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The muonic atom energies of the 2p-ls and the 3d-2p transitions were measured with a statistical
accuracy of better than +70 and +40 eV, respectively, for ' ' ' ' ' ' Te. The values for the
Barrett equivalent nuclear radii R& and for the root-mean-square radii and their differences were
calculated first from muonic data alone and second with the addition of published optical data. The
latter data provided the radii of ' Te and ' Te isotopes, which were not measured by muonic x
rays. A combined analysis of the muonic atom and optical isotope shift data yielded high-precision
values of the dill'erences in radii b,R (error (+0.5 am) and b, (r )'~ (error (+0.9 am) between

0

the neighboring isotopes. The optical constants for the Te line X=4049 A were determined (includ-

ing contributions of higher radial moments) to be F = ( 509+ 120) mK/fm and
M = —(104+63)X10' mK. Systematic behavior of the radius differences in neighboring isotopes
and isotones of Ba, Xe, Te, and Sn, together with odd-even staggering of the Te isotopes, are dis-

cussed in this paper. The 61V =2 Te isotope shifts between even-3 nuclei decrease nearly linearly
with increasing X, which can be explained by a successive decreasing deformation in accordance
with the observed systematics. The experimental data for the Te isotopes proved to be in good
agreement with even-A Hartree-Fock calculations and with recent Hartree-Fock calculations for
odd-A nuclei in which three-body forces are considered. A linear decrease of the nuclear skin
thickness with decreasing deformation was observed and is explained by a simple model.

I. INTRODUCTION

The present work is part of a collaborative study in-
volving Los Alamos, Mainz, and Fribourg in which
muonic-atom techniques are used to explore charge radii
in the region from light to medium-heavy nuclei and in
particular to study the influence of the neutron and pro-
ton shell structures on nuclear charge radii. It has been
found that for neutron shells N=20, 28, and 50, ' the
addition of the first two neutrons of a new shell causes a
sudden rise of the root-mean-square (rms) radius
difference. This behavior is observed to be almost in-
dependent of the proton configuration of the nuclei in-
volved. Furthermore, the sequential addition of neutron
pairs in the same neutron shell results in an almost linear
decrease in the successive radii differences. The small ra-
dii differences between the Ba isotopes before the magic
neutron number N=82 are consistent with this behavior.
The tellurium isotopes, the subject of the present work,
can give additional information in this region.

As is well known, optical isotope shifts give informa-
tion that is complementary to that obtained from muonic
atoms: most important, optical data can be obtained for
long chains of isotopes including unstable nuclei. How-
ever, two isotope shift constants for the specific optical
transition in question must be determined before radius
differences can be inferred from the optical data. This
calibration can be done with the absolute radii deduced
from muonic atom x-ray measurements. In this work we
determined the optical isotope shift constants for the Te

isotopes by comparing our muonic data with optical data
from the literature.

The absolute nuclear radii deduced from muonic atoms
are so accurate (uncertainty = 1 am), even compared to
radii from high-energy elastic electron-scattering experi-
ments (uncertainty =6—12 am), that these data can
readily be used to study systematic effects in differences
of radii between neighboring isotones. See, for example,
the systematic effects on isotone shifts at Z=20 and 28
measured by muonic atoms. Because changes in radii of
isotones are caused by two effects, the charge of the add-
ed protons and the proton core polarization, the charge
distribution of the added protons must be taken into ac-
count before one can obtain information concerning pro-
ton core polarization. One is then able to compare the
polarization effect of the added protons on the proton
core with the neutron polarization effect, the latter being
directly given by isotope shifts. If isotone shifts in the
Z=50 region follow the systematics observed at Z =28
we can expect a large change in radius between Te
(Z=52) and Sn (Z=50).

II. APPARATUS AND MEASURED
TRANSITION ENERGIES

The muonic x-ray spectra of the six Te isotopes in the
present study were obtained at the Los Alamos Meson
Physics Facility (LAMPF) muon channel, which provid-
ed approximately 10 stopped muons per second. The
muonic 3d-2p and 2p-1s transition energies were mea-
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TABLE I. Isotopic composition of the Te targets.

tope 120T 122T 123T 124T 125T 126T 128T 130T

123T

124T

125T

126T

128T

130T

& 0.03
& 0.03
& 0.01
& 0.02
& 0.05
& 0.02

1.17
0.12
0.03

& 0.02
& 0.05

0.04

85.40
0.12
0.06

& 0.02
& 0.05

0.02

5.12
93.75
0.28
0.05

& 0.05
0.02

1.69
2.31

95.67
0.20

& 0.05
0.03

2.56
1.55
2.71

98.69
0.23
0.1

2.27
1.23
0.76
0.81

99.16
0.3

1.80
0.92
0.49
0.24
0.61

99.49

sured with a 60-cm Ge(Li) diode. The various Te targets
were always studied in sets of four and were permuted
among the four target positions periodically to minimize
systematic geometrical eA'ects. A detailed description of
the Ge(Li) spectrometer and the data-acquisition system
has been given in a previous paper.

The first step of the data analysis is to determine the
line positions of the muonic x rays and of their accom-
panying calibration lines. As we are interested in the
transition energies of the pure isotopes, the isotopic com-
position of the targets has been taken into account in the
following way. We first analyzed a run with the target
combination ' ' ' 8' OTe. As can be seen from Table
I, where the isotopic composition of the targets is given,
all contributions of the lighter isotopes ' ' Te may be
neglected for these targets. We did a simultaneous fit for
the four spectra of these targets, where the relative ampli-
tudes of all contributing isotopes were fixed. This pro-
cedure yields the line positions of pure isotopes rather
than the positions of the actual lines from the mixed-
composition targets. Knowing the relative energy spac-
ing between these heavier isotopes, we can determine the
positions of ' ' "Te in the same way from runs contain-
ing ' ' Te and at least one of the heavier isotopes.

For the odd nuclei ' '' Te (nuclear spin I =
—,'), the

hyperfine splitting due to the magnetic dipole moment
and the resulting mixing of nuclear and muonic levels has
been calculated with the code MUON2. We used the
magnetic moments and known 8(E2) values for the

400-

300-
124Te

2P3/2 1Sl/2

100

low-lying nuclear states, as discussed in Sec. III. The rel-
ative spacing and amplitudes of the hyperfine com-
ponents were fixed at the computed values during the
fitting procedure.

