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A new approach to many-body dynamics that combines successive boson expansion and mean-
6eld techniques, and which was recently developed for boson systems, is extended to fermion sys-
tems. The procedure is developed for both the ground state and for low-lying excited states and is
tested in the context of the two-level pairing model. Special attention is focused on the problem of
unphysical states.

I. INTRODUCTION

In a recent note, ' an iterative boson expansion pro-
cedure (IBEP) was proposed as a practical and systematic
means of approximating the ground state of a system of
interacting bosons. Basic to this procedure were three
important observations: (1) that boson expansion tech-
niques (BET), traditionally used in the context of fer-
mion systems, can be extended to boson systems, (2) that
problems related to unphysical states, which are common
to any BET, are less severe for boson systems than for
fermion systems, particularly when treating the ground
state, and (3) that the BET can be iteratively combined
with mean-field techniques (MFT) to systematically build
in additional many-body correlation effects. In the
present work, we extend the IBEP to systems of interact-
ing fermions and apply it to the two-level pairing model.
We also extend the procedure to the description of low-
lying excited states and discuss a partial approach to the
problem of unphysical states.

II. THE FORMAI. ISM

A. Revie~ of boson expansions

We begin with a brief review of boson expansions.
Consider a system of particles, either fermions or bosons,
distinguished by a signature label

r

for fermions
0 for bosons .

We denote the creation and annihilation operators of the
system as a;~ and a, , respectively. These operators satisfy
the generalized (anti)commutation relation

a, aJ —
( —1) a a, =5," . (2)

In a BET, the Hilbert space associated with these par-
ticles is mapped onto an. ideal boson space defined by the
pair-boson creation and annihilation operators B;. and

B;, respectively Th. ese pair bosons take the place of
pairs of the original particles and thus satisfy the require-
ment of being either antisymmetric (sr= 1) or symmetric
(cr =0) under the interchange of indices,

1)oBt (3)

Furthermore, they satisfy ideal boson commutation rela-
tions

tB,»ki j=& t &It+( 1) ~a&—,k

lBij»ktl=lB, »ktl=o .

To completely define the ideal boson space, it is necessary
to include a vacuum state ~0) tt, defined by

B;J~0)z =0 for al/ i,j
There are several ways to define the mapping so as to

preserve the dynamics of the original problem. In the
Belyaev-Zelevinski-Marshalek (BZM) approach, this is
accomplished by requiring that the mapping preserve the
commutation algebra of the original system. We will, in
this work, use the Dyson non-Hermitian version of the
BZM mapping. Violation of Hermiticity permits the
commutation algebra to be preserved with a finite map-
ping. The relevant Dyson images of the fundamental bi-
particle operators, either for fermions or for bosons, are

(a; az )z =BJ+(—1) g B;aBJtBkt
kI

(a;a )~ =B~;,
('a a, 4= XB;.B,k

k

Note that the signature enters both in the intrinsic char-
acter of the bosons [(3) and (4)] and in the mapping (6). It
is through the signature that the permutation symmetry
character of the original problem is transmitted.

In applying the IBEP to boson systems, ' it was possible
to use the particle-hole mapping equations, at least for
the description of the ground state of the system. In
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treating fermion systems, it is more appropriate to map
the Hamiltonian in particle-particle form, even for the
ground state; it is in this way that the physics of the Pauli
principle is most naturally transmitted. As we see from
(6), use of the particle-particle mapping leads to a non-
Hermitian Hamiltonian in the ideal boson space.

B. Mean-Aeld techniques for non-Hermitian systems

As in the earlier development of the IBEP to boson
systems, we use the BET in conjunction with MFT. For
the ground state, we treat the non-Hermitian Hamiltoni-
an system using the Hartree-Bose (HB) approximation
and for low-lying excited states we use the Tamm-
Dancoff (TD) approximation. We also consider the use
of the broken pair (BP) approximation for such systems.

