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Potential model calculations of parity violation in proton-proton scattering
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The proton-proton parity-violating analyzing power is calculated at laboratory energies up to
1000 MeV using a parity-violating weak meson-exchange potential with form factors and coupling
constants consistent with the nonrelativistic Bonn potential. A real distorted-wave Born-
approximation formulation of the weak scattering amplitude is introduced using real standing
waves with distortions by Coulomb and strong interactions. This formulation includes a new and
simplified expression for the S matrix in terms of strong and real weak amplitudes. The form-factor
contributions to the weak potential significantly reduce the overall magnitude of the analyzing
power, but do not qualitatively afFect the relative energy or angular dependence. Results using, al-
ternatively, Paris, Reid soft-core, Hamada-Johnston, and pure Coulomb distorted waves with the
same. weak potential are compared. The angular and total analyzing powers are calculated with
long-range Coulomb contributions for scattering and transmission experiments. The long-range
Coulomb efFects can be removed, leading to a reduced analyzing power 2 that depends only on
short-range forces.

I. INTRODUCTION

Parity-violation nucleon-nucleon scattering and
transmission experiments are providing increasingly sen-
sitive tests of the parity-violating hadronic interac-
tions. ' As the set of measurements is expanding and
improving, a corresponding increase of attention to the
details of the theoretical calculations is required. In
1973, Brown, Henley, and Krejs calculated the analyzing
power using nonrelativistic strong and parity-violating
potentials. Oka performed a relativistic calculation, but
neglected the strong distortion of the nucleon-nucleon
wave functions. In 1979, Desplanques, Donoghue, and
Holstein' estimated, using the Weinberg-Salam model
and quark bag wave functions, the parity-violating meson
coupling constants. Adelberger and Haxton have pub-
lished a review of the subject of parity violation in
nucleon-nucleon interactions. " Since Brown, Henley,
and Krejs published their results, improved potential
models, particularly the Bonn meson-field-theoretic po-
tential, have been developed, and the data base of con-
ventional hadronic scattering measurements, which
determines the strong on-shell t-matrix elements, has im-
proved.

We present new theoretical results for the proton-
proton analyzing power which sharpen and update the
calculations of Brown, Henley, and Krcjs. Our principal
result is a new distorted-wave treatment [Eq. (2.4)] which
allows the on-shell strong interaction efFects (including
inelasticities) to be treated in a model-independent
manner. The only quantity that depends on the ofF-shell
strong interaction is the weak r matrix, Sir, in Eq. (A7),
which (neglecting inelasticities) is real. The number of
parameters depending on the off-shell strong interactions
is thereby minimized. In addition, Eq. (2.4) is simple in
form and independent of the S-matrix parametrization.
We use this formulation to include recent nucleon-

nucleon strong potentials (and phase shifts), and the
inhuence of modern strong vertex functions on parity-
violating (PV) potentials. Furthermore, a careful treat-
ment of Coulomb effects is motivated and presented.

Here is an outline of the remainder of the paper. In
Sec. II, we de6ne the compact t- and r-matrix formalism,
and formulate an alternative to Watson's theorem'
using the weak reaction matrix. In Sec. III, we study the
Coulomb contributions to the analyzing power observ-
ables for scattering and transmission experiments. The
derivation of a nonrelativistic potential from meson Seld
theory, using Desplanques, Donoghue, and Holstein
parity-violating constants, and with coupling constants
and form factors consistent with the Bonn potential, is
described in Sec. IV. Section V contains results of nonre-
lativistic distorted-wave Born approximation (DWBA)
calculations using the Bonn and alternative strong poten-
tials, as well as results to exemplify and conclude the
work of Secs. III and IV. Section VI is a summary. The
Appendix explicitly describes the DWBA integrations.

II. FORMALISM

Define the nucleon-nucleon scattering operator T as

T(E)= V+ V
1

E+—00

where Vis the potential. The reaction matrix' R (E) is

R(E)= V+ VP R(E),1

with T and 8 related by

T(E)=R (E)+R (E)( im)5(E Hc)T(E—) . (2.l—a)

Our goal in this section is to derive a DWBA treatment
which employs R. To this end we employ a compact no-
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tation. The on-shell matrix elements ti, i, and ri, .i, (in
which l, s, and j are the usual angular momentum quan-
tum numbers) are represented simply as t and r. Then we
can write Eq. (2.1a) on shell in the more compact form

t =r+irt . (2.1b)

For simplicity, we imply conventional matrix algebra in
the (Is)j space whenever matrix indices are suppressed.
The matrix t can be determined from r, or r from t, by
solving Eq. (2.1b). The s matrix is given by

S = 1+2Et . (2.2)

Time-reversal invariance implies that t, r, and s are sym-
metric. (The spin and angular momentum phase conven-
tions must be chosen appropriately. ) Below the inelastic
threshold, s is unitary and r is real symmetric. For
example, in an uncoupled channel l, s =exp(2i5! ),
t =exp(i5! )sin5i, and r =tan5!.

For proton-proton scattering, we define Coulomb-
reduced quantities s, t, and r related to s, t, and r by

s =e' se' (2.3a)

t =sinoe +e' te'

r = (sino +coso r )(coscr —sincrP)

(2.3b)

(2.3c)

Here, o. denotes the diagonal matrix of Coulomb phase
shifts. We define

t =r+irt,
s=l+2it .