All these fits were done with the code MYFIT, which
uses a rather conventional parametrization of the Ge(Li)
line shape. This line shape is the sum of a Gaussian and
several asymmetry contributions for the high- and low-

energy sides of the peak. These asymmetry functions re-
sult from a convolution of exponential and Gaussian
functions. They have the form exp(2ax ) X [1+erf(x
+ a) ], where x is the normalized channel number„ i.e., the
energy, and a is responsible for the shape (for details see

3500
400 " 3600

TABLE II. Energy calibration sources and their y-ray ener-
gies {Refs. 10 and 11).

130Te

Isotope

203Hg
137C

46SC

Na

56Co

' Rb

y-ray energy (keV)

279.197(1)
661.600(3)
889.277(3)

1368.633(6)
2754.030(14)
3201.954(14)
3253.417(14)
3272.998(14)
3451.154(13)
3547.925(61)
3218.483(49)
3486.473(56)
4035.500(400)

200

2P3/2 1s&/z

100

3600

Energy (keV)

3700

FIG. 1. Spectra from the muonic 2@3/2 1slzz and 2plyz-1s, ~z

transitions for ' Te and ' Te. The isotope shift is almost 20%
of the fine-structure splitting. The FWHM is 4.8 keV.
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TABLE III. Experimental transition energies for the 2p3/2-1$1/2, 2p1/2-1$1/2, 3d3/2-2p1/2, 3d5/2-2p3/2, and the 3d3/2-2p3/2 transi-
tions. The listed error includes the uncertainties of the calibration lines (Table II) and the statistical uncertainty in the location of the
line centroids.

Isotope

123Tc
124T
125T
126Tc
128T
130T

2p3/2-1$1/2

3637.191(71)
3634.446(68)
3633.532(69)
3630.882(68)
3627.578(68)
3624.486(67)

2p1/2-1$1

3585.249(68)
3582.502(62)
3581.595(65)
3579.011(61)
3575.716(62)
3572.652(62)

Transition energies (keV)
3d 3/2 "2p 1/2

1106.653(30)
1106.419(30)
1106.451(30)
1106.240(30)
1106.095(30)
1105.971(30)

3d 5/2-2p 3/2

1061.645(30)
1061.475(30)
1061.503(30)
1061.357(30)
1061.274(30)
1061.158(30)

3d3/2 2p3/2

1054.693(46)
1054.481(40)
1054.544(41)
1054.375(40)
1054.257(40)
1054.160(40)

Hughes and Wu ). The peak position is defined as the
center of gravity of the area of the peak from the 20%
point up to the maximum of the line. This method of
defining peak positions reduces the inAuence of line-shape
asymmetries.

The energy calibration of the Ge(Li) spectrometer in
the region of the 2p-1s transition energies of tellurium
(3.6 MeV) is dificult because of the low intensities of ra-
dioactive calibration lines in this energy region. For this
reason, we split the calibration into a lower (0.3—2.7
MeV) and an upper energy region (2.7—4 MeV). Before
and after the muonic experiment the Ge(Li) spectrometer
was calibrated with y rays from 0.3—4 MeV (Table II).
During the experiment calibration lines in the low-energy
region were stored in proportion to the instantaneous
muon beam intensity, as discussed in Ref. 2.

As the four Te spectra measured in any one run have
identical calibration, the energy differences between such

isotopes can be determined more accurately than can the
absolute energies. For the same reason, energies derived
from spectra of the same run are not independent. To get
a consistent set of energies and their differences, we have
treated all line positions of all runs together. This pro-
cedure gives the energies, the calibration parameters, and
the relevant error matrix. From this information the en-

ergy differences and their uncertainties have been com-
puted.

To extend the calibration from the lower energy region
to the region of interest around 3.7 MeV, we used the
calibration spectra extending up to 4 MeV, taken before
and after the muonic runs. A linear function is assumed
to describe any possible difference between the calibra-
tion before the run and the calibration during the run.
This procedure was tested in the energy region from
0.3—2.7 MeV with numerous calibration lines. The result-
ing y of 1.1/degree of freedom indicates that this as-

TABLE IV. Isotope shift values for the 2p3/2 1$1/2 (23-11) and 2p1/2-1$1/2 (21-11) transition energies (keV). Only statistical uncer-
tainties are given.

123TC

23-11
124T
21-11
124T
23-11
125T
21-11
125Tc

23-11

21-11
126Tc

23-11
128

21-11
128Tc

23-11
130T
21-11
130''e

23-11

—51.942
40
2.747

38
—49.196

37
3.654

43
—48.282

39
6.238

38
—45.632

37
9.533

41
—42.329

38
12.597
42

—39.237
39

123Tc

21-11

54.689
31
2.745

26
55.596
37
3.659

30
58.180
32
6.309

27
61.475
35
9.613

29
64.539
37
12.705
30

123Tc

23-11

—51.944
25
0.907

35
—51.030

29
3.491

27
—48.380

25
6.786

31
—45.076

27
9.850

32
—41.984

28

124TC

21-11

52.851
33
0.914

24
55.434
25
3.564

19
58.730
30
6.868

22
61.794
31
9.960

23

124Tc

23-11

—51.937
34
2.584

34
—49.287

33
5.879

36
—45.983

33
8.943

37
—42.891

34

125TC

21-11

54.520
29
2.650

24
57.816
31

5.954
25
60.880
33
9.046

26

125Tc

23-11

—51.870
24
3.295

31
—48.567

27
6.359

31
—45.475

20

126T

21-11

55.166
29
3.304

22
58.230
30
6.396

22

126T

23-11

—51.862
30
3.064

34
—48.770

30

128Tc

21-11

54.926
31
3.092

24

128Tc

23-11

—51.834
29

130T

21-11
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sumption is consistent with the measurements. A devia-
tion from linearity should occur only if the change of. the
line positions, due to drift, become significant compared
to the linear regions of the apparatus. Since the max-
imum observed shift was two analog-to-digital converter
(ADC) channels during the entire experiment (one week)
the assumption seems well justified. The assumed lineari-
ty of the apparatus between 3.2 and 3.7 MeV was
confirmed with several calibration lines (Table II) as well
as with a high-accuracy pulser. '

Using these two assumptions, we developed the com-
puter code CONFIT, which adjusts the transition ener-
gies to all measured line positions and gives, for each run,
the calibration parameters for the energy region from 3.2
to 3.7 MeV and the associated error matrix. The 3d-2p
transitions (1.0—1.1 MeV) were analyzed in the same way.