The Hartree and Tamm-Dancoff approximations, as
appropriate to non-Hermitian Hamiltonian systems, were
discussed by Cambiaggio and Dukelsky. The starting
point is the introduction of a canonical transformation
from the noncollective bosons 8; and B;. to collective
bosons

(9b)

and

(lob)

with

and

g +ijklBij Bki
ij kl

(loc)

Diagonalization of the non-Hermitian boson Hamiltoni-
an must also be carried out subject to the constraint that
the right and left eigenvector matrices are inverses of one
another, as well as to a further normalization constraint,
which is described in Ref. 3.

The formalism necessary for a BP treatment of a non-
Hermitian boson system has to our knowledge not yet
been presented. Here, the assumption is that the ground
state can be represented as a pair condensate of the form

IBp &
—(gt)iv/2IO

& (loa)

(7a) 5= g/3, ,„,B,,B
ij kl

(lod)

»'iB j .
EJ

(7b)

Note that for a non-Hermitian system, the bra and ket
transformations are in principle different; however, to en-
sure that the transformation is canonical, it is necessary
that the x and y transformation matrices be the inverses
of one another.

In Hartree approximation, one searches for the op-
timum description of the system as a boson condensate.
Namely, one assumes trial bra and ket vectors

and

IHartree&= (1~~) Io&ji
1

X!

(Hartreel = —z(ol(yo)
1

1V!

(8a)

(8b)

r'(r')"-'lo&,
&(X—1)!

(9a)

and determines the structure coefficients of the dominant
collective bosons I o and yo by minimizing the expecta-
tion value of the non-Hermitian boson Hamiltonian, sub-
ject to the constraint that the transformation to collective
bosons be canonical.

The Hartree variational calculations also provide a set
of collective bosons, 1 and y„(pAO), that are orthogo-
nal to those of the ground condensate. In Tamm-Dancoff
approximation, one assumes that the lowest excited states
can be described in terms of one-boson excitations of the
Hartree ground state. Once again, separate bra and ket
excitations are required. The relevant basis states can be
written as (@&0)

The optimum pair condensate can then be obtained using
an iterative diagonalization procedure, similar to the one
used by Scholten in generalized-seniority shell-model
calculations. More precisely, we iteratively diagonalize
the Hamiltonian in the basis

l~jkt & =BjB'(~')' ""lo&a,
(ijkl I

= ji (ol(5)' " B,JBi,i,
(1 la)

(1 lb)

until the lowest bra and ket eigenvectors agree with the
input a and P structure coefficients of the b, t and 5 cor-
related boson pairs. Again, the right and left eigenvector
matrices are constrained to be inverses of one another.
At each step of the iterative procedure, it is convenient to
first diagonalize the non-Hermitian norm matrix, and
then to diagonalize the Hamiltonian in the resulting
biorthogonal basis.

At the point of convergence, the energetically lowest
eigenvector represents the (self-consistent) ground state
of the system. Furthermore, the eigenvectors that are
higher in energy represent (low-lying) excited states.

C. Unphysical states and the Park operator

A general feature of boson mappings is the occurrence
of unphysical states that do not preserve the symmetry
character of the system. The origin of these unphysical
states can be seen by considering states involving two bo-
sons

Iij, kl & =B,', B„',lo&, . (12)

Such a state preserves the symmetry character of the
original system under the interchange of the labels i and j
and under the interchange of the labels k and I, but not
under the interchange of one of the labels of the first bo-
son with one of the labels of the second. To construct a
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Such a state has a direct counterpart in the system prior
to the mapping and is referred to as a physical state. The
two linear combinations orthogonal to it have no such
counterparts and are referred to as unphysical states.

In an exact diagonalization of the Hamiltonian that re-
sults from a boson mapping, the unphysical states corn-
pletely decouple from the physical states. This is no
longer true, however, when the system is treated approxi-
mately. Variational calculations mix physical and un-
physical states, with the degree of mixing dictated by
their proximity in energy.

As noted earlier, unphysical states that arise in the
mapping of fermion systems onto boson systems are of
particular concern since they often emerge from varia-
tional calculations as the lowest states of the system.
Those arising in boson —+boson mappings are of less con-
cern when focusing on the ground state of the system;
however, they too become a problem when treating excit-
ed states. The lack of a procedure for effectively treating
unphysical states is the principal problem that 'has pre-
cluded the practical application of boson expansion tech-
niques.