(2.1')

(2.2')

s, t, and r represent the deviation from pure Coulombic
scattering, and converge rapidly with increasing partial
waves. For j ))kd, with k the relative wave number and
d the range of nuclear interactions, s I' s', Is ~&I'I &s's
w jtI, .(, O, andr), I, 0.

Any amplitude can be separated explicitly into parity-
conserving and parity-violating terms. For simplicity, we
indicate these terms with subscripts S and 8'. For exam-
ple, t =ts+t~ and r =rs+r~. The parity-violating ob-
servables are derived from ts and tii, . The matrix ts, the
strong scattering amplitude, is relatively well determined
by conventional scattering data, and does not contain in-
formation on parity violation. The degrees of freedom in
t~ depending on parity-violating interactions can be re-
duced to a simpler form, Pz, which, below inelastic
threshold, is real. From Eq. (2. 1'), one obtains, to first
order in r ~,

~l' ';! 5!'15 ' ol ol =argP(1+1+'g),

and rl=ac/UL, with a the fine-structure constant, c the
speed of light, and UL the laboratory velocity calculated
relativistically from the laboratory beam energy. The
matrices s, t, and r satisfy relationships analogous to Eqs.
(2.1) and (2.2):

elements of

R ~= 1+RsP V~ 1+P Rs
1 1

E—H 0 E—H 0

The plane-wave matrix elements are real distorted
standing-wave matrix elements of V~. With the
Coulomb force, re, is, as given in the Appendix, Eq. (A7),
a matrix element of V~ with wave functions distorted by
both Coulomb and strong forces. Equation (A7) is con-
sistent with P~ defined above, provided the wave func-
tions have the real Coulomb standing-wave boundary
conditions specified in Eq. (A5b). Notice Pi!, changes par-
ity, so l'=l+1. r~ contains, for identical nucleons, just
one independent real element for j =0, and two real ele-
ments for each higher even j.

In principle, t~ can be calculated directly from the
DWBA integral Eq. (AS), using model-derived incoming
and outgoing distorted waves u' ' and u '+', rather than
from Eqs. (2.4) and (A7). However, because model-
derived values can disagree with empirical values for ts,
the two methods will generally disagree. The method us-
ing re, with empirical values for tz [Eqs. (2.4) and (A7)] is
preferred. Below inelastic threshold, P~ is real, and so
contains fewer model-dependent parameters than t~.
The additional degrees of freedom in t~ are determined
by the on-shell strong interaction quantities ts.

As a consequence, for example, consider the zero
crossing energy of the analyzing power. The helicity-
dependent cross section depends only on Imt~. The zero
crossing energy of the 'So- Po contribution to the cross
section then only depends on the factors (1+its), since
Pz, is real, and so is most accurately determined from
empirical values for ts. Second, above threshold, inelas-
tic contributions to t~ in the strong factors 1+its can be
included by using empirical inelastic parameters in ts.

The factorization of tii, in Eq. (2.4) is different from the
factorization for t~ (or s~=2i t@,) derived by Wat-
son. ' ' In the absence of strong-channel couplings, the
strong factors (1+i tz ) in Eq. (2.4) equal cos5e', with 5 a
phase shift. The strong factors in Watson's parametriza-
tion are, instead, e', which can lead to a different result
when empirical and model-derived phases disagree. Hen-
ley' recently generalized Watson's theorem for coupled
channels with inelastic contributions. Henley's pararne-
trization also difFers from Eq. (2.4). The advantage of Eq.
(2.4), besides its simplicity, is its freedom from arbitrary
choices for the parametrization of t~. The factorization
of t'ai, in Eq. (2.4) is determined naturally by the relation-
ship, Eq. (2. 1'), of t to r, or, as shown in the Appendix,
by the outgoing and standing-wave boundary conditions
of Eqs. (AS). Below threshold, trav, given by Eq. (2.4), au-
tomatically satisfies the unitary condition for first-order
weak corrections to the S matrix, because r~ is real.

trav=(1+i

ting~(1+i

ts) . (2.4)
III. COULOMB CONTRIBUTIONS

TO THE ANALYZING POWER

With no Coulomb force, r~=P~, and the elements of r~
are the partial-wave components of plane-wave matrix

In proton-proton scattering, the parity-violating ob-
servables Gpv depend on the interference between
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parity-conserving f and parity-violating fpv amplitudes:

Gpv ~ Reffpv. Measurements are often made at forward
angles where the Coulomb contribution to f diverges.
Therefore, it is necessary to treat Coulomb eff'ects in Gpv
carefully. To our knowledge, no such treatment exists for
both angular distribution (scattering) and transmission
experiments. Therefore, Coulomb effects are examined
here.

We consider scattering and transmission parity-
violating experiments. In practice, both types of experi-
ment use a polarized proton beam on an unpolarized tar-
get and alternate the beam polarization to determine the
helicity dependence of a cross section. When both parti-

I

cles in the reaction are charged, we must, in general, take
account of the long-range Coulomb force.

In parity-violating scattering experiments, the detec-
tor, assumed cylindrically symmetric, subtends a range of
nonforward scattering angles, say from 8& to 02. Due to
the large scattered currents in these experiments, parti-
cles cannot be individually counted and analyzed. In-
stead, the detector measures the collective current of all
particles scattered into the detector. When inelastically
scattered particles are negligible, the experiment mea-
sures a cross section related to the elastic scattering am-
plitude M =Mc+M~, where

I I

M, , (Q)= —g I', ,(Q)&4~(21+1)C ' ' * *C * '[1+(—1)'+']
~1'1

1 ms

M& is the symmetrized pure Coulomb scattering amplitude,
00

M, , (Q)= —5, ,5 g P&(cos8)(2l+1)[1+(—I)'+']sincr&e
'1=0

(3.1a)

(3.1b)

0, , (Q)= ~M, , (8,$)~~ . (3.2)

For spin states quantized along the beam direction, the
cross sections are independent of P.