Figure 1 shows, as an example, the 2p3/z 1s&/z and

2p, /z-ls»z spectra for ' Te and ' Te. The shift in the
energies due to the difFerent radii (approximately 10 keV)
is readily apparent compared to the 2p fine-structure
splitting of approximately 52 keV. The experimental re-
sults are given in Tables III and IV with the least-squares
adjusted isotope shift values for the 2p3/z-ls, /z, 2p&/z-

1s1/z and the 3d3/z-2P&/z, 3d5/z-2P3/z 3d3/z 2P3/z tran-
sition energies.

An impression of the consistency of the line fitting and
the energy calibration can be obtained from a plot of the
2p fine-structure splitting energies of each isotope (Fig. 2)
as independently deduced from the 2p-1s and the 3d-2p
transitions. The 62p values are generally in good agree-
ment and, as expected in view of the finite-size effect,
display a gradual decrease in energy with increasing A.

The averaged 2p-1s transition energies from previous
measurements by Kast et al. ' are in agreement with our
measurements, which are an order of magnitude more
precise. However, their individual 2p 3/z 1s 1 /z and

2p»z-1s «z transition energies only agree with our results
within two standard deviations.

III. NUCLEAR CHARGE RADII

A. Nuclear charge parameters from muonic transition energies

(r e ")=4m f "p„„,~(r)r"exp( —ar)r dr (2)

can be determined "model independently" from muonic
transition energies, provided k and a are properly adjust-
ed to the muon potential difference of the transition in
question:

r"e "-[V„'(r)—V~(r)] . (3)

Equation (2) follows from considerations of the energy
shift of a muonic transition due to a change of the spheri-
cal nuclear charge distribution Ap„„,~, which, in first-
order perturbation theory, is given by

bE =4'f bp„„„(r)[V„'(r) V~~(r)]r—dr .
0

(4)

The Barrett moment can be expressed in terms of the
Barrett equivalent nuclear charge radius R& of a homo-
geneously charged sphere, which reproduces the transi-
tion energy in question and has the dimension of a length,
by the relationship

R~
3[Rk ] f 'r e "r dr=(r e ') .

To determine the nuclear radial moments from
muonic-atom transition energies, one typically solves the
Dirac equation with the two-parameter Fermi nuclear
charge distribution (in the following equations we use the
notation of Ref. 1)

p~(r) =poI 1+exp[(r —c)la] I

and adjusts the half-density radius c and the skin-
thickness parameter t (t =4ln3a) to reproduce the mea-
sured 2p-1s and 3d-2p transition energies. Barrett' has
shown that the radial moment

52.00—

51.95

51,90

C4

47
51.85

GQ

51.80

2p — 1s 3d — 2p

123 124 l25 126 l28 130

Mass Number A

FIG. 2. Fine-structure splitting energies (keV) of the muonic

2p level for the different tellurium isotopes from the measured
2p-1s (8 ) and 3d-2p ( X ) transitions.

With the computer code MUON2, we have solved the
Dirac equation numerically using the two-parameter Fer-
mi distribution and applied quantum-electrodynamic
(@ED) and nuclear polarization (NP) corrections. The
code MUoN2 (Ref. 5) is a modified version of codes MUON

and RURP.
The NP corrections include the isoscalar and isovector

contributions for giant resonance multipoles O~L 3.
The strength of each electric multipole was concentrated
in a single resonance state whose energy and strength
was determined by the full sum rules. These "high-lying
states" corrections have a smooth 3 dependence; there-
fore, only the values for the lightest and the heaviest Te
isotope are shown (Table V). The quadrupole contribu-
tions to the low-lying 2 states have been included using
the known energies and 8(E2) values of these states. '

For the odd isotopes ' Te and ' Te one has to calculate
the hyperfine structure and the nuclear polarization due
to the low-lying states in one procedure. Therefore, the
single NP value given in Table VI for each isotope con-
tains both effects and their interference. Owing to the use
of a model for the transition charge densities and to other
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TABLE V. Nuclear polarization contribution from the isoscalar (S) and isovector ( V) giant reso-
nances (GR) of diferent electric multipoles O~L ~ 3 (high-lying states). Because of their smooth 3-
.dependence only the values for the lightest ' Te and the heaviest "Te isotopes are given.

EO S

EO V

E2 S

E3 S

E3 V

Isotope

123
130
123
130
123
130
123
130
123
130
123
130
123
130

Energy
(MeV)

14.903
14.751
27.146
26.649
15.535
15.335
12.668
12.436
26.140
25.662
22. 119
21,714
39.411
38.691

8 (EL)
( 2bL)

0.0219
0.0209
0.0164
0.0174
0.287
0.303
0.322
0.310
0.213
0.225
0.160
0.154
0.123
0.130

1$1/2
(eV)

358
345
175
188
699
742
221
215
107
114
42
41
25
27

2p 1/2

(eV)

6
4

126
134
38
37
16
17
6
6
3
4

2p 3/2

(eV)

3
3

2

111
118
34
33
14
15

5

3
3

123
130

1627
1672

200
208

172
1-79

calculational assumptions, the NP corrections' have an
uncertainty of about 30%.