Recently, Park introduced an operator that can be
used to assess the symmetry character of a state resulting
from a boson mapping, whether physical, unphysical, or
of mixed character. This operator was first introduced in
the context of fermion systems, but it can be readily gen-
eralized to any system. By definition, it is given by

2 2P = (Np~ )Dysorr (NJrp )Dysorr r

where

2=Nz=pa;a;a a. ,
V

(14a)

(14b)

is the square of the number operator expressed in
particle-hole form and

(14c)

is the corresponding expression in particle-particle form.
Using the generalized mapping equations (6), we obtain
an explicit form for the Park operator

P = gB;gBJ([B,~B)(—(
—1) Bq(Brq] . (15)

ij kl

It is straightforward to confirm that all physical states
~P; ) are eigenstates of this operator with eigenvalue zero

P~P,. ) =0. (16)

This statement follows trivially from the fact that the
difference between N & and N prior to the mapping was
identically zero. Equally true, although a bit less obvi-
ous, is that for any unphysical state

~ U; )

state with the proper symmetry character, it is necessary
to take the linear combination

~~J«& = [B;,'B.'&+( —1) B,', B,', +( —1).B~t,B,t]~0), .

(13)

( V, ~P~Zr,. ) &O. (17)

Thus, by evaluating the expectation value of the Park
operator we get a measure of the mixing of unphysical
states in the low-lying wave functions of interest.

Another possible use of the Park operator is as a
pseudo-Majorana interaction. The idea is to replace the
boson Hamiltonian Hz that results from the mapping by
a modified Hamiltonian Hs(A, ), defined by

H~(A, )=H~+A, P . (18)

If A, & 0, the only eff'ect of the additional term on the exact
spectrum is to lift up all unphysical states relative to all
physical states, precisely as desired. Indeed, an analo-
gous approach is commonly used in the shell model to re-
move states with spurious center-of-mass motion.

But, as noted earlier, variational approximations, such
as Hartree, do not fully decouple physical and unphysical
states. What will be the effect of adding a pseudo-
Majorana interaction in such calculations? To answer
this question, it is useful to first address a related ques-
tion: Under what condition does Hartree approximation
produce a purely physical state? Taking the expectation
value of the Park operator (15) between the Hartree self-
consistent states [(7) and (8)] and equating the result to
zero yields the following condition that must be satisfied
by the x andy structure coefficients:

N(N —1) gyp y &[x;&x &

—(
—1) x;Jxz&]=0 .

ij kl

(19)

In the extreme limit in which there are no new (pairing)
correlations produced by the mapping, the x; will indeed
be separable, with the g, coefficients being those arising
in a Hartree treatment of the system prior to the map-
ping.

It is for this reason that a pseudo-Majorana approach
applied after a boson~boson mapping may have a
greater chance of success. The Hartree wave functions
that emerge after such a mapping can be approximately
physical. When this is indeed the case, the inclusion of a
pseudo-Majorana interaction will still have the effect of
lifting up the predominantly unphysical states relative to
the predominantly physical states.

However, there is also a cautionary message that fol-
lows from the above analysis. Inclusion of the Park

This equation has no solution for fermion systems
(o =1). As a consequence, the Hartree wave functions
that emerge after a fermion~boson mapping have large
admixtures of physical and unphysical components.
Clearly, a pseudo-Majorana interaction will not be useful
in such cases. This was first pointed out by Hahne and
collaborators in the context of a pure pairing model, al-
though in the recent work of Kuchta there are implied
claims to the contrary. While our work tends to support
the claim of Ref. 6, further clarification is called for.