The angular analyzing power is defined as the ratio

cr+(8) —o. (8)
A(8)= o+(8)+o (8)

(3.3)

The scattering experiment then measures a weighted
average of A(8),

f dQ cr(8) A(8)
(3.4)

I dQo(8)

with cr(8)=[o+(8)+cr (8)]/2. Coulomb effects appear
explicitly through Mz, explicitly through the Coulomb
phases multiplying t in Eq. (3.1), and implicitly through t
itself. The reduced scattering matrix t is influenced by
the Coulomb field only inside the range of the hadronic
interaction.

Transmission experiments, contrary to scattering ex-
periments, measure the transmission of a polarized beam
in the target. A cross section is inferred from the
transmission measurement. Beam particles absorbed or
scattered by angles greater than some critical angle 0&
are removed from the beam; these events reduce the ob-
served transmission and add to the inferred cross section.
Beam particles scattered to angles less than t9& are not
distinguished from the beam and do not contribute to the
cross section. Particles emitted by inelastic processes in

C1 j ' are the Clebsh-Gordan coefficients, and

Ft (8,$)= F& (Q) are the spherical harmonics. ' The
I I

diff'erential cross sections o+(8) and o (8) for positive
and negative beam polarization states are simple linear
combinations of the spin cross sections,

directions less than 0&, which we neglect, would reduce
the inferred cross section.

For the following, let us "switch oQ" the Coulomb
force, or suppose that one particle in the reaction is neu-
tral. Let o.+ and cr be the total cross sections for posi-
tive and negative beam polarization states. Parity-
violating experiments actually measure o + ~ & s and

d

cr
~ &s, the total cross sections excluding processes withd'

scattering angles less than 0&. When the small-angle con-
tributions are small, o+~ &s --o+ and cr

~ &s =o
d d

Then, by alternating the beam polarization, the experi-
ment determines

(3.5)

The cross sections o.+ and o. are simple linear combina-
tions of the forward-angle scattering amplitudes
M, , (0). In particular,

271 Im [Mpp. y p ( 0 ) +M ]p. pp (0 ) ]
(3.6)2'

1m[2M]&. ]](0)+M&p.~p(0)+Mpp. pp(0)) .

When both beam and target particles are charged, the
small-angle scattering contributions are large, o+ &sd

and cr
~ » diverge as 8& —&0, and the forward scattering

d

amplitude is undefined. Holdeman and Thaler' have
developed an alternative form of Eq. (3.6) for experiments
with charged interacting particles. For small 8&, cr+ ~ & sd

and cr
~ &s are again determined by the forward nuclear

d

scattering amplitude, but by Eqs. (3.9) and (3.12) which
follow.

For simplicity, let us now neglect spin. Before calcu-
lating the cross sections o

~ & s that depend on 8z, consid-
d
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( CrR Cr
R cr lnkR

)
g —+ oo

(3.7)

Then, by separate applications of the optical theorem to
0 and oc~

4~
oiv = ImMiv(0) . (3.8)

Transmission experiments do not directly measure o.»,
but measure

ir &e crxl &e +crcl- ed d d

where

(3.9)

o'tv! g„=o;„,i+ f dQ!M~! +2Re f dQMcMiii,

(3.10)

and where o.;„,j is the total inelastic cross section. Gen-
erally, cr;„,i is unknown, and we need Eq. (3.8) to deter-
mine criv l & e or cr

l & e, that is,
d d'

crivl &g =crII —f d&IMivl' —2Re f dQMcMII .

er the definition of Holdeman and Thaler of the total nu-
clear cross section o.». Their cross section is, in some
sense, the true cross section measured relative to the pure
Coulomb cross section. The nuclear cross section o.»,
however, is not the Coulomb-reduced cross section &
which we define later. In the literature, & is often called
the "nuclear cross section, " confusing it with o.».

Of course, 0.» is not simply o. —o.c. For an idealized
infinite-range Coulomb force, o. and 0.

& are undefined. In
any physical circumstance, however, the Coulomb field is
shielded, and the cross sections are large, not infinite.
Let o. be the full cross section, and o.c the pure Coulom-
bic cross section for a Coulomb field shielded at radius R.
We require that 0.» be insensitive to R. As shown by
Holdeman and Thaler, however, o. contains nuclear-
shielding interference contributions 0'" that vary as the
logarithm of R. The logarithmic term is undetected by
instruments with angular resolution b,8))(kR ) '; hav-
ing no practical significance, we remove 0-'" with o.c
from the observed cross section:

I I

XC ~
'.S S S SC s s

l's' j lsj
&&[I+(—1) 'Pi, , i, .