The corrections arising from the low-lying states can
dieter considerably from one isotope to another, especially
between even and odd ones. For example, the NP correc-
tion applied to the d-p transitions for ' Te is almost 125
eV larger than the correction for the other Te isotopes
(Table VII). If the level structure of an isotope is not well
known, as is frequently the case for odd isotopes, the er-

ror of the NP corrections may be larger than the experi-
mental error in the measured transition energies. The
efT'ect of NP uncertainties on the extraction of optical
constants will be discussed further in Sec. III B. The un-
certainties of the QED corrections (Table VII) are es-
timated to be about 20 eV. '

After the two parameters c- and t have been adjusted to
the measured transition energies, the values for a and k
can be directly calculated from the muon potentials. Be-

TABLE VI. Nuclear polarization corrections calculated from the low-lying states, the excitation en-
ergies, and the B (E2) values are given. Only the uncertainties for the 8 (E2) values of ' Te are includ-
ed since they are large compared to the others. The listed values for the odd isotopes include the
hyperfine splitting calculated with pI(123) = —0.7359pJ, and pi(125) = —0.888 28pq (Ref. 16).

Excitation energy
(keV)

E (&2)
(e'b')

NP corrections
1S1/2 2p1/2
(eV) (eV)

2p 3/2

(ev)

123T

124T

125T

126T

128T

130T

158.99

440.00

505.34

687.95

602.73

1325.52

443.50

463.39

671.42

729.30

666.34
1420.17

743.30
839.40

3+
2

3+
2

5 +
2

5+
2

2+

3+
2
s -+

2

5 +
2

5 +
2

2+
2+
2+
2+

0.020(4)

0.260(20)

0.360(30)

0.004

0.568(5)

0.019
0.186

0.158

0.130

0.003

0.478
0.004
0.377
0.300

703

615
20

512

520

408
319

519

384

355

305

2

225

165

397
8

379

311
2

227

164
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TABLE VII ~ Theoretical corrections used in the analysis for the various muonic transitions. Note
NP corrections for the d-p transitions are almost 124 eV larger for '"Te than for all other isotopes.

Isotope 2P 1/2- 1$1 2p 3/2 1$1/2

NP corrections (eV)
3d3/2-2p 1/2 3d s/2-2p 3/2 3d 3/2-2p3/2

123T

124T
12sT
126T

128T

130T

1610
1676
1600
1669
1646
1618

1589
1691
1596
1691
1673
1648

710
585
556
501
428
362

732
572
552
481
400
333

732
570
552
481
401
332

2P, /2-1$, /2

QED corrections for "Te (eV)'
2p 3/2-1$1/2 3d3/2 2p, /2 3ds/2-2p3/2 3d 3/2-2p 3/2

vpb
QED'
Sum (QED)
Sum'

26 497
—1513
24 984
26 653

27 327
—1418
25 909
27 600

8624
—55
8569
9070

7885
—150
7735
8216

7794
—150
7644
8125

'Because of the smooth 2 dependence, values for only a single isotope are given.
Electronic vacuum polarization of order a(Za) and a (Za).

'Higher-order corrections.
"Sum of VP and QED.
'Sum of sum(QED) and NP corrections.

cause of the model independence of the Barrett radial
moments, the choice of the Fermi distribution does not
aff'ect the results expressed in terms of the Barrett radii.
The model independence can be estimated by varying the
nuclear skin-thickness parameter t by 10%. This is ap-
proximately the largest change of t observed for one iso-
topic chain by elastic electron scattering on the isotopes

Ca and Ca. ' The result for the Barrett radius Rk
(2p, /z-ls, /2) changes only by 0.2 am for Te. This value is
less than the experimental error and the uncertainties of
NP corrections. The results for the tellurium charge pa-

rameters are given in Table VIII, where we used, for all
Te isotopes, the same k and a values for a given transi-
tion. This procedure is justified because the variation of
k and o: for the difFerent isotopes is negligible.

The original approximation of Ford and Wills which
parametrized the information contained in each transi-
tion energy by the radial moment ( r") of the charge dis-
tribution, although more model dependent than the Bar-
rett approximation, is also more transparent. To give a
better understanding for the measured quantities, we list
in Table IX the Ford-Wills k values for the five transi-

TABLE VIII. Nuclear charge parameters (fm) deduced from muonic x rays. Only statistical uncer-
tainties are listed. The Barrett parameters k, a are given for each transition.

Barrett parameters:
2p3/2 1$1/2 (23-11): k:2.2178, +=0.1141 (1/fm)

3d3/2-2p1/2 (33-21): k=2.3680, o,'= —0.0461 (1/fm)
3d, /2-2p3/2 (35-23): k=4.2969, a=0.1429 (1/fm)

Isotope

123T

124T

12sT

126T

128T

130T

5.496 78

5.534 67

5.567 25

5.562 68

5.593 01

5.61604

2.397

2.334

2.267

2.298

2.253

2.223

(r2)1/2

4.7158
0.0006
4.7200
0.0006
4.7194
0.0006
4.7270
0.0006
4.7331
0.0006
4.7393
0.0006

( r4) 1/4

5.0637
0.0025
5.0606
0.0025
5.0522
0.0025
5.0635
0.0025
5.0647
0.0025
5.0676
0.0025

Rg
23-11

6.0296
0.0002
6.0382
0.0002
6.0407
0.0002
6.0489
0.0002
6.0590
0.0002
6.0684
0.0002

RA

33-21

6.1476
0.0017
6.1498
0.0016
6.1456
0.0016
6.1569
0.0016
6.1626
0.0016
6.1691
0.0016

Rg
35-23

6.1952
0.0022
6.1950
0.0022
6.1884
0.0022
6.2006
0.0022
6.2045
0.0022
6.2098
0.0022
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TABLE IX. The Ford and Wills parameter k for the five

measured transitions.

Transition

2P 1/2 1S1 /2

2P3/P- 1S l /
3d 3/2-2P & /2

3d 3/z-F3/2
3d s/z-273/2

1.657
1.660
2.612
3.509
5.510

tions measured in this work. Because the radial informa-
tion from the 2p3/2 1s»2 and the 2p»z-ls, &2 transitions
is almost identical, in Table VIII we list only the Rk de-
duced from the transitions with the better statistics.

For comparison with optical isotope shift experiments,
we have used the parameters c and t of a Fermi charge
distribution as determined by the 3d-2p and 2p-1s transi-
tion energies. These parameters and the second and
fourth radial moments are also listed in Table VIII. The
quoted error is only statistical; however, one should keep
in mind that these Fermi charge parameters are not mod-
el independent at the high level of accuracy presented in
the present measurements.