For boson systems (o =0), Eq. (19) has solutions. In
particular, it is satisfied whenever the x,. coefficients are
separable, i.e., whenever

(20)
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operator as a pseudo-Majorana interaction has the fur-
ther effect of suppressing the pair correlations that are in-
corporated by the mapping. Thus, there is a subtle inter-
play between two effects; the desirable effect of lifting up
unphysical components and the undesirable effect of re-
rnoving the new pair correlations. Clearly, if the Park
operator is to be a useful means of suppressing the
inhuence of unphysical states, it is essential that it lifts
them in energy more rapidly than it causes pair correla-
tions to be lost. We will return to this point in the appli-
cations to follow.

III. APPLICATION OF THE IBEP
TO THE TWO-LEVEL PAIRING MODEL

A. The model

As a first application of the IBEP to a fermion system,
we have studied the two-level pairing model. In this
model, X identical fermions, limited to two active levels
with the same pair degeneracy Q=j + —,', interact via the
Hamiltonian

particle-hole operators that enter the Hamiltonian (21)
map according to

and

(Pt )s, =2&QS" — s~~~~
&Q

(P )~1=2&QS

(T.)„=2$~. ,

(22a)

(22b)

(22c)

where s is the pair boson that rep/aces the L=O collec-
tive pair in level a. The subscript 81 is included to indi-
cate that this is the erst boson mapping.

Using the mapping Eqs. (22), we obtain for the Dyson
image of HF the non-Hermitian pair-boson Hamiltonian

Hsi E($ is i s is i )

GQ(sisi +s is i +s isi +$ is i )

+G($ i$ is is i +s is isis

HF= ga —T ——QP P
lX aa'

(2la)
+'$ —iS —1$ —1$1+S—1$ —1$—1$—1 )

C. The second Dyson mapping

(23)

where

Ta X aamaam (2 lb)

For this system, the first Dyson mapping (of the collec-
tive subspace) is already well known. The pair and

I

Pt = g( —1)J aa a (21c)
m

and +=+1, corresponding to the two active levels. The
full shell-model space appropriate to this model contains
a collective subspace, involving L=0 pairs in each of the
two active orbits, that completely decouples from the
noncollective subspace involving other pairs. In what
follows, we will focus solely on the description of the
physics of the collective subspace.

The two-level pairing model exhibits a phase transition
as a function of the dimensionless parameter x =2QG/e.
For x &&1, the single-particle splitting between the two
levels dominates and particles in one level are not pair
correlated with those in the other level. We refer to this
as the normal solution. For x &&1, the pairing interac-
tion dominates over the single-particle splitting and thus
can effectively scatter particles from one level to the oth-
er, producing a superAuid solution. At a critical inter-
mediate value of x-1, a phase transition from the nor-
mal to the superAuid domain occurs.

B. The 6rst Dyson mapping

The second Dyson mapping takes the collective pair-
boson space into a quartet-boson space, defined by two-
index bosons A~, which likewise have angular momen-

1 2

turn L=0. The relevant mapping equations are

2 4

(S S )&2=A (24)

These operators satisfy the usual boson commutation re-
lation

[p; p) l=&;, . (26)

Finally, the boson Hamiltonian H~2 resulting from the
second mapping can be expressed in terms of the three p;~

quartet bosons,

We can simplify the treatment of the quartet-boson
space by exploiting the symmetry property (3). The four
possible A bosons are then replaced by three independent
bosons p &, p o, and p &, via the defining relations

&i —1=&—ii=po .

(25)

Hti~=2e(P1P1 —Pt 1P 1)—GQ[2PtP1+2Popo+2P 1P 1+&2P1Po+&2P 1Po+V'2P(@1+V'2PoP 1]

+G (2p ipi +2p ip i ++2p ipo+ +2p ipo )

+2G 2p g g &p&+2p gr gr &p &+2p gopi+2p &opop —i+2popop&p &+ 2p g &isot t tt ~ tt

(27)+ 2P —P —1P —iPo+ 2P1PoPoPo+ 2P —1PopoPo+ —P oP oPoP i + —P oP oPoP i- —t ~- t t ~- t
2 2
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D. Mapping of the number operator

The two mappings can of course be applied to all
operators of interest. As a particular exam~&le, consider
the fermion number operator, NF = g a a . The
first mapping transforms it according to

Np~2 g s~~ =2'),
and the second mapping according to

NB1 (I 1P1+POPO+J —jP —1 } 4NB2 ~ (28)

confirming that the number of bosons is indeed reduced
in half at each step of the iterative procedure.