Then (again neglecting spin),

(3.14)

0'= ImM(0) .
k

(3.15)

Notice & bears the same formal relationship to M and t in
Eqs. (3.14) and (3.15) as cr bears to M and t in Eq. (3.6),
with the Coulomb force absent. While o.», being the
di6'erence of two cross sections, can be negative, each
partial-wave contribution to & is non-negative, and so &
is non-negative. Also notice that

cr~=a+2Re f dAMcMiv . (3.16)
0

The Coulomb-nuclear interference term is a manifesta-
tion of long-range Coulomb scattering. On the other
hand, t and & are sensitive to the Coulomb field only in-
side the range of nuclear interactions. While o.» and

criv! &e properly represent experimental or long-range
d

observations, the reduced cross section & is sensitive only
to the short-range properties of particles. That is, & is
the intrinsic measure of the cross section. For the intrin-
sic measure of parity violation in scattering reactions, we
define the reduced parity-violating analyzing power,

Results given by Eqs. (3.8) and (3.12) differ by a phase de-
pending on g and Od. At arbitrarily small angles Od,
0.» & oscillates indefinitely. For sufficiently large g,d

nevertheless, o.» can be extrapolated from transmission
measurements, that is, from o.

l &g .' Goldhaber' has
d

used Eq. (3.12) to estimate Coulomb effects in parity-
violating transmission experiments.

Now consider, as an alternative to o.», the reduced
cross section & defined by

& =cr;„„+f dQ!M! (3.13)

where (with spin),

(3.11)
&+ &

0++&
(3.17)

4ir 2i [7i in sin( ed l2) —an]
!cr~ &g

= Im e
d

(3.12)

Note, however, the point Coulomb function Mc oscillates
indefinitely at small angles 0. Interpreted literally, the
last integral in Eq. (3.11) is undefined at its lower limit.
However, by implicitly taking the limit R —+ co after in-
serting shielded amplitudes and performing all other
operations, Eq. (3.11) is correct. This procedure is per-
formed in practice by integrating term by term in the
partial-wave sum of M&.

Suppose ed is sufficiently small that Miv(9)=M~(0)
for g(gd, and that the small-angle integral of !Mdiv! is

negligible; then, by Eq. (3.7), (3.10), (3.11), and the
shielding-limit procedure, we deduce

IV. NONRELATIVISTIC STRONG AND WEAK
POTENTIAL MODELS

To obtain the elements of the parity-violating reaction
matrix r~, we calculate, as described in the Appendix,
the real DWBA matrix elements using nonrelativistic
strong and weak potentials Vz and Vz . An objective of
our work is to calculate the parity-violating analyzing
power using potentials V& and V~ that are mutually and
consistently derived from meson field theory. To that
end, we adopt the coordinate-representation Bonn poten-
tial for Vz, and a parity-violating rho- and omega-
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exchange potential with Bonn coupling constants and
form factors for V~.

The Bonn potential is the simplified one-boson-
exchange coordinate-space version of the full
momentum-space Bonn potential. Bonn incorporates six
mesons, including a fictitious sigma meson to simulate
two-pion and pi-rho exchanges. Monopole form factors,
with one cutoff parameter per meson type, regularize the
potential and represent, crudely, the short-range interac-
tions.

Each meson-exchange graph has two meson-nucleon
vertices. In graphs contributing to V~, one vertex is
weak (parity violating), and one is strong (parity conserv-
ing). In graphs contributing to Vs, both vertices are
strong. For each meson type, we apply the same Bonn
form factor (for lack of better knowledge) to both strong
and weak vertices. Then, for each graph i contributing a
term V; to V& or V~, the form factors modify V, by the

I

same prescription,

(A;+e) —m,
V, (r) = VP—"[m, ; r ] —' —'

VP'[A, e—; r ]
E

(A; —e) —m;+ VP'[A, +e;r] .
4A, e

(4.1)

Here, V; '[p; r ] is the exchange potential for a graph with
point (bare) vertex functions, and with the mass parame-
ter m; replaced by p. m; and A; are the Bonn mass and
cutoff parameters, and e is an arbitrary small expansion
parameter. (We use e( 10 MeV. )

Desplanques, Donoghue, and Holstein' (DDH) ap-
plied the quark and steinberg-Salam models to estimate
the parity-violating coupling constants. Their results for
the nonrelativistic one-meson-exchange point vertex po-
tentials for two protons are

Vg. [m„;r]=0,
pt

VII [m;r]= gh—PP (I+@I,)i(o I Xo2) ~

—m r
P—iV e

m~
'

4mr
+(o,—o 2)

—m r—iV e

m~ 47Tr

pt
V~ [m;r]= —g hPP (I+ps)i(oIXo2) ~

—m r—iV e

m&
'

4mr

—m r—iV e+(o,—cr2) ~

m&
'

4mr

(4.2)

Here, r =r I
—r2, p = —i V = ( pI —

pz ) /2, and h PP and h PP

are the linear combinations of DDH parameters deter-
mined by evaluating isospin operators in the proton-
proton system:

hP" =h +h + —h
1

P Po Pi 6 Pp

h~~ =h +hco co0 co
i

(4.3)

The DDH "best" values are h = —15.47X10 and
h ~~ = —3.04 X 10 and are uncertain by roughly
+200%%uo. The pion contribution vanishes due to charge-
parity (CP) invariance. Notice that the rho and omega
Yukawas are essentially equal, since m and m„are very
nearly equal. The rho and omega potentials are then
hnearly independent only because the anamolous mo-
ments, and to a small extent the cutoff parameters, are
not equal. For consistency with the Bonn Inodel, we ap-
ply the Bonn regularization [Eq. (4.1)] to VII, and use
Bonn masses, coupling constants, and cutoff parameter
values in Eqs. (4.1) and (4.2). hPP and hPP are then the
only independent parameters.