B. Root-mean-square radii, their dift'erences
and optical isotope shift measurements

As discussed in the preceding section, the various
muonic transitions specify different radial moments
(Table IX). To extract the rms radius differences, one
needs at least two independent radial moments to deter-
mine the radius c and the skin thickness t of the Fermi
two-parameter charge distribution. The sensitivity of the
Barrett radii for the 2p-1s transition . energy is high
(I/C, =dE/dRk =-—300 eV/am), and therefore the cor-
responding radii can be determined very precisely (Table
VIII). In the case of the 3d-2p transition the sensitivity is
much lower (l/C, = —8 eV/am). Also the uncertainty of

gAA' g( 2) AA'+ / g( 4) AA'+

M=X+S,
(6)

and

N =vm, /m

In these relations I' is the difFerence in electron density at
the nucleus for the two levels of the transition, X is the
normal mass shift, S is the specific mass shift, v is the fre-
quency of the transition, m, is the electron mass, m is
the proton mass, and the c; are Seltzer's coefficients. '

For Te the ratio of the Seltzer coefficients c2 /c
&= —6.4X 10, and the higher radial moments can make

a significant contribution to the isotope shift, especially if
the 5( r ) term happens to be small for a pair of isotopes.
For example, the contribution of the higher moments is
about 6% for A,

Before proceeding we have the problem of combining
the data from the several published optical isotope shift
measurements on Te, namely those of Kuhn and
Turner, Lecordier and Helbert, ~ and Lecordier.
Older measurements with larger errors were not includ-

the 2p NP correction is considerable. For these reasons
our determination of the Barrett radii for the 3d-2p tran-
sition is significantly less certain than for the 2p-1s transi-
tion.

In this work we made two separate analyses of our
data. First we used the 2p-1s and 3d-2p transitions to
determine the charge distribution parameters (Table
VIII) from muonic measurements alone as described in
Sec. III A. In a second (combined) analysis we included
the results of optical isotope shift measurements on the
Te isotopes, as described in the following paragraphs.

The optical isotope shifts 5v" are a linear function of
the radius differences A,

6v,"„"=FR,""+M( A' —A)/( 3'A),
where

TABLE X. Optical isotope shift data 6v„~ (mK) from the measurements of Kuhn et al. (Ref. 22)
and Lecordier et al. (Refs. 23 and 24) are listed. Least-squares adjusted values projected onto the

0
A, =4049 A line are used in the analysis.

Kuhn et al.
A, =4049

Lecordier et al.
A, =5450 A, =5479 A. =4007

Adjusted
k =4049

120-122T

122-123T

122-124Te

124-125Te

124-126T

126-128Te

128-130T

22.70
1.20

—0.60
0.70

21.50
0.40

—1.40
0.70

17.30
. 0.40
16.70
0.40

14.50
0.50

—0.70
0.60

20.70
0.30

—0.80
0.50

18.56
0.30

16.70
0.30

14.70
0.30

—2.80
0.20

—2.50
0.20

—2.30
0.20

—2.00
0.20

6.57
0.20

5.90
0.20
5.03
0.20
4.28
0.20

—1.30
0.80

21.20
0.40

—0.90
0.50

19.10
0.40

17.60
0.40

15.60
0.40

22.70
1.20

—0.85
0.41

20.78
0.22

—1.01
0.37

18.27
0.20

16.73
0.20

14.72
0.22
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TABLE XI. Nuclear charge parameters c, t, and rms radii (fm) from a simultaneous analysis of
muonic x-ray energies and optical isotope shift data. 6rms (am) and 5RI, (am) are the deviations from
pure muonic results compared to the simultaneous analysis. For ' Te and ' Te, only optical isotope
shift data are available. Only statistical errors are given. Barrett parameters for the transition
2@3/2 1s1&2 (23-11) are k=2.2178 and +=0.1141 (1/fm).

120T

122T

123T

124T

125T

126T

128T

130T

5.514 35

5.531 97

5.545 55

5.563 85

5.593 34

5.622 03

2.358

2.340

2.316

2.295

2.253

2.209

rms

4.705
4.713
4.7142
0.0005
4.7202
0.0005
4.7213
0.0004
4.7269
0.0004
4.7331
0.0004
4.7388
0.0005

6rms

p —(p+ opt. )

+ 1.6

—0.2

—1.9

+0.1

0.0

+0.5

Rg
23-11

6.0295
0.0002
6.0382
0.0002
6.0408
0.0002
6.0489
0.0002
6.0590
0.0002
6.0683
0.0002

6Rq

p —(p+ opt. )

+0.1

0.0

—0.1

0.0

- 0.0

+0.1

ed. The measurements, from four different optical spec-
tral lines, were transferred to one spectral line with the
help of a King plot. The King plot compares the mea-
sured isotope shifts, normalized by the factor
A A '/( A

' —A), for two diiferent spectral transitions. In
such a plot the data points should form a straight line, as
follows from King's assumption that for a given element
and a given spectral line the factors F and M are con-
stant. Thus all optical tellurium isotope shift measure-
ments from four different spectral lines could be
transferred to the A, =404.9 nm spectral line by a least-
squares fitting procedure. The results, with errors, are
given in Table X.

As we have discussed muonic data yield values for Bar-
rett equivalent radii [Eq. (5)], while the dependence of the
optical data on charge radius is given by Eq. (6). To com-
bine or compare these two kinds of data requires some
knowledge of the form of the nuclear charge distribution.
One can take the approach of using the c, t for a Fermi
distribution fitted to the muonic data, in combination
with the optical data to determine, via King plot, the op-
tical parameters F and M.

However, to make the best use of the available data
and to determine the correct errors for the derived quan-
tities, it is convenient to combine both muonic and opti-
cal measured data in a single fitting procedure. As input
data we used the muonic 2p-1s and 3d-2p transition ener-
gies (Table III) and the adjusted optical isotope shifts
5,"" (Table X) to fit the nuclear charge parameters c and
t and the optical constants F and M for the entire telluri-
um isotope chain simultaneously (Table XI). As men-
tioned, a major advantage of this procedure is to get the
correct error matrix, taking into account the errors from
all the input data, which then allows us to calculate the
radial moment differences up to the fourth moment and
their errors in a consistent way (Table XII and XIII).
However, one should keep in mind that these results de-

pend on the assumption of a Fermi two-parameter charge
distribution. Without additional experimental informa-
tion about the shape of the charge distribution, such as
from electron scattering, there is no truly model-
independent method of combining both muonic and opti-
cal data sets.