UB2 2p 1p —1 popo (29b)

To better appreciate the physical content of the Park
operator (29}, it is useful to rewrite Us2 in terms of the
two-index A bosons,

2P 1P —1 POPO +11+—1 —1 +1—1+—11 (30)

From this, we can readily confirm that the two-boson
state Us2 ~0)s2 is indeed orthogonal to the physical two-
boson state given in (13). Thus, requiring that the Park
operator has zero expectation value is equivalent to im-
posing the additional symmetry that is missing in the
mapping.

F. Calculations and results

The specific calculations that we report here are for a
system in which X =A=10 and @=2. In Table I, we
present results for the ground-state energy of the system
(as a function of the pairing strength G). The column
denoted Exact refers to an exact diagonalization of the

E. Unphysical states in the two-level pairing model

As noted earlier, a general feature of boson mappings is
that they produce unphysical states that do not preserve
the symmetry character of the system. In the two-level
pairing model, however, there are no unphysical states
produced in the first mapping, as long as (a) we restrict
the mapping to the collective subspace only, and (b) the
number of fermion pairs does not exceed the pair degen-
eracy Q of each level. The second mapping, however,
does produce unphysical states. To illustrate this point,
consider a system with N~= —,'%~=10 active fermion
pairs and a pair degeneracy of 0=10. The number of
states in both the collective fermion space and the first
ideal boson space is 11, confirming that no unphysical
states arise in the first mapping. However, the dimension
of the second ideal space is 21, indicating that the second
mapping produces ten states that do not preserve the
symmetry character of the 6rst ideal boson space.

Since the second mapping produces unphysical states,
it is useful to introduce its associated Park operator P~2.
The explicit form for this operator is

P~~ —2 U~2 U~2 (29a}

where

TABLE I. Ground-state energy (in MeV) for the two-level
pairing model. Calculations were carried out for @=2 MeV,
&=10, and N~ =10. The column denoted Exact gives results of
exact diagonalization, the other three give results obtained at
various levels of approximation, which are described in the text.

0
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.500
1

2

Exact

—20
—20.268
—20.582
—20.972
—21.503
—22.322
—23.605
—25.311
—27.291
—57.107

—111.053
—220.526

—20
—20.268
—20.582
—20.974
—21.523
—22.416
—23.777
—25.506
—27.482
—57.199

—111.100
—220.603

BP1

—20
—20.268
—20.582
—20.972
—21.502
—22.314
—23.609

25.323
—27.302
—57.108

—111.053
—220.526

IT=2
—20
—20.268
—20.582
—20.972
—21.505
—22.333
—23.600
—25.249
—27.167
—56.797

—110.832
—220.404

ferrnion Hamiltonian in the collective pair subspace. The
results denoted IT= 1 and IT=2 refer to Hartree calcula-
tions carried out after the first mapping (81}and after the
second mapping (82), respectively. The column denoted
BP1 refers to broken pair calculations carried out after
the first mapping. For this system, the phase transition
from normal to superAuid occurs for a critical value of
G -0.1.

The IT= 1 calculations reproduce the ground-state en-
ergy when the system is in the normal phase. But they
cease to be able to reproduce the exact results at and after
the phase transition. In contrast, the BP1 calculations
provide excellent reproduction of the exact results both
in the normal and superAuid phases. The improvement
of BP1 over IT= 1 rejects the importance of correlations
between the pair bosons in the superAuid phase. Note
that both of these calculations were based on the same
Hamiltonian and furthermore were carried out in a sys-
tem (81) with physical states only.