power A arid the angular analyzing power A (8) are indi-
cated as solid curves in Figs. 1 and 2. The results were
obtained using, in Eq. (2.4), model-derived values for r~,
determined as described in the Appendix, and empirical
values for tz, obtained from Amdt's analysis of conven-
tional scattering data. ' The various curves in Figs. 1

and 2 were obtained using alternative distorting poten-
tials ' V&. In on cas, V&=0, and the distorted
waves become pure Coulomb functions. In all of the
cases, V~ uses Bonn parameter values and form factors,

Bonn—- —POrlS------- Reid soft core
————Homo do —Johnston
——- —v =0S

0
D

V. NUMERICAL RESULTS

Results of the nonrelativistic one-boson-exchange cal-
culations of the analyzing power are presented in Figs.
1 —12. All the results use the parity-violating potential
defined in Sec. IV with DDH "best values" for the
parity-violating parameters h and h

Our nominal results for the reduced total analyzing

1000
—4 I I I I I I ~ l I I I I I I I I

10 100

)ab (Me~)

FIG. 1. The reduced analyzing power A, Eq. (3.17), using

various potential models Vz for calculating the distorted waves
u" in Eq. (A7). The experimental data are from Refs. 1 —5.
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and V~ remains fixed.
Long-range Coulomb efFects are included in the angu-

lar analyzing power results of Fig. 2. The Coulomb am-
plitude dominates at small scattering angles 8 and causes
3 (0), Eq. (3.3), to change sign, and then vanish, as 8 de-
creases to zero. The reduced total analyzing power A, on
the other hand, is influenced by Coulomb repulsion only
within short, nuclear ranges.

Figures 3(a) and (b) are plots of the integrand of the
DWBA integral, Eq. (A7), at the laboratory kinetic ener-
gies of 45 and 230 MeV for the case j=0. The various
curves are obtained using standing distorted waves u "(r)
(see the Appendix) generated by different strong poten-
tials V&, or with V& =0, as indicated in the legend of Fig.

The curves for the Hamada-Johnston potential begin
at the hard-core radius. The abscissa coordinate r is the
separation between protons. Although the rho and ome-
ga ranges are only 0.25 fm, the contributing separation
distances, for aH the nontrivial distorting potentials

shown, are much larger. Short-range repulsive forces, or
a hard core, exclude the distorted waves from the smaller
distances.

As an alternative to Amdt's t-matrix values, Iz can be
derived from the same solutions of the strong potential as
used in calculating r~. These derived values of tz, how-
ever, generally disagree with Amdt's values and lead to
inconsistent predictions. In particular, the helicity-
independent cross section and the zero crossing energy of
the helicity-dependent cross section are determined less
accurately from the model-derived values of tz than from
Amdt's empirical values.

Figure 4 illustrates the discrepancies between analyz-
ing power predictions using the alternative values for tz.
Part (a} shows various predictions using the Bonn poten-
tial, and part (b) using the Paris potential. The solid
curves in Fig. 4 are the results of Fig. 1 for the Bonn and
Paris potentials, where Amdt's matrix elements were
used. The dash-dot-dotted curves use model-derived
values of ts in Eq. (2.4) to calculate tII„which determines

I
'

I
'

I
'

I
'

I
'

I
'

I

Bonn
Paris
Reid soft core
Ho moda —Johnston
Vs=O

45 MeV 20—
I I I I I I I I I

I
I I I I I I I I I

( )

0
C3

I I I I I ) I I I I I I I I I I

0 10 20 30 40 50 60 70 80 90

8, (deg)
0

0 1

r (fm}

-(b)

0
O

—4
0

I

I

I

I

I

I

I

I. I I

10 20

I
'

I
'

I
'

I
'

I
'

I .-"
Bonn 250 MeV
Paris
Reid soft core
Hamado —Johnston

I
I

''I
I I ) I I I I I
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8, (deg)
90

I I I I I

so (b)
I

I

I
I

I
I

I

I

I
I

I

I

I

I

0
0

230 MeV

I
I

\

\

\

I
\

1

r (fm)

I I I I I I
I

I I I I I I I I I

I

\

FIG. 2. (a) The angular analyzing power, Eq. {3.3), at the
proton 1ab kinetic energy 45 MeV; (b) same as (a), but at 230
MeV.

FIG. 3. (a) The j =0 transition element of the integrand of
the DWBA integral, Eq. (A7). The proton lab kinetic energy is
45 MeV; (b) same as (a), but at 230 MeV.
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I I I I I I I I
I

Bonn potentio l

r~ is model derived
A—--—t~ is model derived

------- oil omplitudes ore
model d

0
O

10 100
T~ b (lVlev)

1000

0
O

I I I I I I I I

Paris potential

r~ is model derived
h—"—t+ is model derived

------- oil omp
model

the helicity-dependent cross section, but use Amdt's
values to calculate the helicity-independent cross section.
The dashed curves use model-derived values in both cross
sections.

We observe larger discrepancies between the curves in
Fig. 4(a) than in Fig. 4(b). The Bonn potential produces
larger inconsistencies because the Bonn model was ad-
justed to fit np scattering data, not pp data, so the Bonn
model produces less accurate pp phase shifts than the
Paris potential. Notice, also, in Fig. 1 that the Bonn and
Paris distorted waves produce a difference in A compara-
ble to the difFerences in Fig. 4(a) induced by the errors in
the Bonn values for ts. Above inelastic threshold, inelas-
tic contributions to helicity-independent cross sections
reduce the analyzing power by as much as a factor of 2.
Inelastic contributions to helicity-dependent cross sec-
tions through the strong factors in Eq. (2.4) are
insignificant.