Our King plot of muonic and optical data is shown in
Fig. 3. The data points are the pure muonic data on the
x axis, while the y values are given by optical isotope

A A'. BV (1O K)40 A' —A

30-
126 —125

10-
128 —126

130 —128

N=
0 I

600
I 1

800 1000
I

1200

M th —.
—10- (fzn~)~A' —A

—20-

FIG. 3. King plot of optical isotope shift data for the
A, =4049 A line vs muonic b.(r )+c2/c, (r ) values. The
straight line is determined by a simultaneous fit of muonic and
optical data, F =509+120 mK/fm, and M = —(104+63)X 10'
mK. The extended (dashed) error of the isotope pair ' ' Te
stems from the uncertainties of the ' 'Te B (E2) values. M,h was
calculated by Bauche (Ref. 26).
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TABLE XII. Radius differences from a simultaneous analysis of muonic x-ray energies and optical
isotope shift data. Only statistical uncertainties are given. The values given for ' Te and ' Te are
from optical data alone.

123T

124T 6.1

0.7
125Te 7.1

0.3
126T 12.7

0.6
128Te 18.9

0.6
130Te 24.6

0.9
Arms(" Te-' Te) =8.0
Qrms( ' Te-'2 Te) =7.2

124T

1.1
0.7
6.6
0.2

12.8
0.5

18.5
0.9

rms radius differences (am)
125T

5.5
0.6

11.8
0.5

17.5
0.8

6.2
0.3

11.9
0.7

128T

5.7
0.4

123T

Barret radius differences
ARp (2p3/2 1$1/2) (am), k=2.2178, a=0.1141 (1/fm)

124Te 125Te 126Te 128T

124T

125T

126T

128T

130T

8.7
0.2

11.2
0.3

19.4
0.3

29.4
0.4

38.8
0.6

2.6
0.2

10.7
0.3

20.8
0.4

30.1

0.5

8.1

0.2
18.2
0.3

27.6
0.5

10.0
0.3

19.4
0.4

9.4
0.3

shifts alone. The straight line is the result of our com-
bined optical and muonic analysis, which is a simultane-
ous fit to the measured muonic transition energies and
the measured optical isotope shifts as mentioned above,
rather than a fit to the 6(r ) ""+c, Ic 52( r )"" of the
pure muonic analysis. Thus the line in Fig. 3 is not a fit
to the displayed data points. The slope of the line is
determined principally by the odd isotopes ' Te, ' Te
for which muonic and optical data are not in a good
agreement. The errors given in Fig. 3 are taken from

Table XII, whereas the relatively large error for ' ' Te
comes from the large uncertainties of the NP corrections,
which are due to the large error for the B (E2) values of

Te compared to ' Te and the other isotopes.
In discussing the deviation of the odd isotopes, one

might question the completeness and reliability of the
available B (E2) values; however, a reexamination of
these data is beyond the scope of the present paper. We
should perhaps comment that a shift of the ' ' Te point
in Fig. 3 towards the ' ' Te point seems more likely

TABLE XIII. Differences of the fourth radial moments from a simultaneous analysis of muonic x.-

ray energies and optical isotope shift data. Only statistical uncertainties are given. For
Te(r') ' =5.063 fm.

124T

125T

126T

128T

130T

123T

4.0
2.7
2.3
1.1
5.5
2.5
7.0
2.6
8.0
3.2

124T

—1.7
2.7
1.5
1.0
3.0
2.0
3.9
3.3

h(r )' (am)
125Te

3.2
2.3
4.7
2.0
5.7
2.4

126T

1.5
1.2
2.5
2.5

128T

1.0
1.5
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than the other way around, because of the larger uncer-
tainties in the 8(E2) values for ' Te. The result would
be in a somewhat smaller mass shift and improved agree-
ment with the value calculated by Bauche of M, i,

= —75
mK.

Before discussing the interpretation of the results of
Sec. IV, it is desirable also to consider the radii of the
neighboring Sn, Xe, and Ba isotopes. To study the sys-
tematic behavior of nuclear radii one can use either the
precisely known Barrett radii R& or the more conven-
tional rms radii. The Barrett radii, however, can be rnea-
sured only for stable isotopes, whereas by the optical iso-
tope shift method one can measure diA'erences of rms
radii —even for unstable isotopes —by laser-spectroscopy
techniques. Combining both methods one can get abso-
lute rms radii for long isotope chains. If one adds to
these data the information about radii differences be-
tween isotones, which can be measured only by muonic
atoms, it is possible to study the systematic behavior for
chains of isotopes and isotones. Furthermore, if indepen-
dent measurements for a closed loop of isotope and iso-
tone shifts are available, one can readily check the con-
sistency of the measurements.

To deduce the rms radii from an optical shift measure-
ment, one has to know the two optical constants I' and M
and the rms radius for one isotope, as outlined in Sec.
III B. The following information for Ba, Xe, and Sn has
been used (the contribution of the higher radial moments,
( r ) and ( r ) have not been taken into account).

Ba: Shera et al. and Kunold et al. determined
from rnuonic x-ray measurements on the Ba isotopes for
the 553.5-nm BaI line the optical constants
F =(3035+260) MHz frn with M =(47+103) GHz and
( r ) '~

(
' Ba)=4.832 fm (values taken from Shera

er al. ). With these values and the optical isotope mea-
surements compiled by Heilig one can compute the rms
radii for the long chain of isotopes from ' Ba up to
146B

Xe: In his Diplomarbeit, Hennemann found from an
analysis of his muonic atom data on the stable Xe iso-
topes, together with the optical isotopes shift measure-
ment by Borghs et al. ' for the Xe line A, =605.1 nm, the
values F = (0.63+0.09) GHz fm, M = ( —972+52)
GHz, and (r )'~ (' Xe)=4.782 fm.

