficient needed in the inner prod-
uct [f„]=[f,', , ]X[f,",.,-]of S4.

In this work a consistent phase convention of the six-
particle states is absolutely necessary. We have con-
structed the S4 Clebsch-Ciordan coe%cients and the K
matrices following conventions and using symmetry
properties of the Clebsch-Csordan coefticients as intro-
duced in Ref. 9. In calculating matrix elements of the
six-quark Hamiltonian the problem reduces to the calcu-
lation of two-body matrix elements, and only the
knowledge of the K matrices is necessary because the Sz
Clebsch-Gordan coe5cients sum up in orthogonality rela-
tions. In view of this practical aspect we give in Tables
I—VI the K matrices resulting from this study. They com-
plement' Table III of Ref. 6. Our Tables V and VI re-
cover Table V of Ref. 4. One can see that in a few cases

I

III. THE UNITARY TRANSFORMATION

In Tables VII and VIII we exhibit the two unitary ma-
trices obtained through the procedure described in the
preceding section. The rows contain the coefficients c; of
the linear combinations of g; states defining a TS
scheme state as

[f]o If j Ts
= & c;0," (3.1)

where the left-hand side (lhs) denotes a TS scheme state
in the compressed notation used in the literature. In the
CS scheme the notation for the TS =(01) basis vectors
1(, s(i =1, . . . , 5) is as follows;

we disagree on the phase. Up to a phase convention we
also obtain agreement with Tables I and II of Ref. 1 and
parts of Table III of Ref. 4 where they appear under the
name of two-body fractional parentage coeScients. The
correspondence with Ref. 1 is obvious and that with
Table III of Ref. 4 can also be established easily by using
the notations of the head columns of Ref. 1.

g) =[42]gI42jcs=I[42]g XI[42]csX[33]Tj[2211)j[,6)

= [42]g [321j cs I [42]o X I [321]csX [33]Tj [»») j [,6),

Q3 =[42]g I 31 1 1 j cs |[42]o X I [311 1]csX [33]Tj [»,1]j[,6)

p4 = [42]g t 222 j cs =
I [42]o X I [222]cs X [33]T j [2z11]j [ &6) ~

pcs=[42] [21111j s= ] [42]g X I21111]csX[331 j[ )j[, )

(3.2)

and for the TS =(00) sector the P; (i =1, . . . , 4) are as follows:

=[33]oI33jcs=I[33]oX I[33]csX[33]T j[222]j[16]

1tj2 [33]oI411 j Cs I [33]oX I [411]CSX [33]Tj [222] 1 [16]

= [33]g I 2211 j cs = {[33]gX I [2211]csX [33]T] [222] j „6,
g4'= [33]ot

I' j cs =
t [33]oX I [I']cs X [33]T j [»~) j [,6 .

(3.3)

TABLE Ix. The content of NN, AA, and CC states in the CS scheme for TS ={01).

[6]o (222}cs [42]o (42) cs [42]o (321 )cs [42]o (311 1 )cs [42]o (222) cs [42]o (Zl 1 1 1 }cs

1

6/5
4

27 /5
1

27
31
54

20
27

2
3/5

2
3

16
27

2 ~10
27

14
27 $5 27

CC 2
g5

~io
36

11
36 +5
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In view of the application of this transformation it is use-
ful to recall the separation given by Harvey into "aster-
isked" and "nonasterisked" SU4 symmetries. The first
can lead to di-baryon states NN, NA, and AA, the latter
do not, but, as hidden color states, can contribute to the
three-quark clusters energy at short separations. For
TS = (01 ) the asterisked symmetries are [ 33 j rs and
[51jrs. They define the NN, Ab, , and CC states by the
linear combinations

NN=+ —,'([6]g[33j )+Q—', ([42]o[33j
—V' —', ([42]g [51jrs»

CC

1

3
1
2 6

4
3~s

2
3

1
4 4

11
12 ~S

TABLE X. Same as Table IX, but for TS =(00).

[51]0(2211}cs [33]0(33)c~ [33]o(411}c~ (33]o(2211}cs [33] (1 }

5Q =Q —,', ( [6] [ 33 j ) +Q —,", ( [42] [ 33 j )

+V' —.",([42lg[5 jrs)

CC =Q—', ([6] [33j ) —Q —,'([42] [33j ) .

(3.4)

Using Table VII we rewrite these linear combinations
in terms of the CS basis vectors. The result is exhibited
in Table IX, where we have used the identity

NN = —~—,', ([51]g[42j ) —~—,', ([33]g[42j )

—V' —.",([33lg [6jTs»
b, b, = —Q —,",([51] [42j ) —Q —,",([33] [42j Ts)

+v' —.', ([33]g[6j TS )

CC =-V'-, ([»]g [42j»)+V'-,'([33]g [42j»)

(3.6)

[6]g[33jrs=[6lg[222jcs . (3.5)
Their content in CS states obtained using Table VIII is
presented in Table X where

One can see that among the [42]g states the largest con-
tributions to NN come from [21111j cs (54.9%) and
[222jcs (33%) symmetries, the rest of the other [42]g
states contributing together with 1%.

The important role of the [42]g state in the NN prob-
lem comes from the fact that the hyperfine interaction
compensates for the extra kinetic energy of the two p-
shell quarks and brings it nearly degenerate to the [6]g
state. ' The hyperfine interaction which is given approx-
imately by the operator (1.1) has its lowest (negative) ex-
pectation value for the symmetry [42j cs. This can justi-
fy the choice of Ref. 1 to study the contribution of this
state only. But the CS composition of the NN state given
above shows that the symmetries [222 j cs and [21111j cs
cannot a priori be neglected.

For the TS =(00) sector the NN, hh, and CC states
are as follows: '"

[51]g[2211j cs = [51]g[42 j rs .

This shows that the [33jzs, [411jcs,and [2211jcs sym-
metries contribute with 25%, 50%, and 14%%uo, respective-
ly, while the amplitude of the [1

jets

symmetry cancels
identically for NN.

In both cases when calculating expectation values with
respect to NN for a model Hamiltonian one should in-
clude both the contributions of the diagonal and nondiag-
onal matrix elements between CS states. On the other
hand, the NN state has a strong coupling to other physi-
cal AA, NA, or hidden color CC states at short separation
distances. ' The final conclusion about the role of vari-
ous CS symmetries has then to be given by a full dynami-
cal analysis.

We are grateful to L. Wilets for reading the
manuscript.
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