Figure 5 shows the effect of "switching oft ' the absorp-
tive components of Amdt's amplitudes. The nominal
prediction of Fig. 1, using Amdt s absorptive matrix ele-
ments, is shown again as a solid curve, The effect of set-

I I I I I I I

Bonn potentiol

vvith absorption

a — —-- —no absorption

00

—4
10

I I I I I I I I

100
(MeV)
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FIG. 5. The effect of "switching off" absorptive components
of Amdt's t-matrix elements.

sum j=0 through j =6—..—lSO —3PO
————-- ID2 —3P2———IDZ —3F2

ting the imaginary part of rs, related to tz in Eq. (2. 1'),
to zero is shown as a dash-dot-dotted curve.

Figures 6—10 show the contributions of separate
partial-wave matrix elements of 'P~, of separate terms of
the parity-violating potential V~, and of the forrp-factor
modifications to VII, . The analyzing power, A or A (8),
depends linearly on the matrix elements of r~, and
linearly on the separate terms of V~.

Figures 6 and 7 show the separate contributions of the
three independent elements of r~ with j ~2. The solid
curve, the nominal prediction for A, is the sum of all con-
tributions with j 6. In all the cases, all partial-wave
matrix elements of t& in Amdt s analysis are included in
the helicity-independent cross section. At low energies
through TI,b =50 MeV, only the 'So- Po parity-violating
transition contributes; above 50 MeV, only one additional
transition becomes important.

The weak potential, including the form-factor contri-
butions defined in Sec. IV, can be separated into four
terms, two associated with the rho meson, and two with
the omega meson. For each meson, one term includes all

O
—1

—4
10 100

(MeV)
1000

I I I I I I

FICx. 4. (a) The reduced analyzing power, using Bonn distort-
ed waves and alternative theoretical and empirical values for the
on-shell t matrix t&, (b) same as (a), but using Paris distorted
waves.

100

T)gb ( Mev)
1000

FKx. 6. Contributions of j=0 and j =2 elements oft~ to the
reduced analyzing power.
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operators S„and one all operators 8&, where 6, and 8b
are defined in Eq. (A9), with m a meson or cuto6' mass.
Figure 8 shows the contributions of the rho and omega
terms, and of the separate a-and b-type rho terms. For
the DDH "best values" of h~~ and h~~, the a-type rho
operator dominates.

Figure 9 compares the "bare" rho Yukawa with the
"efFective" rho Yukawa obtained by adding higher mass
terms, as prescribed by the Bonn form-factor
modification, Eq. (4.1). Figure 10 demonstrates the effect
of the form-factor modifications of V~ and V~ on A.
For this comparison, V& and its form factors are not
changed. The solid curve, the Bonn prediction of Fig. 1,
includes the modification of V~ using the nominal values
A„=1300 MeV and A =1500 MeV. For the dash-dot-
dotted curve, the values A and A are increased in V~
by 100 MeV. For the dashed curve, V~ is unmodified.

The Bonn form-factor modifications to V& reduce the

3— sum p and ~
.—p GAILY------ p operator t/la only

———p operotor |/nb only—4p onl'jj

~o
O

~ y

—4
10 100

lab {t4 eV)
1000

FIG. 8. The rho and omega parity-violating exchange contri-
butions, and the separate contributions of operators 8, and Sb
in rho exchange.
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FIG. 9. The rho Yukawa e ~ /4mr (solid lines) and deriva-
tive (dash-dot-dotted lines), with and without Bonn form-factor
modifications. The unmodified functions are those diverging at
r ~0.
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FIG. 7. (a) Contributions of j=0 and j =2 elements ofP~ to
the angular analyzing po~er at the proton lab kinetic energy 45
MeV; (b) same as (a), but at 230 MeV.
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FIG. 10. The efFect of varying the cutofF parameters A~ and
A in the parity-violating potential.
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analyzing power by, roughly, an energy- and angle-
independent factor of 1.7. As was shown in Fig. 3, only
separations in the range 0.6—1.2 fm contribute to the
parity-violating observables. At these relevant distances,
the Yukawa is reduced, roughly, by the factor 1.7. The
distorted waves do not sense the extreme change in shape
of the Yukawa at shorter ranges.

Figures 11 and 12 show the efFects of Coulomb contri-
butions to various theoretical and observable total cross
sections. Figure 11 compares the theoretical total analyz-
ing powers A, A

l Iv, and A
l „o, where A is defined by

Eq. (3.17), where

A ~= (5.1)~+I~+~ l~

and where A ~„o is obtained by setting the Coulomb pa-
rameter in all factors to zero. Figure 11 shows that
Coulomb-nuclear interference and short-range Coulomb
distortion effects on the total cross sections are small
above 10 MeV.

Pure Coulomb contributions can, however, be
significant in observed total cross sections if the detector
angle 8d is small. The effect on the angular analyzing
power A (8) at small scattering angles is shown in Fig. 2.
Figure 12 compares the predicted observable

I I i I I I I
I

A

Al&ed ~ gd = 2 deg

Al)ed ed = 5 deg

A~&&d, 8& =IOdeg

I i I I I I I

i I I I I l I I I I I I I—4
10 1000100

Tiab ( Me V)

FIG. 12. The reduced analyzing power A compared with the
predicted observable Al q defined by Eqs. (3.9) and (3.12).

The specified angles are Od in the lab frame.