Sn: For the tin isotopes the optical values given by
Heilig, F = (3.3+0.5) GHz fm and M = (98+70)
MHz for the A, =286.3 nm transition, together with the
rms radius for ' Sn(r )'~'=4.646 fm from elastic elec-
tron scattering data (which included older muonic x-ray
data ), give access to all rms radii from ' Sn to ' Sn.

The determination of the optical constants I" and M
and the rms radius for one isotope for each element is
based on previously published data. A more refined eval-
uation of these quantities, including new data, ' will be
given in a forthcoming publication.

Arms
(1O-' rm)

10-

0

P—r.'
60 70 74

Alamos and the universities of Mainz and Fri-
bourg, ' ' ' ' although for some of the elements the
data are still unpublished. On the basis of these data
several observations can be made. These observations are
summarized in the following.

(a) At the beginning of a new neutron shell, a dramatic
increase of the radius occurs. The sequential addition of
neutron pairs in the same shell results in an almost linear
decrease in the successive isotope shifts. Toward the end
of the shell, the isotope shifts can even become negative.

(b) It is apparent that the isotope shifts are nearly in-
dependent of the proton configuration of the nuclei in-
volved. This is true even for magic proton
configurations; for example, the z6Fe-26Fe and z8Ni-z8Ni
isotope shifts are identical within their errors (Ref. 2).
The change in the nuclear charge radius is primarily
determined by the shell of the added neutrons, whereas
the inAuence of the proton configuration is not very
significant. This is especially remarkable when one con-
siders that the charge radius is, after all, given by the pro-
ton distribution of the nucleus.

(c) At the end of the neutron shells %=28 and 50 one
observes a slightly but systematically larger shift for the
isotopes of the lighter elements. This eA'ect represents a
small deviation from the independence of the isotope
shift from the proton configuration as mentioned above.

These previous findings are listed for comparison with
the present results for the tellurium isotopes as given in
Fig. 4. One sees that the rms radii diA'erences show a
slow linear decrease from hrms( ' ' Te) = 8 am to
b, rms(' ' Te)=6 am, which is in accordance with the
general observation (a). However, the isotope shifts are
still positive, in contrast to the trend seen as the N=28
shell closure is approached and also for Sr, Rb, Kr, and
Br as the N= 50 shell is approached.

To explain the change in the rms radii between neigh-
boring isotopes, one can use the model of a uniformly
charged deformed nucleus

IV. INTERPRETATION OF RESUI.TS

In the region between N=20, 28, and 50, almost all
Barrett radii for stable isotopes are now known from
muonic atom measurements by a collaboration of Los

FIG. 4. DiA'erences in nuclear charge rms radii of the even
Te isotopes upon the addition of two neutrons: +, experiment;

, droplet model with deformation; 0, spherical Hartree-Fock
calculations with deformation (see Table XIV).
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The first term accounts for the radius change of the
spherical part of the nucleus, whereas the second term is
related to the quadrupole deformation p of the nucleus.
The terms are usually called the volume and the shape
effects, respectively. In principle, deformations of all or-
ders contribute, but in practice the quadrupole deforma-
tion P2 alone will be used because it is expected to dom-
inate and for most nuclei only the B(E2) values are
known. The pz values, Table XIV, are derived from the
measured B (E2) values according to the following formu-

.41

(P~) =B(E2)[4~/(3zRo)]

Friedrich et al. have calculated the 6(r ), h term of
this formula by the spherical Hartree-Fock (HF) method,
using G Skyrme forces. The second term is determined
by the variation in the deformation p2 as given in Table
XIV. These compared results for the differences of the
rms radii between neighboring even-even Te isotopes
show a nearly perfect agreement with the experimental
values (Fig. 4).

The results from the droplet model (DM) for the ra-
dius differences (Fig. 4) are systematically 3—4 am too
high, because of the larger 6( ro ) of this model, but show
a similar variation with 3 due to the deformation contri-
bution. This comparison of the present data with the
spherical HF and DM predictions involves radii
difFerences. If one considers absolute radii the compar-
isons are less favorable, even if the inhuence of deforma-
tion on the radii is included empirically (Table XIV).

We have performed density-dependent HF calculations
using the method of Negele and Rinker, assuming axi-
ally symmetry nuclear deformation and using the density
matrix expansion (DME) effective Hamiltonian and the
pairing approximation described in Ref. 38. The DME
method is appealing compared to the use of Skyrme
forces because it is based on realistic two-body effective
interaction rather than a purely phenomenological poten-
tial. The absolute rms radii from these deformed HF cal-
culations are in excellent agreement with experiment,
reproducing the measured values for the light Te isotopes
almost within the errors of the measurements (Table

XIV). A similar remarkable agreement between the
DME calculations and experiment has been reported in a
rather different class of nuclei, namely the transitional
Os-Pt isotopes.

It is evident that a variation of the deformation should
be related to a change in the skin thickness t of the nu-
clear charge distribution. The measurements of the 2p-1s
and 3d-2p muonic transitions allow us to determine the
skin thickness t as well as the radius parameter c of the
Fermi two-parameter model (Table XI). The value for
the four isotopes ' ' ' ' Te are plotted on a display
of t vs pz in Fig. 5.

The apparent linearity of the plots suggests an extrapo-
lation to p2=0, which leads to a skin thickness of about
t=1.9 fm. A formal justification of this linear extrapola-
tion follows from the model of a uniformly charged axial-
ly symmetric quadrupole-deformed nucleus. Its charge
distribution is given by Kopfermann as

po) r ($
p(r)= p (I —[(» —b)/(a —b)]'~'), b &r &a,

0, r&a,
(9)

where a, b are the axes of the deformed ellipsoid. From
the following well-known relations:

P2-&B(E2)-go —(a —b ) .

With the two assumed charge parameters t =0.8(a —b)
and R = (a +b) /2 one gets for the skin thickness
t = {/9/SvrRPz. With the simple liquid-drop model
R =ROM

' follows the linear relation

t =&9/5vrRo A '~
p2 .

The experiment yields t,„„=mp+ to with m =2.813 fm
and to = 1.877 fm, which gives Ro =0.74 fm, in agreement
with other isotope shifts near the closure of a neutron
shell. The value of to=1.9 fm may be regarded as the
skin thickness of an idealized, totally spherical nucleus.