As a first guess, we might expect the IT=2 results to
be similar in quality to the BP1 results, since both incorp-
orate up to four-fermion correlations. Up to a coupling
strength of G-0.2, the two calculations indeed give
roughly comparable results. However, for G)0.2, the
BP1 results are significantly better than the IT=2 results.
The reason for this is that in the IT=2 calculations, there
is some mixing with unphysical states. As we will see
shortly, unphysical states move down in energy as we in-
crease the pairing strength G, and this has the e6ect of in-
creasing their admixtures in the variational ground state.

Similar conclusions follow from a consideration of the
lowest excited state, for which we present the analogous
results in Table II. But here the e8'ect is even more
dramatic. Now the IT=2 calculations begin to show
significant discrepancies for a pairing strength of only
G-0.15, somewhat closer to the phase transition. Once
again this is a direct reAection of increased mixing with
unphysical states with increasing G.

To confirm that unphysical states of the second map-
ping come down in energy as the pairing strength in-
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TABLE II. Energy of the lowest excited state (in MeV) for
the two-level pairing model. Calculations were carried out for
@=2 MeV, 0=10, and N~ =10. The various columns have the
same significance as in Table I. The energies given in the
column denoted IT=2 are for the lowest predominantly physi-
cal excited states. Qg

0
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.500
1

2

Exact

4.00
3.53
3.02
2.48
1.97
1.71
1.97
2.58
3.24
9.75

19.88
39.94

4.00
3.53
3.00
2.40
1.82
1.68
2.98
2.63
3.20
9.65

19.83
39.91

BP1

4.00
3.53
3.02
2.48
1.98
1.57
1.99
2.6S
3.28
9.73

19.87
39.93

4.00
3.53
3.02
2.47
1.95
1.81
2.19
2.71
3.17

10.40
20.27
40.15

C9

LLJ

LLI

O

I-

ul

g 0.2
I-

uJ
0

creases, we carried out a diagonalization of the non-
Hermitian Hamiltonian H~2. As noted earlier, an exact
diagonalization completely decouples unphysical states
from physical states. Thus, by comparing the IT=2 re-
sults with the exact results obtained by diagonalizing the
original fermion Hamiltonian, we can distinguish physi-
cal from unphysical states. In Fig. 1, we show results for
the lowest three physical states (solid lines) and the
lowest three unphysical states (dashed lines) as a function
of G. The lowest unphysical states all move down in en-
ergy as the pairing strength increases. Furthermore, for
G) 0.15 the lowest unphysical state and the lowest excit-
ed state are very close in energy, so that the mixing in-
duced in TD approximation should be very large.

The variational mean-field calculations mix physical
and unphysical states. To assess the degree of mixing, we
present in Table III the mean value of P for the ground
state and the lowest few excited states obtained in the
Hartree and TD approximations, respectively. As sug-
gested above, the ground state and the lowest excited
state are almost purely physical up to the critical value,
after which the degree of unphysical state mixing gradu-
ally increases. These results confirm our earlier remark
that the origin of the discrepancies that occur in the
IT=2 calculations beyond the phase transition are a
reAection of mixing with unphysical states. This mixing
becomes particularly large in the low-lying excited states.
Clearly, if we wish to be able to use the second Dyson ex-
pansion as a reliable means of approximating this many-
body system, we must first develop a procedure to
e6'ectively remove the inAuence of these unphysical
states, particularly from the low-lying TD excitations.

Following the discussion of Sec. II C, we consider the
use of the Park operator of the second mapping, P&2, as a
pseudo-Majorana interaction. The fact that the degree of
mixing of unphysical states is relatively weak suggests
that such an approach may be useful. But, as noted in
the earlier discussion, such a procedure will only be of
practical use if it pushes up unphysical states in energy

0.05
I

O. I 0 O.I5

FIG. 1. Relative energies of low-lying excited states of the
two-level pairing model following a second Dyson mapping.
The results were obtained by diag onalization of the non-
Hermitian boson Hamiltonian H» given in Eq. (27), for the pa-
rameter values @=2, N&2=5, 0=10. Physical states are denot-
ed by solid lines and unphysical states by dashed lines.

H~2( A, ) =H~2+ A P~2, (31)

TABLE III. Mean value of the Park operator I' for the
ground state (GS) and lowest few excited states (TDA1 and
TDA2) obtained in the IT=2 calculations described in the text.