%ith these approximations, the Holdeman-Thaler result
differs only slightly, above inelastic threshold, with the
reduced analyzing power A.

~+l.s,
—~-l.e,

o+l, s +cr (5.2) VI. SUMMARY

for transmission experiments for various values of Od.
Below the inelastic threshold, the cross sections are cal-
culated by integrating differential cross sections over an-
gles larger than Od. Above the inelastic threshold, the
Holdeman-Thaler modified optical theorem, Eqs. (3.9)
and (3.12), is needed to include inelastic contributions to
the cross sections. The discontinuity of the curves at 300
MeV is a consequence of neglecting lM&l at small angles
and of neglecting nonisotropic partial waves in Eq. (3.12).

I I I ( I

0
O

—4
10 100

T~ab (Me V)
1000

FIG. 11. Comparison of the reduced and nuclear analyzing
powers, and the analyzing power with Coulomb effects com-
pletely neglected (g =0).

%e derive and employ a new' expression for the weak t
matrix, Eq. (2.4), which reduces the model dependence of
the parity-violating observables to the weak r matrix, P~.
Below pion production threshold, r~ is real and sym-
metric and becomes a real DWBA matrix element, Eq.
(A7). Inelastic effects can be incorporated in the phe-
nomenological strong factors in Eq. (2.4) for tii, . The
efFect of inelastic contributions in the factors (I+its) of
t~, however, is small. Inelastic contributions to the
helicity-independent cross section, on the contrary,
reduce the analyzing power at 800 MeV by roughly a fac-
tor of 2. A complete calculation of inelastic effects mould
require calculating inelastic contributions to the model-
derived factor P~, as well.

Fi ure 13 compares our result using the Bonn potential
for (the solid curve, taken from Fig. 1) with earlier
work by Brown, Henley, and Krejs, by Henley and
Kzejs, ' and by Oka. Bromn, Henley, and Krejs use non-
relativistic distorted waves derived from the Hamada-
Johnston potential. We plot their results (asterisks), for
single p and co exchange, multiplied by —1. The calcula-
tions by Henley and Krejs (bars) and Oka (dashed curve)
are relativistic, but both neglect distortions. From Ref.
13, we plot the result, multiplied by —1, for p and co ex-
change with f g =&2f g . From Ref. 9, we take the
larger of two split curves for the case using DDH and
vector-meson-universality coupling parameters.

The dominant differences between our result and that
of Brown, Henley, and Krejs are the larger values em-
ployed in our work for the strong-coupling constants, and
the inclusion of form factors. The new coupling cori-
stants, especially g and p&, increase the magnitude of A.
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The analyzing power results depend linearly on two
parity-violating parameters h ~ and h „.Three or more
precise measurements of the analyzing power are re-
quired to fix h~~ and h~~ (or their product with strong-
coupling parameters) and to test the meson-exchange
model.

Generally, Coulomb corrections to the analyzing
power are found to be small. However these can be as
large as —10 when T&,b

~ 300 MeV, or for transmission
experiments sensitive to laboratory scattering angles of 5

deg or less. These corrections are comparable to the sen-
sitivity claimed for soine experiments. ' Three different
theoretical cross sections, A, A)v, and A ~„=o, obtained

by three different methods for removing the Coulomb
cross-section singularities, differ significantly only below
40 MeV.

FIG. 13. Comparison of our analyzing power prediction with
predictions of Brown, Henley, and Krejs (Ref. 8), of Henley and
Krejs (Ref. 13), and of Qka (Ref. 9). The figure is explained in
the text.

This work was supported in part by the U.S. Depart-
ment of Energy.

APPENDIX

The use of form factors, new to this work, tends to com-
pensate by reducing the magnitude of A.

Oka's result for 3 is qualitatively similar, but hot
equivalent, to our own for Vs =0 [Fig. 1(a), the dash-
dotted curve]. Oka's parametrizatiori, similar to that of
Henley and Krejs, for the S matrix differs from our own
formulation, Eqs. (2.2') and (2.4). With inaccurate distor-
tions of the weak amplitudes (or with no distortions), the
formulas disagree by factors depending on the strong
phase shifts, and so produce different predictions for A

and its energy dependence. The analyzing-power predic-
tions also differ due to differences in the strong-coupling
parameters, the modification (in our work) of Vir by forin
factors, and the relativistic treatment of V~ in Oka's
work and that of Henley and Krejs.

We calculate the matrix elements r +I, I, by the
distorted-wave method using parity-conserving Coulomb
and strong distorting potentials Vz and Vz and a parity-
violating perturbing potential V~. The integrations used
in obtaining the distorted waves and the real DWBA in-

tegrals are described in this Appendix.
The integrations and calculation of r ~I, .I, are per-

formed in a partial wave representation using radial
wave functions u&, . &, (r;k). Let P, , (r;k) be a solu-

tion of the scattering wave equation with spatia1 coordi-
nates r, spin components s' and m,', and boundary condi-
tions (either incoming, outgoing, or standing wave) with
quantum numbers k, s, and I, . The radial wave func-
tions u~, (r;k) are defined by the partial-wave expan-I's', ls
sion

J
,, u(, (,(r;k).

(r;k) =41T yl' ' y 'y ((., ) (r )5' ((, ) (k ),
jl'I m.