One can ask the question: what is the smallest skin
thickness observed for an actual nucleus? One should ex-

pect to find this for doubly magic nuclei, for example, in

the calcium isotope Ca (p2=0. 1) with t=2.26 fm as
measured by elastic electron scattering. ' This value can

TABLE XIV. Comparison of the measured rms radii for the even Te isotopes with deformed
Hartree-Fock calculations from Negele et al. (Ref. 38), spherical Hartree-Fock calculations from
Friedrich et al. (Ref. 39), and the spherical droplet mode (Ref. 40). The spherical values are corrected
for Pz deformation deduced from B(E2) values {Ref. 16).

Te
p+ opt.

exp. Deformed HF

rms radii (fm)
Spherical HF

/32 +ps
Spherical droplet

+p,
120
122
124
126
128
130

4.705
4.713
4.720
4.727
4.733
4.739

4.707
4.713
4.722
4.734
4.746
4.754

0.180
0.174
0.164
0.150
0.132
0.117

4.682
4.691
4.698
4.705
4.710
4.717

4.717
4.728
4.739
4.748
4.757
4.767
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be compared with the smallest skin thickness observed
for a Te isotope, which occurs as expected in the isotope
nearest the %=82 closed shell, ' Te (Pz=0. 12) with
t =2.21 fm. The observations are consistent. Th e t
values of the ' ' ' Ba isotopes measured from muonic
atoms given by Shera et al. lead to a t0=1.95 fm, a
value also consistent with the result from the Te isotopes.

The systematic behaviors of the rms radii described in
observations (a) and (c) above, which were found at the
closure of the %=50 neutron shell, are also apparent for
Te and neighboring elements at %=82. As an illustra-
tion, the measured differences of the rms radii (AX=2)
for the even Te isotopes are displayed in Fig. 6 together
with the isotope shifts of Ba, Xe, and Sn. They all show a
linear decrease approaching the neutron number %=82
[effect (a)], and the rms values are systematically larger
for lower Z elements [effect (c)].

Figure 7 shows the isotope shifts ( b,%=2) and isotone
shifts (b,Z= 2) for Te, Sn, Xe, and Ba plotted against the
neutron and proton numbers X and Z, respectively. The
size of the shifts is displayed by the width of the arrows;
the arrows point in the direction of increasing radius.
The polarization of the proton core by the added neu-
trons, the isotope shifts, shows an almost monotonic de-
crease approaching X=82. A slight deviation from
monotonic behavior occurs for the last two added neu-
trons before the closure of the neutron shell. These neu-
trons generate a small increase of the radius difference,
due perhaps to the admixture of neutron states of the
next shell (Fig. 7). The first two added neutrons in the

new shell ' ' Ba produce a dramatic increase in the ra-
dius difference, as expected from the systematics [see ob-
servation (a)].

One must remember that the Sn- Te- Xe- Ba iso-
tone shifts arising from the addition of two protons can
be understood as the result of two effects: first, by adding
the charge of these protons into the 1g7/2 orbit, and
second, by the polarization of the proton core. There is a
large increase of the rms radius for the first two added
protons in the 1g7/2 shell, i.e., between the Sn and Te iso-
tones. Adding further protons results in a linear decrease
in the isotone shifts; see, for example, the isotones with
70, 72, or 74 neutrons. Also, the isotone shifts between
Sn and Te decrease linearly as the neutron number be-
comes larger. These observations display essentially the
same systematics as those outlined for isotope shifts.
These results for the Sn and Xe isotopes are preliminary,
and a more quantitative comparison will be made in a
forthcoming publication.

The two odd isotopes ' Te and ' Te exhibit the usual
odd-even staggering effect. A staggering parameter y( A)
can be defined'

y( 3 +1)=2[R ( 2 +1)—R ( 2)]/[R ( 3 +2)—R ( 3)],
(12)

with 3 even and R the rms radius. y is normally smaller

Arms
(1O f tax)
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FIG. 5. Deformation parameter /32 from 8(E2) values plot-
ted against skin thickness t of the adjusted Fermi distribution
from a simultaneous fit of muonic and optical data and calcu-
lated values + (see text).

FIG. 6. Differences in rms nuclear charge radii upon addi-
tion of two neutrons for the barium, A; the xenon, ; the tellu-
rium, +; and the tin, 0 isotopes. It is apparent that 5 rms
values decrease as the magic neutron number N= 82 is ap-
proached and that the values are systematically larger for lower
Z elements. The well-known large increase after N=82 is seen
for barium.
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124j. J & 126 ~ 128
i J ~ 136
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FIG. 7. The increase of the rms radii between neighboring even-even isotopes (horizontal arrows) and isotones (vertical arrows) is
represented by the width of the arrows in a Z-N plot. The figure gives an overall impression of the systematic behavior of the isotone
and isotope shifts. The references for these data are given in Sec. III.

4 p4p x'1118 RBcl1-us

4.735—

than 1, which means that the increase of the rms radius
due to the added odd neutron is smaller than one-half the
difference between the even X neighbors. The experimen-
tal values are

y(' Te) =0.31+0.14

(13)

4.730—

4.725—

4.720—

y(' Te)=0.33+0. 18 .
Recent Hartree-Fock-Bogoliubov calculations
Zawischa,

y,„(' Te) =0.18

y,h(
' Te ) =0.24,

from

(14)
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FIG. 8. The measured rms radii for the Te isotopes—
indicated by different symbols for odd and even nuclei —are
plotted for comparison with the calculations of Zawischa apply-
ing three-body forces. For convenience the theoretical values
are connected by lines.

show good agreement with the experiment. These calcu-
lations included a three-body 6 force and used the param-
eter set developed for the Sn isotopic chain, with the sin-
gle exception that the strength of the two-particle in-
teraction was reduced by a factor of 2. The results of
these calculations are displayed in Fig. 8 (connected by
lines) together with the experimental values (distinctive
symbols are used to distinguish odd and even isotopes).
The good agreement with experiment, including the odd-
even staggering, is evident. We also note that the
pairing-plus-quadrupole model calculations, published
some time ago by Reehal and Sorensen, are not in good
agreement with our experimental values.
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