0
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.500
1

2

0.0
0.0

—0.001
—0.018
—0.109
—0.559
—1.328
—2.008
—2.508
—2.893
—1.283
—0.380

TDA1

0.0
—0.034
—0.195
—0.610
—1.344
—1.806
—0.882

2.215
8.501

31.65
32.03
32.01

TDA2

32.00
32.03
32.19
32.61
33.30
33.58
32.35
28.98
22.50

—0.808
—0.540
—0.167

more rapidly than it destroys the new pair correlations.
To assess the usefulness of introducing a pseudo-

Majorana Park operator in the two-level pairing model,
we have carried out a series of Hartree and TD calcula-
tions using the modified Hamiltonian
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-30

I I / I
,r

P5

rrr

r' r

P3

we conclude that for this model the Park operator is use-
ful as a means of suppressing the efFects of unphysical
states that arise in the second boson~boson mapping.
The IT=2 calculations including a pseudo-Majorana in-
teraction produce results that are comparable to the
essentially exact BP1 calculations, but more simply. It is
our hope that these remarks may apply more generally to
the unphysical states that arise in any boson~boson
mapping, but further testing is clearly needed.

P2

-50

Pl

-60
0

I

0.2 0.4 0.6
X

I

0.8 I.O

FIG. 2. Energies of low-lying excited states of the two-level
pairing model following a second Dyson mapping and including
a pseudo-Majorana interaction. The results are based on the
Harniltonian given in Eq. (30) with the same parameter values
@=2, N»=5, 0=10 as in Fig. 1 and with G=0.5. The solid
curves are the result of exact diagonalization; the dashed curves
result from mean-field Hartree and Tamm-Dancoff calculations.
The notation P„(U„) refers to the nth physical {unphysical) ex-
cited state, as discussed in the text.

with a pairing strength of G=0.5. For this value of G,
the original A, =O calculations produce two unphysical
states between the ground state and the first excited state.
In Fig. 2, we display the results as a function of the
pseudo-Majorana strength A, . The notatiori P„(U„)
denotes the nth physical (unphysical) state. Solid lines
correspond to the exact results and dashed lines to the
Hartree and TD results.

The first point to note is that, as expected, the exact
physical states are completely unaffected by the addition
of the pseudo-Majorana term. In contrast, the exact un-
physical states are pushed up in energy very rapidly as k
is increased. Note further that, for A, &0.15, the lowest
excited state is unphysical. At k -0.15, however, it
crosses the lowest physical excited state, after which both
the ground state and the first excited state are physical.

Since the mean-field calculations do not completely
decouple physical and unphysical states, they produce
significant mixing in the vicinity of the crossing. Howev-
er, for A, & 0.3, they provide an excellent reproduction of
the exact spectrum. On the basis of these calculations,

IV. SUMMARY

In summary, we have discussed in this paper the appli-
cation of an IBEP to approximately describe the collec-
tive dynamics of many-body fermion systems. We have
developed the formalism necessary to implement this pro-
cedure, following on recent developments in the applica-
tion of boson expansion techniques to boson systems.
Each stage of the IBEP in principle introduces unphysi-
cal states. Furthermore, in variational calculations, these
unphysical states mix into the lowest states of the system,
which are the states that are of particular interest. By
focusing on the two-level pairing model, we have shown
that the inclusion of a pseudo-Majorana interaction may
be effective as a means of suppressing the inAuence of un-
physical states that arise in boson —+boson mappings. In
the two-level pairing model, no unphysical states arise in
the first fermion —boson mapping (if the number of ac-
tive fermion pairs does not exceed the pair degeneracy of
each active level). In more general problems, however,
they will arise, and it will be necessary to find a practical
procedure for removing their inhuence. We are currently
investigating several possible approaches for accomplish-
ing this. In our view, this remains the one outstanding
problem that must be satisfactorily addressed before the
IBEP can be viewed as a practical microscopic approach
to the collective dynamics of many-fermion quantum sys-
tems.
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