(Al)

tions of the radial coordinate r. For simplicity, we as-
sume matrix notation when the indices are suppressed.
For example, (A2) is written simply as u

' =vu.
The representation defined by (Al) and (A2) is different

from a convention, commonly adopted in the litera-
ture, 2 that uses a phase factor i' in Eq. (Al)
rather than i'. In our representation, the partial-wave
coordinate representation v)r for Vir is real and sym-
metric. In the alternative representation, U~ is pure
imaginary and antisymmetric. To preserve the symmetry
and reality of matrix expressions in our formalism, we
adopt (A 1).

The first step in calculating r ~ is to solve
Schrodinger's equation

where

'j ~ J J
I's', Is ~ I's', I"s"~1"s";Is

Itl II
(A2)

Each element UI, .I, is an operator which acts on func-

cy s ~ C j™lsy I
j(Is)m. =~ jls I

m&

are the spinor elements of the vector spherical harmonics.
The partial-wave components U, of a potential V are
determined by (Al). Let 1t'=Verb be the function ob-
tained by operating with V on the function g of (Al), and
let uI&, &, be the radial wave functions related to f&, &, by.
the same formula (Al). Then,
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r

1

mb( dr
L 2 k+vc+vs u = u
r Dl~

with the interior boundary condition

limu(r;k)=0,
r~O

for soft-core potentials Vs, or

u(r„„;k)=0,

(A4a)

(A4b)

Notice that the normalization for u" in Eq. (A7) and
defined by Eq. (A5b) difFers from another normalization
commonly assumed for standing-wave radial functions.
For uncoupled channels, when 9 sI's';Is =&i'I&s'sta»I the
solutions u" have, by Eqs. (A5b) and (A6b), the asymp-
totic form

u(', » — —sin kr — —ii ln(2kr )+5(+(7(() 2 . /m
'''"kr ~ k 2

for hard-core potentials. Three solution sets, identified
by superscripts (+), (s), and ( —) to denote outgoing,
standing-wave, and incoming boundary conditions, are
determined by Eqs. (A3} and (A4) and an additional
boundary condition outside the range d of Vs.

u('.,+. '»(r; k ). —
k [ &('(&s sH(

r&d 2lk

+s js(, (,H(I+'(kr ).],
u(",' (,(r; k ). — [5((5—, ,F( (kr)+ r s('s', (s G( (kr )], (A5b)

r&dk

u,', '(, (r;k ) —. — . [s s(',~ (,H,' '(.kr )
r &d 2ik

(A5c}

with A =(cos5() ', not A =1. The normalization
defined by Eq. (A5b), however, is related to u'+' in Eq.
(A5a) by the factor 1+(ts In t. he outside region r ))d,
the standing wave Green's function contributes only ir-
regular Coulomb function components to u". In the
three asymptotic forms (A5) for u' ', u", and u' ', the
coef6cients for Hl' ', F&, and HI'+', respectively, are
specified and do not depend on vs', all degrees of freedom
in the asymptotic forms that depend on vs are contained
in ss, 9s, or s s . For other normalization choices, espe-
cially for coupled channels, the relationships of the
asymptotic coe%cients to vs are more complicated.

The remaining quantity Us, in Eq. (A7) is the partial-
wave representation of V(r, with V@, defined by Eqs. (4.2)
and (4.1). V(1 is a linear combination of the parity-
violating operators

Here, F& and GI are the regular and irregular Coulomb
functions with asymptotic forms

F((kr ) — sin kr — —i}ln(2kr) + cr(, (A6a)
lm

kr~ oo 2

e mr

8, (m )=i(o, Xcr2). p,
4mr

L

—mr

8b(m) =(o, cr2) p-, 4ar

(A9)

G((kr ) — cos kr —g ln(—2kr )+(r(, (A6b)
Im.

kr~ oo 2 where m is a mass. Then v~ is the same linear combina-
tion of the partial-wave representations of 8, and 8b,

(A6c) rF)J . . =rAJ
aj 0;j —1 1 aj —1 1;jO 2j+1

' 1/2
dY
dr

The coefficients ss, rs, and s s
' in Eq. (A5) are not in-

dependently specified quantities. They are determined
uniquely with solutions u '+', u ",and u ' ' by the condi-
tion Eq. (A4) and by the Kronecker 5-function
coefficients in Eqs. (A5a), (A5b), and (A5c). Notice that
u'+'=u "(1+i t )=u' 's .S S'

The real DWBA formula for r~ is

' 1/2
dY
dr

Yd dY 2j
dr dr r

'+1
8ajO;j+11 8aj+1 1;jO 2j+1

(A10)
r~= —m(vk Idr u "U~u ", (A7)

where, again, we employ the compact notation described
following Eq. (A2). The normalization of Eq. (A7) agrees
with Eqs. (2. 1') and (2.2'). The parity-violating t-matrix
elements are then determined from Pz and ts by Eq.
(2.4). Alternatively, t@, can be calculated directly from

tg = mb(k J dr u Ug u (A8)

J
bJ —1 1;JO J

1/2

1/2
J +1

bjOj +11 2 + 1J
1/2j +1

bj +11;jo 2 + 1J

+dY+2J Y
dr dr r

d dY 2j+2
dr dr r

+ dY 2J+2 Y
dr dr r

Comparing Eqs. (A5) and (A6), with the relation
ss =1+2i ts, it is simple to show that Eqs. (A7) and (A8)
are consistent with Eq. (2.4).

where I'=e ™l4mr.Form factors modify Eqs. (A9) or
(A10) according to Eq. (4.1). All elements of 8, or 8b
not given in Eq. (A10) are zero.
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